Significant performance improvements for elevated and non-elevated case

Apply bruteforce for elevated models
This commit is contained in:
tamasmeszaros 2020-09-10 19:35:26 +02:00
parent d527122046
commit 20bd7b99f9
4 changed files with 89 additions and 60 deletions

View File

@ -4,6 +4,7 @@
#include "../AABBTreeIndirect.hpp" #include "../AABBTreeIndirect.hpp"
#include "FillBase.hpp" #include "FillBase.hpp"
#include "TriangleMesh.hpp"
namespace Slic3r { namespace Slic3r {

View File

@ -1,11 +1,10 @@
#include <limits> #include <limits>
#include <exception>
//#include <libnest2d/optimizers/nlopt/genetic.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include <libslic3r/SLA/Rotfinder.hpp> #include <libslic3r/SLA/Rotfinder.hpp>
#include <libslic3r/SLA/Concurrency.hpp> #include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include "libslic3r/SLAPrint.hpp" #include "libslic3r/SLAPrint.hpp"
#include "libslic3r/PrintConfig.hpp" #include "libslic3r/PrintConfig.hpp"
@ -61,23 +60,25 @@ std::array<Vec3d, 3> get_transformed_triangle(const TriangleMesh &mesh,
} }
// Get area and normal of a triangle // Get area and normal of a triangle
struct Face { Vec3d normal; double area; }; struct Facestats {
inline Face facestats(const std::array<Vec3d, 3> &triangle) Vec3d normal;
{ double area;
Vec3d U = triangle[1] - triangle[0];
Vec3d V = triangle[2] - triangle[0];
Vec3d C = U.cross(V);
Vec3d N = C.normalized();
double area = 0.5 * C.norm();
return {N, area}; explicit Facestats(const std::array<Vec3d, 3> &triangle)
} {
Vec3d U = triangle[1] - triangle[0];
Vec3d V = triangle[2] - triangle[0];
Vec3d C = U.cross(V);
normal = C.normalized();
area = 0.5 * C.norm();
}
};
inline const Vec3d DOWN = {0., 0., -1.}; inline const Vec3d DOWN = {0., 0., -1.};
constexpr double POINTS_PER_UNIT_AREA = 1.; constexpr double POINTS_PER_UNIT_AREA = 1.;
// The score function for a particular face // The score function for a particular face
inline double get_score(const Face &fc) inline double get_score(const Facestats &fc)
{ {
// Simply get the angle (acos of dot product) between the face normal and // Simply get the angle (acos of dot product) between the face normal and
// the DOWN vector. // the DOWN vector.
@ -110,7 +111,7 @@ double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr)
if (mesh.its.vertices.empty()) return std::nan(""); if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) { auto accessfn = [&mesh, &tr](size_t fi) {
Face fc = facestats(get_transformed_triangle(mesh, tr, fi)); Facestats fc{get_transformed_triangle(mesh, tr, fi)};
return get_score(fc); return get_score(fc);
}; };
@ -131,7 +132,7 @@ double get_model_supportedness_onfloor(const TriangleMesh &mesh,
auto accessfn = [&mesh, &tr, zlvl](size_t fi) { auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
std::array<Vec3d, 3> tri = get_transformed_triangle(mesh, tr, fi); std::array<Vec3d, 3> tri = get_transformed_triangle(mesh, tr, fi);
Face fc = facestats(tri); Facestats fc{tri};
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl) if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
return -fc.area * POINTS_PER_UNIT_AREA; return -fc.area * POINTS_PER_UNIT_AREA;
@ -161,56 +162,91 @@ XYRotation from_transform3d(const Transform3d &tr)
} }
// Find the best score from a set of function inputs. Evaluate for every point. // Find the best score from a set of function inputs. Evaluate for every point.
template<size_t N, class Fn, class Cmp, class It> template<size_t N, class Fn, class It, class StopCond>
std::array<double, N> find_min_score(Fn &&fn, Cmp &&cmp, It from, It to) std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
{ {
std::array<double, N> ret; std::array<double, N> ret;
double score = std::numeric_limits<double>::max(); double score = std::numeric_limits<double>::max();
for (auto it = from; it != to; ++it) { size_t Nthreads = std::thread::hardware_concurrency();
double sc = fn(*it); size_t dist = std::distance(from, to);
if (cmp(sc, score)) { std::vector<double> scores(dist, score);
score = sc;
ret = *it; ccr_par::for_each(size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
} if (stopfn()) return;
}
scores[i] = fn(*(from + i));
}, dist / Nthreads);
auto it = std::min_element(scores.begin(), scores.end());
if (it != scores.end()) ret = *(from + std::distance(scores.begin(), it));
return ret; return ret;
} }
// collect the rotations for each face of the convex hull // collect the rotations for each face of the convex hull
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh) std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
{ {
TriangleMesh chull = mesh.convex_hull_3d(); TriangleMesh chull = mesh.convex_hull_3d();
chull.require_shared_vertices(); chull.require_shared_vertices();
double chull2d_area = chull.convex_hull().area(); double chull2d_area = chull.convex_hull().area();
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.)); double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
size_t facecount = chull.its.indices.size(); size_t facecount = chull.its.indices.size();
auto inputs = reserve_vector<XYRotation>(facecount);
struct RotArea { XYRotation rot; double area; };
auto inputs = reserve_vector<RotArea>(facecount);
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
};
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
};
for (size_t fi = 0; fi < facecount; ++fi) { for (size_t fi = 0; fi < facecount; ++fi) {
Face fc = facestats(get_triangle_vertices(chull, fi)); Facestats fc{get_triangle_vertices(chull, fi)};
if (fc.area > area_threshold) { if (fc.area > area_threshold) {
auto q = Eigen::Quaterniond{}.FromTwoVectors(fc.normal, DOWN); auto q = Eigen::Quaterniond{}.FromTwoVectors(fc.normal, DOWN);
inputs.emplace_back(from_transform3d(Transform3d::Identity() * q)); XYRotation rot = from_transform3d(Transform3d::Identity() * q);
RotArea ra = {rot, fc.area};
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
if (it == inputs.end() || !eqcmp(it->rot, rot))
inputs.insert(it, ra);
} }
} }
return inputs; inputs.shrink_to_fit();
if (!max_count) max_count = inputs.size();
std::sort(inputs.begin(), inputs.end(),
[](const RotArea &ra, const RotArea &rb) {
return ra.area > rb.area;
});
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
return ret;
} }
XYRotation find_best_rotation(const SLAPrintObject & po, Vec2d find_best_rotation(const SLAPrintObject & po,
float accuracy, float accuracy,
std::function<void(unsigned)> statuscb, std::function<void(unsigned)> statuscb,
std::function<bool()> stopcond) std::function<bool()> stopcond)
{ {
static const unsigned MAX_TRIES = 10000; static const unsigned MAX_TRIES = 1000;
// return value // return value
std::array<double, 2> rot; XYRotation rot;
// We will use only one instance of this converted mesh to examine different // We will use only one instance of this converted mesh to examine different
// rotations // rotations
@ -226,7 +262,7 @@ XYRotation find_best_rotation(const SLAPrintObject & po,
// call status callback with zero, because we are at the start // call status callback with zero, because we are at the start
statuscb(status); statuscb(status);
auto statusfn = [&statuscb, &status, max_tries] { auto statusfn = [&statuscb, &status, &max_tries] {
// report status // report status
statuscb(unsigned(++status * 100.0/max_tries) ); statuscb(unsigned(++status * 100.0/max_tries) );
}; };
@ -234,29 +270,26 @@ XYRotation find_best_rotation(const SLAPrintObject & po,
// Different search methods have to be used depending on the model elevation // Different search methods have to be used depending on the model elevation
if (is_on_floor(po)) { if (is_on_floor(po)) {
std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
max_tries = inputs.size();
// If the model can be placed on the bed directly, we only need to // If the model can be placed on the bed directly, we only need to
// check the 3D convex hull face rotations. // check the 3D convex hull face rotations.
auto inputs = get_chull_rotations(mesh);
auto cmpfn = [](double a, double b) { return a < b; };
auto objfn = [&mesh, &statusfn](const XYRotation &rot) { auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
statusfn(); statusfn();
// We actually need the reverserotation to make the object lie on
// this face
Transform3d tr = to_transform3d(rot); Transform3d tr = to_transform3d(rot);
return get_model_supportedness_onfloor(mesh, tr); return get_model_supportedness_onfloor(mesh, tr);
}; };
rot = find_min_score<2>(objfn, cmpfn, inputs.begin(), inputs.end()); rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
} else { } else {
// Preparing the optimizer. // Preparing the optimizer.
size_t grid_size = std::sqrt(max_tries); size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{} opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
.max_iterations(max_tries) .max_iterations(max_tries)
.stop_condition(stopcond), .stop_condition(stopcond),
grid_size); gridsize);
// We are searching rotations around only two axes x, y. Thus the // We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task. // problem becomes a 2 dimensional optimization task.
@ -272,11 +305,9 @@ XYRotation find_best_rotation(const SLAPrintObject & po,
// Save the result and fck off // Save the result and fck off
rot = result.optimum; rot = result.optimum;
std::cout << "best score: " << result.score << std::endl;
} }
return rot; return {rot[0], rot[1]};
} }
double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr) double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr)

View File

@ -27,7 +27,7 @@ namespace sla {
* *
* @return Returns the rotations around each axis (x, y, z) * @return Returns the rotations around each axis (x, y, z)
*/ */
std::array<double, 2> find_best_rotation( Vec2d find_best_rotation(
const SLAPrintObject& modelobj, const SLAPrintObject& modelobj,
float accuracy = 1.0f, float accuracy = 1.0f,
std::function<void(unsigned)> statuscb = [] (unsigned) {}, std::function<void(unsigned)> statuscb = [] (unsigned) {},

View File

@ -13,7 +13,7 @@ namespace Slic3r { namespace GUI {
void RotoptimizeJob::process() void RotoptimizeJob::process()
{ {
int obj_idx = m_plater->get_selected_object_idx(); int obj_idx = m_plater->get_selected_object_idx();
if (obj_idx < 0 || m_plater->sla_print().objects().size() <= obj_idx) if (obj_idx < 0 || int(m_plater->sla_print().objects().size()) <= obj_idx)
return; return;
ModelObject *o = m_plater->model().objects[size_t(obj_idx)]; ModelObject *o = m_plater->model().objects[size_t(obj_idx)];
@ -35,15 +35,12 @@ void RotoptimizeJob::process()
// std::cout << "Model supportedness before: " << score << std::endl; // std::cout << "Model supportedness before: " << score << std::endl;
// } // }
auto r = sla::find_best_rotation( Vec2d r = sla::find_best_rotation(*po, 0.75f,
*po,
1.f,
[this](unsigned s) { [this](unsigned s) {
if (s < 100) if (s < 100)
update_status(int(s), update_status(int(s), _(L("Searching for optimal orientation")));
_(L("Searching for optimal orientation")));
}, },
[this]() { return was_canceled(); }); [this] () { return was_canceled(); });
double mindist = 6.0; // FIXME double mindist = 6.0; // FIXME