Refactored code for the detection of degenerated Voronoi diagrams. Added detection for cases when some Voronoi edge is intersection input segments, which should fix another case reported in #8846.

This commit is contained in:
Lukáš Hejl 2022-09-21 14:08:30 +02:00
parent 8ac60ccc7a
commit 22091a9e3e
2 changed files with 92 additions and 37 deletions

View File

@ -573,6 +573,59 @@ inline static void rotate_back_skeletal_trapezoidation_graph_after_fix(SkeletalT
} }
} }
bool detect_voronoi_edge_intersecting_input_segment(const Geometry::VoronoiDiagram &voronoi_diagram, const std::vector<VoronoiUtils::Segment> &segments)
{
for (VoronoiUtils::vd_t::cell_type cell : voronoi_diagram.cells()) {
if (!cell.incident_edge())
continue; // Degenerated cell, there is no spoon
if (!cell.contains_segment())
continue; // Skip cells that don't contain segments.
const VoronoiUtils::Segment &source_segment = VoronoiUtils::getSourceSegment(cell, segments);
const Vec2d source_segment_from = source_segment.from().cast<double>();
const Vec2d source_segment_vec = source_segment.to().cast<double>() - source_segment_from;
Point start_source_point, end_source_point;
VoronoiUtils::vd_t::edge_type *begin_voronoi_edge = nullptr, *end_voronoi_edge = nullptr;
SkeletalTrapezoidation::computeSegmentCellRange(cell, start_source_point, end_source_point, begin_voronoi_edge, end_voronoi_edge, segments);
// All Voronoi vertices must be on left side of the source segment, otherwise Voronoi diagram is invalid.
// FIXME Lukas H.: Be aware that begin_voronoi_edge and end_voronoi_edge could be nullptr in some specific cases.
// It mostly happens when there is some missing Voronoi, for example, in GH issue #8846 (IssuesWithMysteriousPerimeters.3mf).
if (begin_voronoi_edge != nullptr && end_voronoi_edge != nullptr)
for (VoronoiUtils::vd_t::edge_type *edge = begin_voronoi_edge; edge != end_voronoi_edge; edge = edge->next())
if (const Vec2d edge_v1(edge->vertex1()->x(), edge->vertex1()->y()); Slic3r::cross2(source_segment_vec, edge_v1 - source_segment_from) < 0)
return true;
}
return false;
}
enum class VoronoiDiagramStatus {
NO_ISSUE_DETECTED,
MISSING_VORONOI_VERTEX,
NON_PLANAR_VORONOI_DIAGRAM,
VORONOI_EDGE_INTERSECTING_INPUT_SEGMENT,
OTHER_TYPE_OF_VORONOI_DIAGRAM_DEGENERATION
};
// Try to detect cases when some Voronoi vertex is missing, when the Voronoi diagram
// is not planar or some Voronoi edge is intersecting input segment.
VoronoiDiagramStatus detect_voronoi_diagram_known_issues(const Geometry::VoronoiDiagram &voronoi_diagram,
const std::vector<SkeletalTrapezoidation::Segment> &segments)
{
if (const bool has_missing_voronoi_vertex = detect_missing_voronoi_vertex(voronoi_diagram, segments); has_missing_voronoi_vertex) {
return VoronoiDiagramStatus::MISSING_VORONOI_VERTEX;
} else if (const bool has_voronoi_edge_intersecting_input_segment = detect_voronoi_edge_intersecting_input_segment(voronoi_diagram, segments); has_voronoi_edge_intersecting_input_segment) {
// Detection if Voronoi edge is intersecting input segment detects at least one model in GH issue #8446.
return VoronoiDiagramStatus::VORONOI_EDGE_INTERSECTING_INPUT_SEGMENT;
} else if (const bool is_voronoi_diagram_planar = Geometry::VoronoiUtilsCgal::is_voronoi_diagram_planar_angle(voronoi_diagram, segments); !is_voronoi_diagram_planar) {
// Detection of non-planar Voronoi diagram detects at least GH issues #8474, #8514 and #8446.
return VoronoiDiagramStatus::NON_PLANAR_VORONOI_DIAGRAM;
}
return VoronoiDiagramStatus::NO_ISSUE_DETECTED;
}
void SkeletalTrapezoidation::constructFromPolygons(const Polygons& polys) void SkeletalTrapezoidation::constructFromPolygons(const Polygons& polys)
{ {
#ifdef ARACHNE_DEBUG #ifdef ARACHNE_DEBUG
@ -614,36 +667,35 @@ void SkeletalTrapezoidation::constructFromPolygons(const Polygons& polys)
} }
#endif #endif
// Try to detect cases when some Voronoi vertex is missing and when // When any Voronoi vertex is missing, the Voronoi diagram is not planar, or some voronoi edge is
// the Voronoi diagram is not planar. // intersecting input segment, rotate the input polygon and try again.
// When any Voronoi vertex is missing, or the Voronoi diagram is not VoronoiDiagramStatus status = detect_voronoi_diagram_known_issues(voronoi_diagram, segments);
// planar, rotate the input polygon and try again.
const bool has_missing_voronoi_vertex = detect_missing_voronoi_vertex(voronoi_diagram, segments);
// Detection of non-planar Voronoi diagram detects at least GH issues #8474, #8514, #8446 and #8846.
const bool is_voronoi_diagram_planar = Geometry::VoronoiUtilsCgal::is_voronoi_diagram_planar_angle(voronoi_diagram, segments);
const double fix_angle = PI / 6; const double fix_angle = PI / 6;
std::unordered_map<Point, Point, PointHash> vertex_mapping; std::unordered_map<Point, Point, PointHash> vertex_mapping;
// polys_copy is referenced through items stored in the std::vector segments. // polys_copy is referenced through items stored in the std::vector segments.
Polygons polys_copy = polys; Polygons polys_copy = polys;
if (has_missing_voronoi_vertex || !is_voronoi_diagram_planar) { if (status != VoronoiDiagramStatus::NO_ISSUE_DETECTED) {
if (has_missing_voronoi_vertex) if (status == VoronoiDiagramStatus::MISSING_VORONOI_VERTEX)
BOOST_LOG_TRIVIAL(warning) << "Detected missing Voronoi vertex, input polygons will be rotated back and forth."; BOOST_LOG_TRIVIAL(warning) << "Detected missing Voronoi vertex, input polygons will be rotated back and forth.";
else if (!is_voronoi_diagram_planar) else if (status == VoronoiDiagramStatus::NON_PLANAR_VORONOI_DIAGRAM)
BOOST_LOG_TRIVIAL(warning) << "Detected non-planar Voronoi diagram, input polygons will be rotated back and forth."; BOOST_LOG_TRIVIAL(warning) << "Detected non-planar Voronoi diagram, input polygons will be rotated back and forth.";
else if (status == VoronoiDiagramStatus::VORONOI_EDGE_INTERSECTING_INPUT_SEGMENT)
BOOST_LOG_TRIVIAL(warning) << "Detected Voronoi edge intersecting input segment, input polygons will be rotated back and forth.";
vertex_mapping = try_to_fix_degenerated_voronoi_diagram_by_rotation(voronoi_diagram, polys, polys_copy, segments, fix_angle); vertex_mapping = try_to_fix_degenerated_voronoi_diagram_by_rotation(voronoi_diagram, polys, polys_copy, segments, fix_angle);
assert(!detect_missing_voronoi_vertex(voronoi_diagram, segments)); assert(!detect_missing_voronoi_vertex(voronoi_diagram, segments));
assert(Geometry::VoronoiUtilsCgal::is_voronoi_diagram_planar_angle(voronoi_diagram, segments)); assert(Geometry::VoronoiUtilsCgal::is_voronoi_diagram_planar_angle(voronoi_diagram, segments));
assert(!detect_voronoi_edge_intersecting_input_segment(voronoi_diagram, segments));
if (detect_missing_voronoi_vertex(voronoi_diagram, segments)) if (detect_missing_voronoi_vertex(voronoi_diagram, segments))
BOOST_LOG_TRIVIAL(error) << "Detected missing Voronoi vertex even after the rotation of input."; BOOST_LOG_TRIVIAL(error) << "Detected missing Voronoi vertex even after the rotation of input.";
else if (!Geometry::VoronoiUtilsCgal::is_voronoi_diagram_planar_angle(voronoi_diagram, segments)) else if (!Geometry::VoronoiUtilsCgal::is_voronoi_diagram_planar_angle(voronoi_diagram, segments))
BOOST_LOG_TRIVIAL(error) << "Detected non-planar Voronoi diagram even after the rotation of input."; BOOST_LOG_TRIVIAL(error) << "Detected non-planar Voronoi diagram even after the rotation of input.";
else if (detect_voronoi_edge_intersecting_input_segment(voronoi_diagram, segments))
BOOST_LOG_TRIVIAL(error) << "Detected Voronoi edge intersecting input segment even after the rotation of input.";
} }
bool degenerated_voronoi_diagram = has_missing_voronoi_vertex || !is_voronoi_diagram_planar;
process_voronoi_diagram: process_voronoi_diagram:
assert(this->graph.edges.empty() && this->graph.nodes.empty() && this->vd_edge_to_he_edge.empty() && this->vd_node_to_he_node.empty()); assert(this->graph.edges.empty() && this->graph.nodes.empty() && this->vd_edge_to_he_edge.empty() && this->vd_node_to_he_node.empty());
for (vd_t::cell_type cell : voronoi_diagram.cells()) { for (vd_t::cell_type cell : voronoi_diagram.cells()) {
@ -652,35 +704,35 @@ process_voronoi_diagram:
Point start_source_point; Point start_source_point;
Point end_source_point; Point end_source_point;
vd_t::edge_type* starting_vonoroi_edge = nullptr; vd_t::edge_type* starting_voronoi_edge = nullptr;
vd_t::edge_type* ending_vonoroi_edge = nullptr; vd_t::edge_type* ending_voronoi_edge = nullptr;
// Compute and store result in above variables // Compute and store result in above variables
if (cell.contains_point()) { if (cell.contains_point()) {
const bool keep_going = computePointCellRange(cell, start_source_point, end_source_point, starting_vonoroi_edge, ending_vonoroi_edge, segments); const bool keep_going = computePointCellRange(cell, start_source_point, end_source_point, starting_voronoi_edge, ending_voronoi_edge, segments);
if (!keep_going) if (!keep_going)
continue; continue;
} else { } else {
assert(cell.contains_segment()); assert(cell.contains_segment());
computeSegmentCellRange(cell, start_source_point, end_source_point, starting_vonoroi_edge, ending_vonoroi_edge, segments); computeSegmentCellRange(cell, start_source_point, end_source_point, starting_voronoi_edge, ending_voronoi_edge, segments);
} }
if (!starting_vonoroi_edge || !ending_vonoroi_edge) { if (!starting_voronoi_edge || !ending_voronoi_edge) {
assert(false && "Each cell should start / end in a polygon vertex"); assert(false && "Each cell should start / end in a polygon vertex");
continue; continue;
} }
// Copy start to end edge to graph // Copy start to end edge to graph
edge_t* prev_edge = nullptr; edge_t* prev_edge = nullptr;
assert(VoronoiUtils::p(starting_vonoroi_edge->vertex1()).x() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_vonoroi_edge->vertex1()).x() >= std::numeric_limits<coord_t>::lowest()); assert(VoronoiUtils::p(starting_voronoi_edge->vertex1()).x() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_voronoi_edge->vertex1()).x() >= std::numeric_limits<coord_t>::lowest());
assert(VoronoiUtils::p(starting_vonoroi_edge->vertex1()).y() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_vonoroi_edge->vertex1()).y() >= std::numeric_limits<coord_t>::lowest()); assert(VoronoiUtils::p(starting_voronoi_edge->vertex1()).y() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_voronoi_edge->vertex1()).y() >= std::numeric_limits<coord_t>::lowest());
transferEdge(start_source_point, VoronoiUtils::p(starting_vonoroi_edge->vertex1()).cast<coord_t>(), *starting_vonoroi_edge, prev_edge, start_source_point, end_source_point, segments); transferEdge(start_source_point, VoronoiUtils::p(starting_voronoi_edge->vertex1()).cast<coord_t>(), *starting_voronoi_edge, prev_edge, start_source_point, end_source_point, segments);
node_t* starting_node = vd_node_to_he_node[starting_vonoroi_edge->vertex0()]; node_t* starting_node = vd_node_to_he_node[starting_voronoi_edge->vertex0()];
starting_node->data.distance_to_boundary = 0; starting_node->data.distance_to_boundary = 0;
constexpr bool is_next_to_start_or_end = true; constexpr bool is_next_to_start_or_end = true;
graph.makeRib(prev_edge, start_source_point, end_source_point, is_next_to_start_or_end); graph.makeRib(prev_edge, start_source_point, end_source_point, is_next_to_start_or_end);
for (vd_t::edge_type* vd_edge = starting_vonoroi_edge->next(); vd_edge != ending_vonoroi_edge; vd_edge = vd_edge->next()) { for (vd_t::edge_type* vd_edge = starting_voronoi_edge->next(); vd_edge != ending_voronoi_edge; vd_edge = vd_edge->next()) {
assert(vd_edge->is_finite()); assert(vd_edge->is_finite());
assert(VoronoiUtils::p(vd_edge->vertex0()).x() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(vd_edge->vertex0()).x() >= std::numeric_limits<coord_t>::lowest()); assert(VoronoiUtils::p(vd_edge->vertex0()).x() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(vd_edge->vertex0()).x() >= std::numeric_limits<coord_t>::lowest());
@ -692,12 +744,12 @@ process_voronoi_diagram:
Point v2 = VoronoiUtils::p(vd_edge->vertex1()).cast<coord_t>(); Point v2 = VoronoiUtils::p(vd_edge->vertex1()).cast<coord_t>();
transferEdge(v1, v2, *vd_edge, prev_edge, start_source_point, end_source_point, segments); transferEdge(v1, v2, *vd_edge, prev_edge, start_source_point, end_source_point, segments);
graph.makeRib(prev_edge, start_source_point, end_source_point, vd_edge->next() == ending_vonoroi_edge); graph.makeRib(prev_edge, start_source_point, end_source_point, vd_edge->next() == ending_voronoi_edge);
} }
assert(VoronoiUtils::p(starting_vonoroi_edge->vertex0()).x() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_vonoroi_edge->vertex0()).x() >= std::numeric_limits<coord_t>::lowest()); assert(VoronoiUtils::p(starting_voronoi_edge->vertex0()).x() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_voronoi_edge->vertex0()).x() >= std::numeric_limits<coord_t>::lowest());
assert(VoronoiUtils::p(starting_vonoroi_edge->vertex0()).y() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_vonoroi_edge->vertex0()).y() >= std::numeric_limits<coord_t>::lowest()); assert(VoronoiUtils::p(starting_voronoi_edge->vertex0()).y() <= std::numeric_limits<coord_t>::max() && VoronoiUtils::p(starting_voronoi_edge->vertex0()).y() >= std::numeric_limits<coord_t>::lowest());
transferEdge(VoronoiUtils::p(ending_vonoroi_edge->vertex0()).cast<coord_t>(), end_source_point, *ending_vonoroi_edge, prev_edge, start_source_point, end_source_point, segments); transferEdge(VoronoiUtils::p(ending_voronoi_edge->vertex0()).cast<coord_t>(), end_source_point, *ending_voronoi_edge, prev_edge, start_source_point, end_source_point, segments);
prev_edge->to->data.distance_to_boundary = 0; prev_edge->to->data.distance_to_boundary = 0;
} }
@ -705,9 +757,9 @@ process_voronoi_diagram:
// When this degenerated Voronoi diagram is processed, the resulting half-edge structure contains some edges that don't have // When this degenerated Voronoi diagram is processed, the resulting half-edge structure contains some edges that don't have
// a twin edge. Based on this, we created a fast mechanism that detects those causes and tries to recompute the Voronoi // a twin edge. Based on this, we created a fast mechanism that detects those causes and tries to recompute the Voronoi
// diagram on slightly rotated input polygons that usually make the Voronoi generator generate a non-degenerated Voronoi diagram. // diagram on slightly rotated input polygons that usually make the Voronoi generator generate a non-degenerated Voronoi diagram.
if (!degenerated_voronoi_diagram && has_missing_twin_edge(this->graph)) { if (status == VoronoiDiagramStatus::NO_ISSUE_DETECTED && has_missing_twin_edge(this->graph)) {
BOOST_LOG_TRIVIAL(warning) << "Detected degenerated Voronoi diagram, input polygons will be rotated back and forth."; BOOST_LOG_TRIVIAL(warning) << "Detected degenerated Voronoi diagram, input polygons will be rotated back and forth.";
degenerated_voronoi_diagram = true; status = VoronoiDiagramStatus::OTHER_TYPE_OF_VORONOI_DIAGRAM_DEGENERATION;
vertex_mapping = try_to_fix_degenerated_voronoi_diagram_by_rotation(voronoi_diagram, polys, polys_copy, segments, fix_angle); vertex_mapping = try_to_fix_degenerated_voronoi_diagram_by_rotation(voronoi_diagram, polys, polys_copy, segments, fix_angle);
assert(!detect_missing_voronoi_vertex(voronoi_diagram, segments)); assert(!detect_missing_voronoi_vertex(voronoi_diagram, segments));
@ -724,14 +776,14 @@ process_voronoi_diagram:
goto process_voronoi_diagram; goto process_voronoi_diagram;
} }
if (degenerated_voronoi_diagram) { if (status != VoronoiDiagramStatus::NO_ISSUE_DETECTED) {
assert(!has_missing_twin_edge(this->graph)); assert(!has_missing_twin_edge(this->graph));
if (has_missing_twin_edge(this->graph)) if (has_missing_twin_edge(this->graph))
BOOST_LOG_TRIVIAL(error) << "Detected degenerated Voronoi diagram even after the rotation of input."; BOOST_LOG_TRIVIAL(error) << "Detected degenerated Voronoi diagram even after the rotation of input.";
} }
if (degenerated_voronoi_diagram) if (status != VoronoiDiagramStatus::NO_ISSUE_DETECTED)
rotate_back_skeletal_trapezoidation_graph_after_fix(this->graph, fix_angle, vertex_mapping); rotate_back_skeletal_trapezoidation_graph_after_fix(this->graph, fix_angle, vertex_mapping);
#ifdef ARACHNE_DEBUG #ifdef ARACHNE_DEBUG
@ -742,7 +794,7 @@ process_voronoi_diagram:
graph.collapseSmallEdges(); graph.collapseSmallEdges();
// Set [incident_edge] the the first possible edge that way we can iterate over all reachable edges from node.incident_edge, // Set [incident_edge] the first possible edge that way we can iterate over all reachable edges from node.incident_edge,
// without needing to iterate backward // without needing to iterate backward
for (edge_t& edge : graph.edges) for (edge_t& edge : graph.edges)
if (!edge.prev) if (!edge.prev)

View File

@ -9,6 +9,7 @@
#include <memory> // smart pointers #include <memory> // smart pointers
#include <unordered_map> #include <unordered_map>
#include <utility> // pair #include <utility> // pair
#include <Arachne/utils/VoronoiUtils.hpp>
#include "utils/HalfEdgeGraph.hpp" #include "utils/HalfEdgeGraph.hpp"
#include "utils/PolygonsSegmentIndex.hpp" #include "utils/PolygonsSegmentIndex.hpp"
@ -229,7 +230,7 @@ protected:
* /return Whether the cell is inside of the polygon. If it's outside of the * /return Whether the cell is inside of the polygon. If it's outside of the
* polygon we should skip processing it altogether. * polygon we should skip processing it altogether.
*/ */
bool computePointCellRange(vd_t::cell_type& cell, Point& start_source_point, Point& end_source_point, vd_t::edge_type*& starting_vd_edge, vd_t::edge_type*& ending_vd_edge, const std::vector<Segment>& segments); static bool computePointCellRange(vd_t::cell_type& cell, Point& start_source_point, Point& end_source_point, vd_t::edge_type*& starting_vd_edge, vd_t::edge_type*& ending_vd_edge, const std::vector<Segment>& segments);
/*! /*!
* Compute the range of line segments that surround a cell of the skeletal * Compute the range of line segments that surround a cell of the skeletal
@ -255,7 +256,7 @@ protected:
* /return Whether the cell is inside of the polygon. If it's outside of the * /return Whether the cell is inside of the polygon. If it's outside of the
* polygon we should skip processing it altogether. * polygon we should skip processing it altogether.
*/ */
void computeSegmentCellRange(vd_t::cell_type& cell, Point& start_source_point, Point& end_source_point, vd_t::edge_type*& starting_vd_edge, vd_t::edge_type*& ending_vd_edge, const std::vector<Segment>& segments); static void computeSegmentCellRange(vd_t::cell_type& cell, Point& start_source_point, Point& end_source_point, vd_t::edge_type*& starting_vd_edge, vd_t::edge_type*& ending_vd_edge, const std::vector<Segment>& segments);
/*! /*!
* For VD cells associated with an input polygon vertex, we need to separate the node at the end and start of the cell into two * For VD cells associated with an input polygon vertex, we need to separate the node at the end and start of the cell into two
@ -597,6 +598,8 @@ protected:
* Genrate small segments for local maxima where the beading would only result in a single bead * Genrate small segments for local maxima where the beading would only result in a single bead
*/ */
void generateLocalMaximaSingleBeads(); void generateLocalMaximaSingleBeads();
friend bool detect_voronoi_edge_intersecting_input_segment(const Geometry::VoronoiDiagram &voronoi_diagram, const std::vector<VoronoiUtils::Segment> &segments);
}; };
} // namespace Slic3r::Arachne } // namespace Slic3r::Arachne