One more fix for Organic supports & Raft :

Raft was not generated at all with Organic supports enabled, but
no trees produced.
This commit is contained in:
Vojtech Bubnik 2023-02-28 17:40:05 +01:00
parent 94d463b645
commit 2959de40ae
2 changed files with 152 additions and 129 deletions

View File

@ -2954,7 +2954,7 @@ SupportGeneratorLayersPtr generate_raft_base(
Polygons columns;
Polygons first_layer;
if (columns_base != nullptr) {
if (columns_base->print_z > slicing_params.raft_contact_top_z - EPSILON) {
if (columns_base->bottom_print_z() > slicing_params.raft_interface_top_z - EPSILON) {
// Classic supports with colums above the raft interface.
base = columns_base->polygons;
columns = base;

View File

@ -993,6 +993,30 @@ inline SupportGeneratorLayer& layer_allocate(
return layer_initialize(layer_storage.back(), layer_type, slicing_params, config, layer_idx);
}
int generate_raft_contact(
const PrintObject &print_object,
const TreeSupportSettings &config,
SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayerStorage &layer_storage)
{
int raft_contact_layer_idx = -1;
if (print_object.has_raft() && print_object.layer_count() > 0) {
// Produce raft contact layer outside of the tree support loop, so that no trees will be generated for the raft contact layer.
// Raft layers supporting raft contact interface will be produced by the classic raft generator.
// Find the raft contact layer.
raft_contact_layer_idx = int(config.raft_layers.size()) - 1;
while (raft_contact_layer_idx > 0 && config.raft_layers[raft_contact_layer_idx] > print_object.slicing_parameters().raft_contact_top_z + EPSILON)
-- raft_contact_layer_idx;
// Create the raft contact layer.
SupportGeneratorLayer &raft_contact_layer = layer_allocate(layer_storage, SupporLayerType::TopContact, print_object.slicing_parameters(), config, raft_contact_layer_idx);
top_contacts[raft_contact_layer_idx] = &raft_contact_layer;
const ExPolygons &lslices = print_object.get_layer(0)->lslices;
double expansion = print_object.config().raft_expansion.value;
raft_contact_layer.polygons = expansion > 0 ? expand(lslices, scaled<float>(expansion)) : to_polygons(lslices);
}
return raft_contact_layer_idx;
}
using SupportElements = std::deque<SupportElement>;
/*!
* \brief Creates the initial influence areas (that can later be propagated down) by placing them below the overhang.
@ -1066,24 +1090,7 @@ static void generate_initial_areas(
const size_t num_raft_layers = config.raft_layers.size();
const size_t num_support_layers = size_t(std::max(0, int(print_object.layer_count()) + int(num_raft_layers) - int(z_distance_delta)));
const size_t first_support_layer = std::max(int(num_raft_layers) - int(z_distance_delta), 1);
size_t first_tree_layer = 0;
size_t raft_contact_layer_idx = std::numeric_limits<size_t>::max();
if (num_raft_layers > 0 && print_object.layer_count() > 0) {
// Produce raft contact layer outside of the tree support loop, so that no trees will be generated for the raft contact layer.
// Raft layers supporting raft contact interface will be produced by the classic raft generator.
// Find the raft contact layer.
raft_contact_layer_idx = config.raft_layers.size() - 1;
while (raft_contact_layer_idx > 0 && config.raft_layers[raft_contact_layer_idx] > print_object.slicing_parameters().raft_contact_top_z + EPSILON)
-- raft_contact_layer_idx;
// Create the raft contact layer.
SupportGeneratorLayer &raft_contact_layer = layer_allocate(layer_storage, SupporLayerType::TopContact, print_object.slicing_parameters(), config, raft_contact_layer_idx);
top_contacts[raft_contact_layer_idx] = &raft_contact_layer;
const ExPolygons &lslices = print_object.get_layer(0)->lslices;
double expansion = print_object.config().raft_expansion.value;
raft_contact_layer.polygons = expansion > 0 ? expand(lslices, scaled<float>(expansion)) : to_polygons(lslices);
first_tree_layer = print_object.slicing_parameters().raft_layers() - 1;
}
const int raft_contact_layer_idx = generate_raft_contact(print_object, config, top_contacts, layer_storage);
std::mutex mutex_layer_storage, mutex_movebounds;
std::vector<std::unordered_set<Point, PointHash>> already_inserted(num_support_layers);
@ -1436,47 +1443,50 @@ static void generate_initial_areas(
}
});
// Remove tree tips that start below the raft contact,
// remove interface layers below the raft contact.
for (size_t i = 0; i < first_tree_layer; ++i) {
top_contacts[i] = nullptr;
move_bounds[i].clear();
}
if (raft_contact_layer_idx != std::numeric_limits<size_t>::max() && print_object.config().raft_expansion.value > 0) {
// If any tips at first_tree_layer now are completely inside the expanded raft layer, remove them as well before they are propagated to the ground.
Polygons &raft_polygons = top_contacts[raft_contact_layer_idx]->polygons;
EdgeGrid::Grid grid(get_extents(raft_polygons).inflated(SCALED_EPSILON));
grid.create(raft_polygons, Polylines{}, coord_t(scale_(10.)));
SupportElements &first_layer_move_bounds = move_bounds[first_tree_layer];
double threshold = scaled<double>(print_object.config().raft_expansion.value) * 2.;
first_layer_move_bounds.erase(std::remove_if(first_layer_move_bounds.begin(), first_layer_move_bounds.end(),
[&grid, threshold](const SupportElement &el) {
coordf_t dist;
if (grid.signed_distance_edges(el.state.result_on_layer, threshold, dist)) {
assert(std::abs(dist) < threshold + SCALED_EPSILON);
// Support point is inside the expanded raft, remove it.
return dist < - 0.;
}
return false;
}), first_layer_move_bounds.end());
#if 0
// Remove the remaining tips from the raft: Closing operation on tip circles.
if (! first_layer_move_bounds.empty()) {
const double eps = 0.1;
// All tips supporting this layer are expected to have the same radius.
double radius = config.getRadius(first_layer_move_bounds.front().state);
// Connect the tips with the following closing radius.
double closing_distance = radius;
Polygon circle = make_circle(radius + closing_distance, eps);
Polygons circles;
circles.reserve(first_layer_move_bounds.size());
for (const SupportElement &el : first_layer_move_bounds) {
circles.emplace_back(circle);
circles.back().translate(el.state.result_on_layer);
}
raft_polygons = diff(raft_polygons, offset(union_(circles), - closing_distance));
if (raft_contact_layer_idx >= 0) {
const size_t first_tree_layer = print_object.slicing_parameters().raft_layers() - 1;
// Remove tree tips that start below the raft contact,
// remove interface layers below the raft contact.
for (size_t i = 0; i < first_tree_layer; ++i) {
top_contacts[i] = nullptr;
move_bounds[i].clear();
}
if (raft_contact_layer_idx >= 0 && print_object.config().raft_expansion.value > 0) {
// If any tips at first_tree_layer now are completely inside the expanded raft layer, remove them as well before they are propagated to the ground.
Polygons &raft_polygons = top_contacts[raft_contact_layer_idx]->polygons;
EdgeGrid::Grid grid(get_extents(raft_polygons).inflated(SCALED_EPSILON));
grid.create(raft_polygons, Polylines{}, coord_t(scale_(10.)));
SupportElements &first_layer_move_bounds = move_bounds[first_tree_layer];
double threshold = scaled<double>(print_object.config().raft_expansion.value) * 2.;
first_layer_move_bounds.erase(std::remove_if(first_layer_move_bounds.begin(), first_layer_move_bounds.end(),
[&grid, threshold](const SupportElement &el) {
coordf_t dist;
if (grid.signed_distance_edges(el.state.result_on_layer, threshold, dist)) {
assert(std::abs(dist) < threshold + SCALED_EPSILON);
// Support point is inside the expanded raft, remove it.
return dist < - 0.;
}
return false;
}), first_layer_move_bounds.end());
#if 0
// Remove the remaining tips from the raft: Closing operation on tip circles.
if (! first_layer_move_bounds.empty()) {
const double eps = 0.1;
// All tips supporting this layer are expected to have the same radius.
double radius = config.getRadius(first_layer_move_bounds.front().state);
// Connect the tips with the following closing radius.
double closing_distance = radius;
Polygon circle = make_circle(radius + closing_distance, eps);
Polygons circles;
circles.reserve(first_layer_move_bounds.size());
for (const SupportElement &el : first_layer_move_bounds) {
circles.emplace_back(circle);
circles.back().translate(el.state.result_on_layer);
}
raft_polygons = diff(raft_polygons, offset(union_(circles), - closing_distance));
}
#endif
}
#endif
}
}
@ -4203,79 +4213,90 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
std::vector<Polygons> overhangs = generate_overhangs(config, *print.get_object(processing.second.front()), throw_on_cancel);
// ### Precalculate avoidances, collision etc.
size_t num_support_layers = precalculate(print, overhangs, processing.first, processing.second, volumes, throw_on_cancel);
if (num_support_layers == 0)
continue;
auto t_precalc = std::chrono::high_resolution_clock::now();
// value is the area where support may be placed. As this is calculated in CreateLayerPathing it is saved and reused in draw_areas
std::vector<SupportElements> move_bounds(num_support_layers);
// ### Place tips of the support tree
SupportGeneratorLayersPtr bottom_contacts(num_support_layers, nullptr);
SupportGeneratorLayersPtr top_contacts(num_support_layers, nullptr);
SupportGeneratorLayersPtr top_interface_layers(num_support_layers, nullptr);
SupportGeneratorLayersPtr intermediate_layers(num_support_layers, nullptr);
SupportGeneratorLayerStorage layer_storage;
SupportGeneratorLayersPtr top_contacts;
SupportGeneratorLayersPtr bottom_contacts;
SupportGeneratorLayersPtr top_interface_layers;
SupportGeneratorLayersPtr intermediate_layers;
for (size_t mesh_idx : processing.second)
generate_initial_areas(*print.get_object(mesh_idx), volumes, config, overhangs, move_bounds, top_contacts, top_interface_layers, layer_storage, throw_on_cancel);
auto t_gen = std::chrono::high_resolution_clock::now();
if (size_t num_support_layers = precalculate(print, overhangs, processing.first, processing.second, volumes, throw_on_cancel);
num_support_layers > 0) {
#ifdef TREESUPPORT_DEBUG_SVG
for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++layer_idx) {
Polygons polys;
for (auto& area : move_bounds[layer_idx])
append(polys, area.influence_area);
if (auto begin = move_bounds[layer_idx].begin(); begin != move_bounds[layer_idx].end())
SVG::export_expolygons(debug_out_path("treesupport-initial_areas-%d.svg", layer_idx),
{ { { union_ex(volumes.getWallRestriction(config.getCollisionRadius(begin->state), layer_idx, begin->state.use_min_xy_dist)) },
{ "wall_restricrictions", "gray", 0.5f } },
{ { union_ex(polys) }, { "parent", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
auto t_precalc = std::chrono::high_resolution_clock::now();
// value is the area where support may be placed. As this is calculated in CreateLayerPathing it is saved and reused in draw_areas
std::vector<SupportElements> move_bounds(num_support_layers);
// ### Place tips of the support tree
top_contacts .assign(num_support_layers, nullptr);
bottom_contacts .assign(num_support_layers, nullptr);
top_interface_layers.assign(num_support_layers, nullptr);
intermediate_layers .assign(num_support_layers, nullptr);
for (size_t mesh_idx : processing.second)
generate_initial_areas(*print.get_object(mesh_idx), volumes, config, overhangs, move_bounds, top_contacts, top_interface_layers, layer_storage, throw_on_cancel);
auto t_gen = std::chrono::high_resolution_clock::now();
#ifdef TREESUPPORT_DEBUG_SVG
for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++layer_idx) {
Polygons polys;
for (auto& area : move_bounds[layer_idx])
append(polys, area.influence_area);
if (auto begin = move_bounds[layer_idx].begin(); begin != move_bounds[layer_idx].end())
SVG::export_expolygons(debug_out_path("treesupport-initial_areas-%d.svg", layer_idx),
{ { { union_ex(volumes.getWallRestriction(config.getCollisionRadius(begin->state), layer_idx, begin->state.use_min_xy_dist)) },
{ "wall_restricrictions", "gray", 0.5f } },
{ { union_ex(polys) }, { "parent", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
}
#endif // TREESUPPORT_DEBUG_SVG
// ### Propagate the influence areas downwards. This is an inherently serial operation.
create_layer_pathing(volumes, config, move_bounds, throw_on_cancel);
auto t_path = std::chrono::high_resolution_clock::now();
// ### Set a point in each influence area
create_nodes_from_area(volumes, config, move_bounds, throw_on_cancel);
auto t_place = std::chrono::high_resolution_clock::now();
// ### draw these points as circles
if (print_object.config().support_material_style == smsTree)
draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel);
else {
assert(print_object.config().support_material_style == smsOrganic);
indexed_triangle_set branches = draw_branches(*print.get_object(processing.second.front()), volumes, config, move_bounds, throw_on_cancel);
// Reduce memory footprint. After this point only slice_branches() will use volumes and from that only collisions with zero radius will be used.
volumes.clear_all_but_object_collision();
slice_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds, branches,
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel);
}
auto t_draw = std::chrono::high_resolution_clock::now();
auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count();
auto dur_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_gen - t_precalc).count();
auto dur_path = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_path - t_gen).count();
auto dur_place = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_place - t_path).count();
auto dur_draw = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_draw - t_place).count();
auto dur_total = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_draw - t_start).count();
BOOST_LOG_TRIVIAL(info) <<
"Total time used creating Tree support for the currently grouped meshes: " << dur_total << " ms. "
"Different subtasks:\nCalculating Avoidance: " << dur_pre_gen << " ms "
"Creating inital influence areas: " << dur_gen << " ms "
"Influence area creation: " << dur_path << "ms "
"Placement of Points in InfluenceAreas: " << dur_place << "ms "
"Drawing result as support " << dur_draw << " ms";
// if (config.branch_radius==2121)
// BOOST_LOG_TRIVIAL(error) << "Why ask questions when you already know the answer twice.\n (This is not a real bug, please dont report it.)";
move_bounds.clear();
} else {
top_contacts.assign(config.raft_layers.size(), nullptr);
if (generate_raft_contact(print_object, config, top_contacts, layer_storage) < 0)
// No raft.
continue;
}
#endif // TREESUPPORT_DEBUG_SVG
// ### Propagate the influence areas downwards. This is an inherently serial operation.
create_layer_pathing(volumes, config, move_bounds, throw_on_cancel);
auto t_path = std::chrono::high_resolution_clock::now();
// ### Set a point in each influence area
create_nodes_from_area(volumes, config, move_bounds, throw_on_cancel);
auto t_place = std::chrono::high_resolution_clock::now();
// ### draw these points as circles
if (print_object.config().support_material_style == smsTree)
draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel);
else {
assert(print_object.config().support_material_style == smsOrganic);
indexed_triangle_set branches = draw_branches(*print.get_object(processing.second.front()), volumes, config, move_bounds, throw_on_cancel);
// Reduce memory footprint. After this point only slice_branches() will use volumes and from that only collisions with zero radius will be used.
volumes.clear_all_but_object_collision();
slice_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds, branches,
bottom_contacts, top_contacts, intermediate_layers, layer_storage, throw_on_cancel);
}
auto t_draw = std::chrono::high_resolution_clock::now();
auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count();
auto dur_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_gen - t_precalc).count();
auto dur_path = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_path - t_gen).count();
auto dur_place = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_place - t_path).count();
auto dur_draw = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_draw - t_place).count();
auto dur_total = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_draw - t_start).count();
BOOST_LOG_TRIVIAL(info) <<
"Total time used creating Tree support for the currently grouped meshes: " << dur_total << " ms. "
"Different subtasks:\nCalculating Avoidance: " << dur_pre_gen << " ms "
"Creating inital influence areas: " << dur_gen << " ms "
"Influence area creation: " << dur_path << "ms "
"Placement of Points in InfluenceAreas: " << dur_place << "ms "
"Drawing result as support " << dur_draw << " ms";
// if (config.branch_radius==2121)
// BOOST_LOG_TRIVIAL(error) << "Why ask questions when you already know the answer twice.\n (This is not a real bug, please dont report it.)";
move_bounds.clear();
auto remove_undefined_layers = [](SupportGeneratorLayersPtr &layers) {
layers.erase(std::remove_if(layers.begin(), layers.end(), [](const SupportGeneratorLayer* ptr) { return ptr == nullptr; }), layers.end());
@ -4343,7 +4364,9 @@ void fff_tree_support_generate(PrintObject &print_object, std::function<void()>
break;
++idx;
}
FFFTreeSupport::generate_support_areas(*print_object.print(), BuildVolume(Pointfs{ Vec2d{ -300., -300. }, Vec2d{ -300., +300. }, Vec2d{ +300., +300. }, Vec2d{ +300., -300. } }, 0.), { idx }, throw_on_cancel);
FFFTreeSupport::generate_support_areas(*print_object.print(),
BuildVolume(Pointfs{ Vec2d{ -300., -300. }, Vec2d{ -300., +300. }, Vec2d{ +300., +300. }, Vec2d{ +300., -300. } }, 0.), { idx },
throw_on_cancel);
}
} // namespace Slic3r