Move merge point search out of pointcloud to support tree utils

This commit is contained in:
tamasmeszaros 2022-11-28 10:59:52 +01:00
parent 2565d45543
commit 2cd6a20254
3 changed files with 98 additions and 169 deletions

View File

@ -1,81 +1,15 @@
#include "PointCloud.hpp"
#include "libslic3r/Tesselate.hpp"
#include "libslic3r/SLA/SupportTreeUtils.hpp"
#include <igl/random_points_on_mesh.h>
namespace Slic3r { namespace branchingtree {
std::optional<Vec3f> find_merge_pt(const Vec3f &A,
const Vec3f &B,
float critical_angle)
std::optional<Vec3f> find_merge_pt(const Vec3f &A, const Vec3f &B, float max_slope)
{
// The idea is that A and B both have their support cones. But searching
// for the intersection of these support cones is difficult and its enough
// to reduce this problem to 2D and search for the intersection of two
// rays that merge somewhere between A and B. The 2D plane is a vertical
// slice of the 3D scene where the 2D Y axis is equal to the 3D Z axis and
// the 2D X axis is determined by the XY direction of the AB vector.
//
// Z^
// | A *
// | . . B *
// | . . . .
// | . . . .
// | . x .
// -------------------> XY
// Determine the transformation matrix for the 2D projection:
Vec3f diff = {B.x() - A.x(), B.y() - A.y(), 0.f};
Vec3f dir = diff.normalized(); // TODO: avoid normalization
Eigen::Matrix<float, 2, 3> tr2D;
tr2D.row(0) = Vec3f{dir.x(), dir.y(), dir.z()};
tr2D.row(1) = Vec3f{0.f, 0.f, 1.f};
// Transform the 2 vectors A and B into 2D vector 'a' and 'b'. Here we can
// omit 'a', pretend that its the origin and use BA as the vector b.
Vec2f b = tr2D * (B - A);
// Get the square sine of the ray emanating from 'a' towards 'b'. This ray might
// exceed the allowed angle but that is corrected subsequently.
// The sign of the original sine is also needed, hence b.y is multiplied by
// abs(b.y)
float b_sqn = b.squaredNorm();
float sin2sig_a = b_sqn > EPSILON ? (b.y() * std::abs(b.y())) / b_sqn : 0.f;
// sine2 from 'b' to 'a' is the opposite of sine2 from a to b
float sin2sig_b = -sin2sig_a;
// Derive the allowed angles from the given critical angle.
// critical_angle is measured from the horizontal X axis.
// The rays need to go downwards which corresponds to negative angles
float sincrit = std::sin(critical_angle); // sine of the critical angle
float sin2crit = -sincrit * sincrit; // signed sine squared
sin2sig_a = std::min(sin2sig_a, sin2crit); // Do the angle saturation of both rays
sin2sig_b = std::min(sin2sig_b, sin2crit); //
float sin2_a = std::abs(sin2sig_a); // Get cosine squared values
float sin2_b = std::abs(sin2sig_b);
float cos2_a = 1.f - sin2_a;
float cos2_b = 1.f - sin2_b;
// Derive the new direction vectors. This is by square rooting the sin2
// and cos2 values and restoring the original signs
Vec2f Da = {std::copysign(std::sqrt(cos2_a), b.x()), std::copysign(std::sqrt(sin2_a), sin2sig_a)};
Vec2f Db = {-std::copysign(std::sqrt(cos2_b), b.x()), std::copysign(std::sqrt(sin2_b), sin2sig_b)};
// Determine where two rays ([0, 0], Da), (b, Db) intersect.
// Based on
// https://stackoverflow.com/questions/27459080/given-two-points-and-two-direction-vectors-find-the-point-where-they-intersect
// One ray is emanating from (0, 0) so the formula is simplified
double t1 = (Db.y() * b.x() - b.y() * Db.x()) /
(Da.x() * Db.y() - Da.y() * Db.x());
Vec2f mp = t1 * Da;
Vec3f Mp = A + tr2D.transpose() * mp;
return t1 >= 0.f ? Mp : Vec3f{};
return sla::find_merge_pt(A, B, max_slope);
}
void to_eigen_mesh(const indexed_triangle_set &its,

View File

@ -165,106 +165,6 @@ TEST_CASE("DefaultSupports::FloorSupportsDoNotPierceModel", "[SLASupportGenerati
// for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
//}
bool is_outside_support_cone(const Vec3f &supp, const Vec3f &pt, float angle)
{
Vec3d D = (pt - supp).cast<double>();
double dot_sq = -D.z() * std::abs(-D.z());
return dot_sq <
D.squaredNorm() * std::cos(angle) * std::abs(std::cos(angle));
}
TEST_CASE("BranchingSupports::MergePointFinder", "[SLASupportGeneration][Branching]") {
SECTION("Identical points have the same merge point") {
Vec3f a{0.f, 0.f, 0.f}, b = a;
auto slope = float(PI / 4.);
auto mergept = branchingtree::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
REQUIRE((*mergept - b).norm() < EPSILON);
REQUIRE((*mergept - a).norm() < EPSILON);
}
// ^ Z
// | a *
// |
// | b * <= mergept
SECTION("Points at different heights have the lower point as mergepoint") {
Vec3f a{0.f, 0.f, 0.f}, b = {0.f, 0.f, -1.f};
auto slope = float(PI / 4.);
auto mergept = branchingtree::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
REQUIRE((*mergept - b).squaredNorm() < 2 * EPSILON);
}
// -|---------> X
// a b
// * *
// * <= mergept
SECTION("Points at different X have mergept in the middle at lower Z") {
Vec3f a{0.f, 0.f, 0.f}, b = {1.f, 0.f, 0.f};
auto slope = float(PI / 4.);
auto mergept = branchingtree::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
// Distance of mergept should be equal from both input points
float D = std::abs((*mergept - b).squaredNorm() - (*mergept - a).squaredNorm());
REQUIRE(D < EPSILON);
REQUIRE(!is_outside_support_cone(a, *mergept, slope));
REQUIRE(!is_outside_support_cone(b, *mergept, slope));
}
// -|---------> Y
// a b
// * *
// * <= mergept
SECTION("Points at different Y have mergept in the middle at lower Z") {
Vec3f a{0.f, 0.f, 0.f}, b = {0.f, 1.f, 0.f};
auto slope = float(PI / 4.);
auto mergept = branchingtree::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
// Distance of mergept should be equal from both input points
float D = std::abs((*mergept - b).squaredNorm() - (*mergept - a).squaredNorm());
REQUIRE(D < EPSILON);
REQUIRE(!is_outside_support_cone(a, *mergept, slope));
REQUIRE(!is_outside_support_cone(b, *mergept, slope));
}
SECTION("Points separated by less than critical angle have the lower point as mergept") {
Vec3f a{-1.f, -1.f, -1.f}, b = {-1.5f, -1.5f, -2.f};
auto slope = float(PI / 4.);
auto mergept = branchingtree::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
REQUIRE((*mergept - b).norm() < 2 * EPSILON);
}
// -|----------------------------> Y
// a b
// * * <= mergept *
//
SECTION("Points at same height have mergepoint in the middle if critical angle is zero ") {
Vec3f a{-1.f, -1.f, -1.f}, b = {-1.5f, -1.5f, -1.f};
auto slope = EPSILON;
auto mergept = branchingtree::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
Vec3f middle = (b + a) / 2.;
REQUIRE((*mergept - middle).norm() < 4 * EPSILON);
}
}
TEST_CASE("BranchingSupports::ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration][Branching]") {

View File

@ -262,3 +262,98 @@ TEST_CASE("Avoid disk below junction with barrier on the side", "[suptreeutils]"
REQUIRE(pR + FromRadius > CylRadius);
}
}
TEST_CASE("BranchingSupports::MergePointFinder", "[suptreeutils]") {
using namespace Slic3r;
SECTION("Identical points have the same merge point") {
Vec3f a{0.f, 0.f, 0.f}, b = a;
auto slope = float(PI / 4.);
auto mergept = sla::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
REQUIRE((*mergept - b).norm() < EPSILON);
REQUIRE((*mergept - a).norm() < EPSILON);
}
// ^ Z
// | a *
// |
// | b * <= mergept
SECTION("Points at different heights have the lower point as mergepoint") {
Vec3f a{0.f, 0.f, 0.f}, b = {0.f, 0.f, -1.f};
auto slope = float(PI / 4.);
auto mergept = sla::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
REQUIRE((*mergept - b).squaredNorm() < 2 * EPSILON);
}
// -|---------> X
// a b
// * *
// * <= mergept
SECTION("Points at different X have mergept in the middle at lower Z") {
Vec3f a{0.f, 0.f, 0.f}, b = {1.f, 0.f, 0.f};
auto slope = float(PI / 4.);
auto mergept = sla::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
// Distance of mergept should be equal from both input points
float D = std::abs((*mergept - b).squaredNorm() - (*mergept - a).squaredNorm());
REQUIRE(D < EPSILON);
REQUIRE(!sla::is_outside_support_cone(a, *mergept, slope));
REQUIRE(!sla::is_outside_support_cone(b, *mergept, slope));
}
// -|---------> Y
// a b
// * *
// * <= mergept
SECTION("Points at different Y have mergept in the middle at lower Z") {
Vec3f a{0.f, 0.f, 0.f}, b = {0.f, 1.f, 0.f};
auto slope = float(PI / 4.);
auto mergept = sla::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
// Distance of mergept should be equal from both input points
float D = std::abs((*mergept - b).squaredNorm() - (*mergept - a).squaredNorm());
REQUIRE(D < EPSILON);
REQUIRE(!sla::is_outside_support_cone(a, *mergept, slope));
REQUIRE(!sla::is_outside_support_cone(b, *mergept, slope));
}
SECTION("Points separated by less than critical angle have the lower point as mergept") {
Vec3f a{-1.f, -1.f, -1.f}, b = {-1.5f, -1.5f, -2.f};
auto slope = float(PI / 4.);
auto mergept = sla::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
REQUIRE((*mergept - b).norm() < 2 * EPSILON);
}
// -|----------------------------> Y
// a b
// * * <= mergept *
//
SECTION("Points at same height have mergepoint in the middle if critical angle is zero ") {
Vec3f a{-1.f, -1.f, -1.f}, b = {-1.5f, -1.5f, -1.f};
auto slope = EPSILON;
auto mergept = sla::find_merge_pt(a, b, slope);
REQUIRE(bool(mergept));
Vec3f middle = (b + a) / 2.;
REQUIRE((*mergept - middle).norm() < 4 * EPSILON);
}
}