Integrating a C++20 like span library

https://github.com/tcbrindle/span

Replacing a homebrew const pointer wrapper const correctness helper
with the C++20 like span library.

One day when we switch to C++20 we will just use the C++20 spans instead.
This commit is contained in:
Vojtech Bubnik 2022-10-19 16:26:59 +02:00
parent acbc60f3e3
commit 2ced762948
12 changed files with 770 additions and 57 deletions

View File

@ -14,6 +14,7 @@ add_subdirectory(libigl)
add_subdirectory(hints) add_subdirectory(hints)
add_subdirectory(qoi) add_subdirectory(qoi)
add_subdirectory(libnest2d) add_subdirectory(libnest2d)
add_subdirectory(tcbspan)
find_package(Qhull 7.2 REQUIRED) find_package(Qhull 7.2 REQUIRED)
add_library(qhull INTERFACE) add_library(qhull INTERFACE)

View File

@ -39,7 +39,7 @@ static void append_and_translate(Polygons &dst, const Polygons &src, const Print
dst[dst_idx].translate(instance.shift.x(), instance.shift.y()); dst[dst_idx].translate(instance.shift.x(), instance.shift.y());
} }
static float max_brim_width(const ConstPrintObjectPtrsAdaptor &objects) static float max_brim_width(const SpanOfConstPtrs<PrintObject> &objects)
{ {
assert(!objects.empty()); assert(!objects.empty());
return float(std::accumulate(objects.begin(), objects.end(), 0., return float(std::accumulate(objects.begin(), objects.end(), 0.,

View File

@ -32,7 +32,6 @@ class GCode;
namespace { struct Item; } namespace { struct Item; }
struct PrintInstance; struct PrintInstance;
class ConstPrintObjectPtrsAdaptor;
class OozePrevention { class OozePrevention {
public: public:

View File

@ -1305,7 +1305,7 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
{ {
const size_t num_extruders = print_object.print()->config().nozzle_diameter.size() + 1; const size_t num_extruders = print_object.print()->config().nozzle_diameter.size() + 1;
const size_t num_layers = input_expolygons.size(); const size_t num_layers = input_expolygons.size();
const ConstLayerPtrsAdaptor layers = print_object.layers(); const SpanOfConstPtrs<Layer> layers = print_object.layers();
// Maximum number of top / bottom layers accounts for maximum overlap of one thread group into a neighbor thread group. // Maximum number of top / bottom layers accounts for maximum overlap of one thread group into a neighbor thread group.
int max_top_layers = 0; int max_top_layers = 0;
@ -1685,7 +1685,7 @@ std::vector<std::vector<ExPolygons>> multi_material_segmentation_by_painting(con
std::vector<std::vector<PaintedLine>> painted_lines(num_layers); std::vector<std::vector<PaintedLine>> painted_lines(num_layers);
std::array<std::mutex, 64> painted_lines_mutex; std::array<std::mutex, 64> painted_lines_mutex;
std::vector<EdgeGrid::Grid> edge_grids(num_layers); std::vector<EdgeGrid::Grid> edge_grids(num_layers);
const ConstLayerPtrsAdaptor layers = print_object.layers(); const SpanOfConstPtrs<Layer> layers = print_object.layers();
std::vector<ExPolygons> input_expolygons(num_layers); std::vector<ExPolygons> input_expolygons(num_layers);
throw_on_cancel_callback(); throw_on_cancel_callback();

View File

@ -21,6 +21,7 @@
#include <functional> #include <functional>
#include <set> #include <set>
#include <tcbspan/span.hpp>
namespace Slic3r { namespace Slic3r {
@ -117,37 +118,12 @@ private:
inline bool operator==(const PrintRegion &lhs, const PrintRegion &rhs) { return lhs.config_hash() == rhs.config_hash() && lhs.config() == rhs.config(); } inline bool operator==(const PrintRegion &lhs, const PrintRegion &rhs) { return lhs.config_hash() == rhs.config_hash() && lhs.config() == rhs.config(); }
inline bool operator!=(const PrintRegion &lhs, const PrintRegion &rhs) { return ! (lhs == rhs); } inline bool operator!=(const PrintRegion &lhs, const PrintRegion &rhs) { return ! (lhs == rhs); }
template<typename T> // For const correctness: Wrapping a vector of non-const pointers as a span of const pointers.
class ConstVectorOfPtrsAdaptor { template<class T>
public: using SpanOfConstPtrs = tcb::span<const T* const>;
// Returning a non-const pointer to const pointers to T.
T * const * begin() const { return m_data->data(); }
T * const * end() const { return m_data->data() + m_data->size(); }
const T* front() const { return m_data->front(); }
const T* back() const { return m_data->back(); }
size_t size() const { return m_data->size(); }
bool empty() const { return m_data->empty(); }
const T* operator[](size_t i) const { return (*m_data)[i]; }
const T* at(size_t i) const { return m_data->at(i); }
protected:
ConstVectorOfPtrsAdaptor(const std::vector<T*> *data) : m_data(data) {}
private:
const std::vector<T*> *m_data;
};
typedef std::vector<Layer*> LayerPtrs; using LayerPtrs = std::vector<Layer*>;
typedef std::vector<const Layer*> ConstLayerPtrs; using SupportLayerPtrs = std::vector<SupportLayer*>;
class ConstLayerPtrsAdaptor : public ConstVectorOfPtrsAdaptor<Layer> {
friend PrintObject;
ConstLayerPtrsAdaptor(const LayerPtrs *data) : ConstVectorOfPtrsAdaptor<Layer>(data) {}
};
typedef std::vector<SupportLayer*> SupportLayerPtrs;
typedef std::vector<const SupportLayer*> ConstSupportLayerPtrs;
class ConstSupportLayerPtrsAdaptor : public ConstVectorOfPtrsAdaptor<SupportLayer> {
friend PrintObject;
ConstSupportLayerPtrsAdaptor(const SupportLayerPtrs *data) : ConstVectorOfPtrsAdaptor<SupportLayer>(data) {}
};
class BoundingBoxf3; // TODO: for temporary constructor parameter class BoundingBoxf3; // TODO: for temporary constructor parameter
@ -255,8 +231,8 @@ public:
// Size of an object: XYZ in scaled coordinates. The size might not be quite snug in XY plane. // Size of an object: XYZ in scaled coordinates. The size might not be quite snug in XY plane.
const Vec3crd& size() const { return m_size; } const Vec3crd& size() const { return m_size; }
const PrintObjectConfig& config() const { return m_config; } const PrintObjectConfig& config() const { return m_config; }
ConstLayerPtrsAdaptor layers() const { return ConstLayerPtrsAdaptor(&m_layers); } auto layers() const { return SpanOfConstPtrs<Layer>(const_cast<const Layer* const* const>(m_layers.data()), m_layers.size()); }
ConstSupportLayerPtrsAdaptor support_layers() const { return ConstSupportLayerPtrsAdaptor(&m_support_layers); } auto support_layers() const { return SpanOfConstPtrs<SupportLayer>(const_cast<const SupportLayer* const* const>(m_support_layers.data()), m_support_layers.size()); }
const Transform3d& trafo() const { return m_trafo; } const Transform3d& trafo() const { return m_trafo; }
// Trafo with the center_offset() applied after the transformation, to center the object in XY before slicing. // Trafo with the center_offset() applied after the transformation, to center the object in XY before slicing.
Transform3d trafo_centered() const Transform3d trafo_centered() const
@ -497,21 +473,10 @@ struct PrintStatistics
} }
}; };
typedef std::vector<PrintObject*> PrintObjectPtrs; using PrintObjectPtrs = std::vector<PrintObject*>;
typedef std::vector<const PrintObject*> ConstPrintObjectPtrs; using ConstPrintObjectPtrs = std::vector<const PrintObject*>;
class ConstPrintObjectPtrsAdaptor : public ConstVectorOfPtrsAdaptor<PrintObject> {
friend Print;
ConstPrintObjectPtrsAdaptor(const PrintObjectPtrs *data) : ConstVectorOfPtrsAdaptor<PrintObject>(data) {}
};
typedef std::vector<PrintRegion*> PrintRegionPtrs; using PrintRegionPtrs = std::vector<PrintRegion*>;
/*
typedef std::vector<const PrintRegion*> ConstPrintRegionPtrs;
class ConstPrintRegionPtrsAdaptor : public ConstVectorOfPtrsAdaptor<PrintRegion> {
friend Print;
ConstPrintRegionPtrsAdaptor(const PrintRegionPtrs *data) : ConstVectorOfPtrsAdaptor<PrintRegion>(data) {}
};
*/
// The complete print tray with possibly multiple objects. // The complete print tray with possibly multiple objects.
class Print : public PrintBaseWithState<PrintStep, psCount> class Print : public PrintBaseWithState<PrintStep, psCount>
@ -574,7 +539,7 @@ public:
const PrintConfig& config() const { return m_config; } const PrintConfig& config() const { return m_config; }
const PrintObjectConfig& default_object_config() const { return m_default_object_config; } const PrintObjectConfig& default_object_config() const { return m_default_object_config; }
const PrintRegionConfig& default_region_config() const { return m_default_region_config; } const PrintRegionConfig& default_region_config() const { return m_default_region_config; }
ConstPrintObjectPtrsAdaptor objects() const { return ConstPrintObjectPtrsAdaptor(&m_objects); } SpanOfConstPtrs<PrintObject> objects() const { return SpanOfConstPtrs<PrintObject>(const_cast<const PrintObject* const* const>(m_objects.data()), m_objects.size()); }
PrintObject* get_object(size_t idx) { return const_cast<PrintObject*>(m_objects[idx]); } PrintObject* get_object(size_t idx) { return const_cast<PrintObject*>(m_objects[idx]); }
const PrintObject* get_object(size_t idx) const { return m_objects[idx]; } const PrintObject* get_object(size_t idx) const { return m_objects[idx]; }
// PrintObject by its ObjectID, to be used to uniquely bind slicing warnings to their source PrintObjects // PrintObject by its ObjectID, to be used to uniquely bind slicing warnings to their source PrintObjects

View File

@ -2205,7 +2205,7 @@ void PrintObject::_generate_support_material()
} }
} }
static void project_triangles_to_slabs(ConstLayerPtrsAdaptor layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out) static void project_triangles_to_slabs(SpanOfConstPtrs<Layer> layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out)
{ {
if (custom_facets.indices.empty()) if (custom_facets.indices.empty())
return; return;

View File

@ -0,0 +1,6 @@
cmake_minimum_required(VERSION 2.8.12)
project(tcbspan)
add_library(tcbspan STATIC
span.hpp
)

124
src/tcbspan/README.md Normal file
View File

@ -0,0 +1,124 @@
Bundled with PrusaSlicer:
https://github.com/tcbrindle/span
commit 836dc6a0efd9849cb194e88e4aa2387436bb079b
This is not the full distribution, it only contains README and span.hpp
Original README follows:
[![Standard](https://img.shields.io/badge/c%2B%2B-11/14/17/20-blue.svg)](https://en.wikipedia.org/wiki/C%2B%2B#Standardization)
[![License](https://img.shields.io/badge/license-BSL-blue.svg)](http://www.boost.org/LICENSE_1_0.txt)
[![Build Status](https://travis-ci.org/tcbrindle/span.svg?branch=master)](https://travis-ci.org/tcbrindle/span)
[![Build status](https://ci.appveyor.com/api/projects/status/ow7cj56s108fs439/branch/master?svg=true)](https://ci.appveyor.com/project/tcbrindle/span/branch/master)
[![Try it on godbolt online](https://img.shields.io/badge/on-godbolt-blue.svg)](https://godbolt.org/z/-vlZZR)
`std::span` implementation for C++11 and later
==============================================
This repository contains a single-header implementation of C++20's `std::span`,
conforming to the C++20 committee draft.
It is compatible with C++11, but will use newer language features if they
are available.
It differs from the implementation in the [Microsoft GSL](https://github.com/Microsoft/GSL/)
in that it is single-header and does not depend on any other GSL facilities. It
also works with C++11, while the GSL version requires C++14.
Usage
-----
The recommended way to use the implementation simply copy the file `span.hpp`
from `include/tcb/` into your own sources and `#include` it like
any other header. By default, it lives in namespace `tcb`, but this can be
customised by setting the macro `TCB_SPAN_NAMESPACE_NAME` to an appropriate string
before `#include`-ing the header -- or simply edit the source code.
The rest of the repository contains testing machinery, and is not required for
use.
Compatibility
-------------
This implementation requires a conforming C++11 (or later) compiler, and is tested as far
back as GCC 5, Clang 3.5 and MSVC 2015 Update 3. Older compilers may work, but this is not guaranteed.
Documentation
-------------
Documentation for `std::span` is available [on cppreference](https://en.cppreference.com/w/cpp/container/span).
Implementation Notes
--------------------
### Bounds Checking ###
This implementation of `span` includes optional bounds checking, which is handled
either by throwing an exception or by calling `std::terminate()`.
The default behaviour with C++14 and later is to check the macro `NDEBUG`:
if this is set, bounds checking is disabled. Otherwise, `std::terminate()` will
be called if there is a precondition violation (i.e. the same behaviour as
`assert()`). If you wish to terminate on errors even if `NDEBUG` is set, define
the symbol `TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION` before `#include`-ing the
header.
Alternatively, if you want to throw on a contract violation, define
`TCB_SPAN_THROW_ON_CONTRACT_VIOLATION`. This will throw an exception of an
implementation-defined type (deriving from `std::logic_error`), allowing
cleanup to happen. Note that defining this symbol will cause the checks to be
run even if `NDEBUG` is set.
Lastly, if you wish to disable contract checking even in debug builds,
`#define TCB_SPAN_NO_CONTRACT_CHECKING`.
Under C++11, due to the restrictions on `constexpr` functions, contract checking
is disabled by default even if `NDEBUG` is not set. You can change this by
defining either of the above symbols, but this will result in most of `span`'s
interface becoming non-`constexpr`.
### `constexpr` ###
This implementation is fully `constexpr` under C++17 and later. Under earlier
versions, it is "as `constexpr` as possible".
Note that even in C++17, it is generally not possible to declare a `span`
as non-default constructed `constexpr` variable, for the same reason that you
cannot form a `constexpr` pointer to a value: it involves taking the address of
a compile-time variable in a way that would be visible at run-time.
You can however use a `span` freely in a `constexpr` function. For example:
```cpp
// Okay, even in C++11
constexpr std::ptrdiff_t get_span_size(span<const int> span)
{
return span.size();
}
constexpr int arr[] = {1, 2, 3};
constexpr auto size = get_span_size(arr); // Okay
constexpr span<const int> span{arr}; // ERROR -- not a constant expression
constexpr const int* p = arr; // ERROR -- same
```
Constructor deduction guides are provided if the compiler supports them. For
older compilers, a set of `make_span()` functions are provided as an extension
which use the same logic, for example:
```cpp
constexpr int c_array[] = {1, 2, 3};
std::array<int, 3> std_array{1, 2, 3};
const std::vector<int> vec{1, 2, 3};
auto s1 = make_span(c_array); // returns span<const int, 3>
auto s2 = make_span(std_array); // returns span<int, 3>
auto s3 = make_span(vec); // returns span<const int, dynamic_extent>
```
Alternatives
------------
* [Microsoft/GSL](https://github.com/Microsoft/GSL): The original `span` reference
implementation from which `std::span` was born.
* [martinmoene/span_lite](https://github.com/martinmoene/span-lite): An
alternative implementation which offers C++98 compatibility.

618
src/tcbspan/span.hpp Normal file
View File

@ -0,0 +1,618 @@
/*
This is an implementation of C++20's std::span
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4820.pdf
*/
// Copyright Tristan Brindle 2018.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file ../../LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
#ifndef TCB_SPAN_HPP_INCLUDED
#define TCB_SPAN_HPP_INCLUDED
#include <array>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#ifndef TCB_SPAN_NO_EXCEPTIONS
// Attempt to discover whether we're being compiled with exception support
#if !(defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND))
#define TCB_SPAN_NO_EXCEPTIONS
#endif
#endif
#ifndef TCB_SPAN_NO_EXCEPTIONS
#include <cstdio>
#include <stdexcept>
#endif
// Various feature test macros
#ifndef TCB_SPAN_NAMESPACE_NAME
#define TCB_SPAN_NAMESPACE_NAME tcb
#endif
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define TCB_SPAN_HAVE_CPP17
#endif
#if __cplusplus >= 201402L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201402L)
#define TCB_SPAN_HAVE_CPP14
#endif
namespace TCB_SPAN_NAMESPACE_NAME {
// Establish default contract checking behavior
#if !defined(TCB_SPAN_THROW_ON_CONTRACT_VIOLATION) && \
!defined(TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION) && \
!defined(TCB_SPAN_NO_CONTRACT_CHECKING)
#if defined(NDEBUG) || !defined(TCB_SPAN_HAVE_CPP14)
#define TCB_SPAN_NO_CONTRACT_CHECKING
#else
#define TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION
#endif
#endif
#if defined(TCB_SPAN_THROW_ON_CONTRACT_VIOLATION)
struct contract_violation_error : std::logic_error {
explicit contract_violation_error(const char* msg) : std::logic_error(msg)
{}
};
inline void contract_violation(const char* msg)
{
throw contract_violation_error(msg);
}
#elif defined(TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION)
[[noreturn]] inline void contract_violation(const char* /*unused*/)
{
std::terminate();
}
#endif
#if !defined(TCB_SPAN_NO_CONTRACT_CHECKING)
#define TCB_SPAN_STRINGIFY(cond) #cond
#define TCB_SPAN_EXPECT(cond) \
cond ? (void) 0 : contract_violation("Expected " TCB_SPAN_STRINGIFY(cond))
#else
#define TCB_SPAN_EXPECT(cond)
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_inline_variables)
#define TCB_SPAN_INLINE_VAR inline
#else
#define TCB_SPAN_INLINE_VAR
#endif
#if defined(TCB_SPAN_HAVE_CPP14) || \
(defined(__cpp_constexpr) && __cpp_constexpr >= 201304)
#define TCB_SPAN_HAVE_CPP14_CONSTEXPR
#endif
#if defined(TCB_SPAN_HAVE_CPP14_CONSTEXPR)
#define TCB_SPAN_CONSTEXPR14 constexpr
#else
#define TCB_SPAN_CONSTEXPR14
#endif
#if defined(TCB_SPAN_HAVE_CPP14_CONSTEXPR) && \
(!defined(_MSC_VER) || _MSC_VER > 1900)
#define TCB_SPAN_CONSTEXPR_ASSIGN constexpr
#else
#define TCB_SPAN_CONSTEXPR_ASSIGN
#endif
#if defined(TCB_SPAN_NO_CONTRACT_CHECKING)
#define TCB_SPAN_CONSTEXPR11 constexpr
#else
#define TCB_SPAN_CONSTEXPR11 TCB_SPAN_CONSTEXPR14
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_deduction_guides)
#define TCB_SPAN_HAVE_DEDUCTION_GUIDES
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_lib_byte)
#define TCB_SPAN_HAVE_STD_BYTE
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_lib_array_constexpr)
#define TCB_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC
#endif
#if defined(TCB_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC)
#define TCB_SPAN_ARRAY_CONSTEXPR constexpr
#else
#define TCB_SPAN_ARRAY_CONSTEXPR
#endif
#ifdef TCB_SPAN_HAVE_STD_BYTE
using byte = std::byte;
#else
using byte = unsigned char;
#endif
#if defined(TCB_SPAN_HAVE_CPP17)
#define TCB_SPAN_NODISCARD [[nodiscard]]
#else
#define TCB_SPAN_NODISCARD
#endif
TCB_SPAN_INLINE_VAR constexpr std::size_t dynamic_extent = SIZE_MAX;
template <typename ElementType, std::size_t Extent = dynamic_extent>
class span;
namespace detail {
template <typename E, std::size_t S>
struct span_storage {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t /*unused*/) noexcept
: ptr(p_ptr)
{}
E* ptr = nullptr;
static constexpr std::size_t size = S;
};
template <typename E>
struct span_storage<E, dynamic_extent> {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t p_size) noexcept
: ptr(p_ptr), size(p_size)
{}
E* ptr = nullptr;
std::size_t size = 0;
};
// Reimplementation of C++17 std::size() and std::data()
#if defined(TCB_SPAN_HAVE_CPP17) || \
defined(__cpp_lib_nonmember_container_access)
using std::data;
using std::size;
#else
template <class C>
constexpr auto size(const C& c) -> decltype(c.size())
{
return c.size();
}
template <class T, std::size_t N>
constexpr std::size_t size(const T (&)[N]) noexcept
{
return N;
}
template <class C>
constexpr auto data(C& c) -> decltype(c.data())
{
return c.data();
}
template <class C>
constexpr auto data(const C& c) -> decltype(c.data())
{
return c.data();
}
template <class T, std::size_t N>
constexpr T* data(T (&array)[N]) noexcept
{
return array;
}
template <class E>
constexpr const E* data(std::initializer_list<E> il) noexcept
{
return il.begin();
}
#endif // TCB_SPAN_HAVE_CPP17
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_lib_void_t)
using std::void_t;
#else
template <typename...>
using void_t = void;
#endif
template <typename T>
using uncvref_t =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
template <typename>
struct is_span : std::false_type {};
template <typename T, std::size_t S>
struct is_span<span<T, S>> : std::true_type {};
template <typename>
struct is_std_array : std::false_type {};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename, typename = void>
struct has_size_and_data : std::false_type {};
template <typename T>
struct has_size_and_data<T, void_t<decltype(detail::size(std::declval<T>())),
decltype(detail::data(std::declval<T>()))>>
: std::true_type {};
template <typename C, typename U = uncvref_t<C>>
struct is_container {
static constexpr bool value =
!is_span<U>::value && !is_std_array<U>::value &&
!std::is_array<U>::value && has_size_and_data<C>::value;
};
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename, typename, typename = void>
struct is_container_element_type_compatible : std::false_type {};
template <typename T, typename E>
struct is_container_element_type_compatible<
T, E,
typename std::enable_if<
!std::is_same<
typename std::remove_cv<decltype(detail::data(std::declval<T>()))>::type,
void>::value &&
std::is_convertible<
remove_pointer_t<decltype(detail::data(std::declval<T>()))> (*)[],
E (*)[]>::value
>::type>
: std::true_type {};
template <typename, typename = size_t>
struct is_complete : std::false_type {};
template <typename T>
struct is_complete<T, decltype(sizeof(T))> : std::true_type {};
} // namespace detail
template <typename ElementType, std::size_t Extent>
class span {
static_assert(std::is_object<ElementType>::value,
"A span's ElementType must be an object type (not a "
"reference type or void)");
static_assert(detail::is_complete<ElementType>::value,
"A span's ElementType must be a complete type (not a forward "
"declaration)");
static_assert(!std::is_abstract<ElementType>::value,
"A span's ElementType cannot be an abstract class type");
using storage_type = detail::span_storage<ElementType, Extent>;
public:
// constants and types
using element_type = ElementType;
using value_type = typename std::remove_cv<ElementType>::type;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_type extent = Extent;
// [span.cons], span constructors, copy, assignment, and destructor
template <
std::size_t E = Extent,
typename std::enable_if<(E == dynamic_extent || E <= 0), int>::type = 0>
constexpr span() noexcept
{}
TCB_SPAN_CONSTEXPR11 span(pointer ptr, size_type count)
: storage_(ptr, count)
{
TCB_SPAN_EXPECT(extent == dynamic_extent || count == extent);
}
TCB_SPAN_CONSTEXPR11 span(pointer first_elem, pointer last_elem)
: storage_(first_elem, last_elem - first_elem)
{
TCB_SPAN_EXPECT(extent == dynamic_extent ||
last_elem - first_elem ==
static_cast<std::ptrdiff_t>(extent));
}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
element_type (&)[N], ElementType>::value,
int>::type = 0>
constexpr span(element_type (&arr)[N]) noexcept : storage_(arr, N)
{}
template <typename T, std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
std::array<T, N>&, ElementType>::value,
int>::type = 0>
TCB_SPAN_ARRAY_CONSTEXPR span(std::array<T, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <typename T, std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
const std::array<T, N>&, ElementType>::value,
int>::type = 0>
TCB_SPAN_ARRAY_CONSTEXPR span(const std::array<T, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
Container&, ElementType>::value,
int>::type = 0>
constexpr span(Container& cont)
: storage_(detail::data(cont), detail::size(cont))
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
const Container&, ElementType>::value,
int>::type = 0>
constexpr span(const Container& cont)
: storage_(detail::data(cont), detail::size(cont))
{}
constexpr span(const span& other) noexcept = default;
template <typename OtherElementType, std::size_t OtherExtent,
typename std::enable_if<
(Extent == dynamic_extent || OtherExtent == dynamic_extent ||
Extent == OtherExtent) &&
std::is_convertible<OtherElementType (*)[],
ElementType (*)[]>::value,
int>::type = 0>
constexpr span(const span<OtherElementType, OtherExtent>& other) noexcept
: storage_(other.data(), other.size())
{}
~span() noexcept = default;
TCB_SPAN_CONSTEXPR_ASSIGN span&
operator=(const span& other) noexcept = default;
// [span.sub], span subviews
template <std::size_t Count>
TCB_SPAN_CONSTEXPR11 span<element_type, Count> first() const
{
TCB_SPAN_EXPECT(Count <= size());
return {data(), Count};
}
template <std::size_t Count>
TCB_SPAN_CONSTEXPR11 span<element_type, Count> last() const
{
TCB_SPAN_EXPECT(Count <= size());
return {data() + (size() - Count), Count};
}
template <std::size_t Offset, std::size_t Count = dynamic_extent>
using subspan_return_t =
span<ElementType, Count != dynamic_extent
? Count
: (Extent != dynamic_extent ? Extent - Offset
: dynamic_extent)>;
template <std::size_t Offset, std::size_t Count = dynamic_extent>
TCB_SPAN_CONSTEXPR11 subspan_return_t<Offset, Count> subspan() const
{
TCB_SPAN_EXPECT(Offset <= size() &&
(Count == dynamic_extent || Offset + Count <= size()));
return {data() + Offset,
Count != dynamic_extent ? Count : size() - Offset};
}
TCB_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
first(size_type count) const
{
TCB_SPAN_EXPECT(count <= size());
return {data(), count};
}
TCB_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
last(size_type count) const
{
TCB_SPAN_EXPECT(count <= size());
return {data() + (size() - count), count};
}
TCB_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
subspan(size_type offset, size_type count = dynamic_extent) const
{
TCB_SPAN_EXPECT(offset <= size() &&
(count == dynamic_extent || offset + count <= size()));
return {data() + offset,
count == dynamic_extent ? size() - offset : count};
}
// [span.obs], span observers
constexpr size_type size() const noexcept { return storage_.size; }
constexpr size_type size_bytes() const noexcept
{
return size() * sizeof(element_type);
}
TCB_SPAN_NODISCARD constexpr bool empty() const noexcept
{
return size() == 0;
}
// [span.elem], span element access
TCB_SPAN_CONSTEXPR11 reference operator[](size_type idx) const
{
TCB_SPAN_EXPECT(idx < size());
return *(data() + idx);
}
TCB_SPAN_CONSTEXPR11 reference front() const
{
TCB_SPAN_EXPECT(!empty());
return *data();
}
TCB_SPAN_CONSTEXPR11 reference back() const
{
TCB_SPAN_EXPECT(!empty());
return *(data() + (size() - 1));
}
constexpr pointer data() const noexcept { return storage_.ptr; }
// [span.iterators], span iterator support
constexpr iterator begin() const noexcept { return data(); }
constexpr iterator end() const noexcept { return data() + size(); }
TCB_SPAN_ARRAY_CONSTEXPR reverse_iterator rbegin() const noexcept
{
return reverse_iterator(end());
}
TCB_SPAN_ARRAY_CONSTEXPR reverse_iterator rend() const noexcept
{
return reverse_iterator(begin());
}
private:
storage_type storage_{};
};
#ifdef TCB_SPAN_HAVE_DEDUCTION_GUIDES
/* Deduction Guides */
template <class T, size_t N>
span(T (&)[N])->span<T, N>;
template <class T, size_t N>
span(std::array<T, N>&)->span<T, N>;
template <class T, size_t N>
span(const std::array<T, N>&)->span<const T, N>;
template <class Container>
span(Container&)->span<typename std::remove_reference<
decltype(*detail::data(std::declval<Container&>()))>::type>;
template <class Container>
span(const Container&)->span<const typename Container::value_type>;
#endif // TCB_HAVE_DEDUCTION_GUIDES
template <typename ElementType, std::size_t Extent>
constexpr span<ElementType, Extent>
make_span(span<ElementType, Extent> s) noexcept
{
return s;
}
template <typename T, std::size_t N>
constexpr span<T, N> make_span(T (&arr)[N]) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TCB_SPAN_ARRAY_CONSTEXPR span<T, N> make_span(std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TCB_SPAN_ARRAY_CONSTEXPR span<const T, N>
make_span(const std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename Container>
constexpr span<typename std::remove_reference<
decltype(*detail::data(std::declval<Container&>()))>::type>
make_span(Container& cont)
{
return {cont};
}
template <typename Container>
constexpr span<const typename Container::value_type>
make_span(const Container& cont)
{
return {cont};
}
template <typename ElementType, std::size_t Extent>
span<const byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <
class ElementType, size_t Extent,
typename std::enable_if<!std::is_const<ElementType>::value, int>::type = 0>
span<byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_writable_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
template <std::size_t N, typename E, std::size_t S>
constexpr auto get(span<E, S> s) -> decltype(s[N])
{
return s[N];
}
} // namespace TCB_SPAN_NAMESPACE_NAME
namespace std {
template <typename ElementType, size_t Extent>
class tuple_size<TCB_SPAN_NAMESPACE_NAME::span<ElementType, Extent>>
: public integral_constant<size_t, Extent> {};
template <typename ElementType>
class tuple_size<TCB_SPAN_NAMESPACE_NAME::span<
ElementType, TCB_SPAN_NAMESPACE_NAME::dynamic_extent>>; // not defined
template <size_t I, typename ElementType, size_t Extent>
class tuple_element<I, TCB_SPAN_NAMESPACE_NAME::span<ElementType, Extent>> {
public:
static_assert(Extent != TCB_SPAN_NAMESPACE_NAME::dynamic_extent &&
I < Extent,
"");
using type = ElementType;
};
} // end namespace std
#endif // TCB_SPAN_HPP_INCLUDED

View File

@ -62,7 +62,7 @@ SCENARIO("Print: Changing number of solid surfaces does not cause all surfaces t
// Precondition: Ensure that the model has 2 solid top layers (39, 38) // Precondition: Ensure that the model has 2 solid top layers (39, 38)
// and one solid bottom layer (0). // and one solid bottom layer (0).
auto test_is_solid_infill = [&print](size_t obj_id, size_t layer_id) { auto test_is_solid_infill = [&print](size_t obj_id, size_t layer_id) {
const Layer &layer = *(print.objects().at(obj_id)->get_layer((int)layer_id)); const Layer &layer = *print.objects()[obj_id]->get_layer((int)layer_id);
// iterate over all of the regions in the layer // iterate over all of the regions in the layer
for (const LayerRegion *region : layer.regions()) { for (const LayerRegion *region : layer.regions()) {
// for each region, iterate over the fill surfaces // for each region, iterate over the fill surfaces

View File

@ -18,7 +18,7 @@ SCENARIO("PrintObject: object layer heights", "[PrintObject]") {
{ "layer_height", 2 }, { "layer_height", 2 },
{ "nozzle_diameter", 3 } { "nozzle_diameter", 3 }
}); });
ConstLayerPtrsAdaptor layers = print.objects().front()->layers(); SpanOfConstPtrs<Layer> layers = print.objects().front()->layers();
THEN("The output vector has 10 entries") { THEN("The output vector has 10 entries") {
REQUIRE(layers.size() == 10); REQUIRE(layers.size() == 10);
} }
@ -37,7 +37,7 @@ SCENARIO("PrintObject: object layer heights", "[PrintObject]") {
{ "layer_height", 10 }, { "layer_height", 10 },
{ "nozzle_diameter", 11 } { "nozzle_diameter", 11 }
}); });
ConstLayerPtrsAdaptor layers = print.objects().front()->layers(); SpanOfConstPtrs<Layer> layers = print.objects().front()->layers();
THEN("The output vector has 3 entries") { THEN("The output vector has 3 entries") {
REQUIRE(layers.size() == 3); REQUIRE(layers.size() == 3);
} }
@ -55,7 +55,7 @@ SCENARIO("PrintObject: object layer heights", "[PrintObject]") {
{ "layer_height", 15 }, { "layer_height", 15 },
{ "nozzle_diameter", 16 } { "nozzle_diameter", 16 }
}); });
ConstLayerPtrsAdaptor layers = print.objects().front()->layers(); SpanOfConstPtrs<Layer> layers = print.objects().front()->layers();
THEN("The output vector has 2 entries") { THEN("The output vector has 2 entries") {
REQUIRE(layers.size() == 2); REQUIRE(layers.size() == 2);
} }

View File

@ -27,7 +27,7 @@ SCENARIO("SupportMaterial: support_layers_z and contact_distance", "[SupportMate
auto check = [](Slic3r::Print &print, bool &first_support_layer_height_ok, bool &layer_height_minimum_ok, bool &layer_height_maximum_ok, bool &top_spacing_ok) auto check = [](Slic3r::Print &print, bool &first_support_layer_height_ok, bool &layer_height_minimum_ok, bool &layer_height_maximum_ok, bool &top_spacing_ok)
{ {
ConstSupportLayerPtrsAdaptor support_layers = print.objects().front()->support_layers(); SpanOfConstPtrs<SupportLayer> support_layers = print.objects().front()->support_layers();
first_support_layer_height_ok = support_layers.front()->print_z == print.config().first_layer_height.value; first_support_layer_height_ok = support_layers.front()->print_z == print.config().first_layer_height.value;