Performance improvements and cleanup

This commit is contained in:
tamasmeszaros 2020-11-24 16:43:37 +01:00
parent 0bfbe18a3c
commit 2f65bcc83f

View file

@ -479,13 +479,18 @@ class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape, TBin
using MaxNfpLevel = nfp::MaxNfpLevel<RawShape>;
// Norming factor for the optimization function
const double norm_;
public:
using Pile = nfp::Shapes<RawShape>;
private:
// Norming factor for the optimization function
const double norm_;
Pile merged_pile_;
public:
inline explicit _NofitPolyPlacer(const BinType& bin):
Base(bin),
norm_(std::sqrt(sl::area(bin)))
@ -576,6 +581,20 @@ private:
using Shapes = TMultiShape<RawShape>;
template<nfp::NfpLevel lvl>
static Shapes calcnfp(const Shapes &pile, const RawShape &orb)
{
Shapes ret; ret.reserve(2 * pile.size());
for (auto &stat : pile) {
Shapes subnfp = nfp::noFitPolygon<lvl>(stat, orb);
for (auto &nfp : subnfp)
ret.emplace_back(subnfp);
}
return nfp::merge(ret);
}
Shapes calcnfp(const Item &trsh, Lvl<nfp::NfpLevel::CONVEX_ONLY>)
{
using namespace nfp;
@ -616,135 +635,9 @@ private:
template<class Level>
Shapes calcnfp(const Item &trsh, Level)
{ // Function for arbitrary level of nfp implementation
using namespace nfp;
Shapes nfps;
auto& orb = trsh.transformedShape();
bool orbconvex = trsh.isContourConvex();
for(Item& sh : items_) {
nfp::NfpResult<RawShape> subnfp;
auto& stat = sh.transformedShape();
if(sh.isContourConvex() && orbconvex)
subnfp = nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(stat, orb);
else if(orbconvex)
subnfp = nfp::noFitPolygon<NfpLevel::ONE_CONVEX>(stat, orb);
else
subnfp = nfp::noFitPolygon<Level::value>(stat, orb);
correctNfpPosition(subnfp, sh, trsh);
nfps = nfp::merge(nfps, subnfp.first);
}
return nfps;
}
// Very much experimental
void repack(Item& item, PackResult& result) {
if((sl::area(bin_) - this->filledArea()) >= item.area()) {
auto prev_func = config_.object_function;
unsigned iter = 0;
ItemGroup backup_rf = items_;
std::vector<Item> backup_cpy;
for(Item& itm : items_) backup_cpy.emplace_back(itm);
auto ofn = [this, &item, &result, &iter, &backup_cpy, &backup_rf]
(double ratio)
{
auto& bin = bin_;
iter++;
config_.object_function = [bin, ratio](
nfp::Shapes<RawShape>& pile,
const Item& item,
const ItemGroup& /*remaining*/)
{
pile.emplace_back(item.transformedShape());
auto ch = sl::convexHull(pile);
auto pbb = sl::boundingBox(pile);
pile.pop_back();
double parea = 0.5*(sl::area(ch) + sl::area(pbb));
double pile_area = std::accumulate(
pile.begin(), pile.end(), item.area(),
[](double sum, const RawShape& sh){
return sum + sl::area(sh);
});
// The pack ratio -- how much is the convex hull occupied
double pack_rate = (pile_area)/parea;
// ratio of waste
double waste = 1.0 - pack_rate;
// Score is the square root of waste. This will extend the
// range of good (lower) values and shrink the range of bad
// (larger) values.
auto wscore = std::sqrt(waste);
auto ibb = item.boundingBox();
auto bbb = sl::boundingBox(bin);
auto c = ibb.center();
double norm = 0.5*pl::distance(bbb.minCorner(),
bbb.maxCorner());
double dscore = pl::distance(c, pbb.center()) / norm;
return ratio*wscore + (1.0 - ratio) * dscore;
};
auto bb = sl::boundingBox(bin);
double norm = bb.width() + bb.height();
auto items = items_;
clearItems();
auto it = items.begin();
while(auto pr = _trypack(*it++)) {
this->accept(pr); if(it == items.end()) break;
}
auto count_diff = items.size() - items_.size();
double score = count_diff;
if(count_diff == 0) {
result = _trypack(item);
if(result) {
std::cout << "Success" << std::endl;
score = 0.0;
} else {
score += result.overfit() / norm;
}
} else {
result = PackResult();
items_ = backup_rf;
for(unsigned i = 0; i < items_.size(); i++) {
items_[i].get() = backup_cpy[i];
}
}
std::cout << iter << " repack result: " << score << " "
<< ratio << " " << count_diff << std::endl;
return score;
};
opt::StopCriteria stopcr;
stopcr.max_iterations = 30;
stopcr.stop_score = 1e-20;
opt::TOptimizer<opt::Method::L_SUBPLEX> solver(stopcr);
solver.optimize_min(ofn, opt::initvals(0.5),
opt::bound(0.0, 1.0));
// optimize
config_.object_function = prev_func;
}
// TODO: implement
return {};
}
struct Optimum {
@ -798,6 +691,50 @@ private:
Radians final_rot = initial_rot;
Shapes nfps;
auto& bin = bin_;
double norm = norm_;
auto pbb = sl::boundingBox(merged_pile_);
auto binbb = sl::boundingBox(bin);
// This is the kernel part of the object function that is
// customizable by the library client
std::function<double(const Item&)> _objfunc;
if(config_.object_function) _objfunc = config_.object_function;
else {
// Inside check has to be strict if no alignment was enabled
std::function<double(const Box&)> ins_check;
if(config_.alignment == Config::Alignment::DONT_ALIGN)
ins_check = [&binbb, norm](const Box& fullbb) {
double ret = 0;
if(!sl::isInside(fullbb, binbb))
ret += norm;
return ret;
};
else
ins_check = [&bin](const Box& fullbb) {
double miss = overfit(fullbb, bin);
miss = miss > 0? miss : 0;
return std::pow(miss, 2);
};
_objfunc = [norm, binbb, pbb, ins_check](const Item& item)
{
auto ibb = item.boundingBox();
auto fullbb = sl::boundingBox(pbb, ibb);
double score = pl::distance(ibb.center(),
binbb.center());
score /= norm;
score += ins_check(fullbb);
return score;
};
}
Pile merged_pile = merged_pile_;
for(auto rot : config_.rotations) {
item.translation(initial_tr);
@ -822,57 +759,6 @@ private:
ecache.back().accuracy(config_.accuracy);
}
Shapes pile;
pile.reserve(items_.size()+1);
// double pile_area = 0;
for(Item& mitem : items_) {
pile.emplace_back(mitem.transformedShape());
// pile_area += mitem.area();
}
auto merged_pile = nfp::merge(pile);
auto& bin = bin_;
double norm = norm_;
auto pbb = sl::boundingBox(merged_pile);
auto binbb = sl::boundingBox(bin);
// This is the kernel part of the object function that is
// customizable by the library client
std::function<double(const Item&)> _objfunc;
if(config_.object_function) _objfunc = config_.object_function;
else {
// Inside check has to be strict if no alignment was enabled
std::function<double(const Box&)> ins_check;
if(config_.alignment == Config::Alignment::DONT_ALIGN)
ins_check = [&binbb, norm](const Box& fullbb) {
double ret = 0;
if(!sl::isInside(fullbb, binbb))
ret += norm;
return ret;
};
else
ins_check = [&bin](const Box& fullbb) {
double miss = overfit(fullbb, bin);
miss = miss > 0? miss : 0;
return std::pow(miss, 2);
};
_objfunc = [norm, binbb, pbb, ins_check](const Item& item)
{
auto ibb = item.boundingBox();
auto fullbb = sl::boundingBox(pbb, ibb);
double score = pl::distance(ibb.center(),
binbb.center());
score /= norm;
score += ins_check(fullbb);
return score;
};
}
// Our object function for placement
auto rawobjfunc = [_objfunc, iv, startpos]
(Vertex v, Item& itm)
@ -1041,6 +927,7 @@ private:
item.translation(final_tr);
item.rotation(final_rot);
merged_pile_ = nfp::merge(merged_pile, item.transformedShape());
}
if(can_pack) {