Merge remote-tracking branch 'remotes/origin/tm_autoplacement'
This commit is contained in:
commit
302a51f6cb
@ -70,7 +70,10 @@ if(TBB_FOUND)
|
||||
# The Intel TBB library will use the std::exception_ptr feature of C++11.
|
||||
target_compile_definitions(libnest2d INTERFACE -DTBB_USE_CAPTURED_EXCEPTION=0)
|
||||
|
||||
target_link_libraries(libnest2d INTERFACE tbb)
|
||||
find_package(Threads REQUIRED)
|
||||
target_link_libraries(libnest2d INTERFACE ${TBB_LIBRARIES} ${CMAKE_DL_LIBS}
|
||||
Threads::Threads
|
||||
)
|
||||
else()
|
||||
find_package(OpenMP QUIET)
|
||||
|
||||
@ -88,7 +91,7 @@ endif()
|
||||
add_subdirectory(${SRC_DIR}/libnest2d/backends/${LIBNEST2D_GEOMETRIES})
|
||||
add_subdirectory(${SRC_DIR}/libnest2d/optimizers/${LIBNEST2D_OPTIMIZER})
|
||||
|
||||
#target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
|
||||
target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
|
||||
target_include_directories(libnest2d INTERFACE ${SRC_DIR})
|
||||
|
||||
if(NOT LIBNEST2D_HEADER_ONLY)
|
||||
|
@ -62,9 +62,9 @@ if(NOT Boost_INCLUDE_DIRS_FOUND)
|
||||
endif()
|
||||
|
||||
target_include_directories(ClipperBackend INTERFACE ${Boost_INCLUDE_DIRS} )
|
||||
#target_sources(ClipperBackend INTERFACE
|
||||
# ${CMAKE_CURRENT_SOURCE_DIR}/geometries.hpp
|
||||
# ${SRC_DIR}/libnest2d/utils/boost_alg.hpp )
|
||||
target_sources(ClipperBackend INTERFACE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/geometries.hpp
|
||||
${SRC_DIR}/libnest2d/utils/boost_alg.hpp )
|
||||
|
||||
target_compile_definitions(ClipperBackend INTERFACE LIBNEST2D_BACKEND_CLIPPER)
|
||||
|
||||
|
@ -113,6 +113,7 @@ template<> struct CountourType<PolygonImpl> {
|
||||
|
||||
template<> struct ShapeTag<PolygonImpl> { using Type = PolygonTag; };
|
||||
template<> struct ShapeTag<PathImpl> { using Type = PathTag; };
|
||||
template<> struct ShapeTag<PointImpl> { using Type = PointTag; };
|
||||
|
||||
template<> struct ShapeTag<TMultiShape<PolygonImpl>> {
|
||||
using Type = MultiPolygonTag;
|
||||
|
@ -69,12 +69,14 @@ struct PointPair {
|
||||
RawPoint p2;
|
||||
};
|
||||
|
||||
struct PointTag {};
|
||||
struct PolygonTag {};
|
||||
struct PathTag {};
|
||||
struct MultiPolygonTag {};
|
||||
struct BoxTag {};
|
||||
struct CircleTag {};
|
||||
|
||||
/// Meta-functions to derive the tags
|
||||
template<class Shape> struct ShapeTag { using Type = typename Shape::Tag; };
|
||||
template<class S> using Tag = typename ShapeTag<remove_cvref_t<S>>::Type;
|
||||
|
||||
@ -131,7 +133,7 @@ public:
|
||||
_Circle(const RawPoint& center, double r): center_(center), radius_(r) {}
|
||||
|
||||
inline const RawPoint& center() const BP2D_NOEXCEPT { return center_; }
|
||||
inline const void center(const RawPoint& c) { center_ = c; }
|
||||
inline void center(const RawPoint& c) { center_ = c; }
|
||||
|
||||
inline double radius() const BP2D_NOEXCEPT { return radius_; }
|
||||
inline void radius(double r) { radius_ = r; }
|
||||
@ -518,21 +520,19 @@ inline bool intersects(const RawShape& /*sh*/, const RawShape& /*sh*/)
|
||||
return false;
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
inline bool isInside(const TPoint<RawShape>& /*point*/,
|
||||
const RawShape& /*shape*/)
|
||||
{
|
||||
static_assert(always_false<RawShape>::value,
|
||||
"shapelike::isInside(point, shape) unimplemented!");
|
||||
template<class TGuest, class THost>
|
||||
inline bool isInside(const TGuest&, const THost&,
|
||||
const PointTag&, const PolygonTag&) {
|
||||
static_assert(always_false<THost>::value,
|
||||
"shapelike::isInside(point, path) unimplemented!");
|
||||
return false;
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
inline bool isInside(const RawShape& /*shape*/,
|
||||
const RawShape& /*shape*/)
|
||||
{
|
||||
static_assert(always_false<RawShape>::value,
|
||||
"shapelike::isInside(shape, shape) unimplemented!");
|
||||
template<class TGuest, class THost>
|
||||
inline bool isInside(const TGuest&, const THost&,
|
||||
const PolygonTag&, const PolygonTag&) {
|
||||
static_assert(always_false<THost>::value,
|
||||
"shapelike::isInside(shape, shape) unimplemented!");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -651,7 +651,7 @@ template<class RawPath> inline bool isConvex(const RawPath& sh, const PathTag&)
|
||||
|
||||
template<class RawShape>
|
||||
inline typename TContour<RawShape>::iterator
|
||||
begin(RawShape& sh, const PolygonTag& t)
|
||||
begin(RawShape& sh, const PolygonTag&)
|
||||
{
|
||||
return begin(contour(sh), PathTag());
|
||||
}
|
||||
@ -818,16 +818,16 @@ inline auto convexHull(const RawShape& sh)
|
||||
return convexHull(sh, Tag<RawShape>());
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
inline bool isInside(const TPoint<RawShape>& point,
|
||||
const _Circle<TPoint<RawShape>>& circ)
|
||||
template<class TP, class TC>
|
||||
inline bool isInside(const TP& point, const TC& circ,
|
||||
const PointTag&, const CircleTag&)
|
||||
{
|
||||
return pointlike::distance(point, circ.center()) < circ.radius();
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
inline bool isInside(const TPoint<RawShape>& point,
|
||||
const _Box<TPoint<RawShape>>& box)
|
||||
template<class TP, class TB>
|
||||
inline bool isInside(const TP& point, const TB& box,
|
||||
const PointTag&, const BoxTag&)
|
||||
{
|
||||
auto px = getX(point);
|
||||
auto py = getY(point);
|
||||
@ -839,27 +839,27 @@ inline bool isInside(const TPoint<RawShape>& point,
|
||||
return px > minx && px < maxx && py > miny && py < maxy;
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
inline bool isInside(const RawShape& sh,
|
||||
const _Circle<TPoint<RawShape>>& circ)
|
||||
template<class RawShape, class TC>
|
||||
inline bool isInside(const RawShape& sh, const TC& circ,
|
||||
const PolygonTag&, const CircleTag&)
|
||||
{
|
||||
return std::all_of(cbegin(sh), cend(sh),
|
||||
[&circ](const TPoint<RawShape>& p){
|
||||
return isInside<RawShape>(p, circ);
|
||||
return std::all_of(cbegin(sh), cend(sh), [&circ](const TPoint<RawShape>& p)
|
||||
{
|
||||
return isInside(p, circ, PointTag(), CircleTag());
|
||||
});
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
inline bool isInside(const _Box<TPoint<RawShape>>& box,
|
||||
const _Circle<TPoint<RawShape>>& circ)
|
||||
template<class TB, class TC>
|
||||
inline bool isInside(const TB& box, const TC& circ,
|
||||
const BoxTag&, const CircleTag&)
|
||||
{
|
||||
return isInside<RawShape>(box.minCorner(), circ) &&
|
||||
isInside<RawShape>(box.maxCorner(), circ);
|
||||
return isInside(box.minCorner(), circ, BoxTag(), CircleTag()) &&
|
||||
isInside(box.maxCorner(), circ, BoxTag(), CircleTag());
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
inline bool isInside(const _Box<TPoint<RawShape>>& ibb,
|
||||
const _Box<TPoint<RawShape>>& box)
|
||||
template<class TBGuest, class TBHost>
|
||||
inline bool isInside(const TBGuest& ibb, const TBHost& box,
|
||||
const BoxTag&, const BoxTag&)
|
||||
{
|
||||
auto iminX = getX(ibb.minCorner());
|
||||
auto imaxX = getX(ibb.maxCorner());
|
||||
@ -874,6 +874,18 @@ inline bool isInside(const _Box<TPoint<RawShape>>& ibb,
|
||||
return iminX > minX && imaxX < maxX && iminY > minY && imaxY < maxY;
|
||||
}
|
||||
|
||||
template<class RawShape, class TB>
|
||||
inline bool isInside(const RawShape& poly, const TB& box,
|
||||
const PolygonTag&, const BoxTag&)
|
||||
{
|
||||
return isInside(boundingBox(poly), box, BoxTag(), BoxTag());
|
||||
}
|
||||
|
||||
template<class TGuest, class THost>
|
||||
inline bool isInside(const TGuest& guest, const THost& host) {
|
||||
return isInside(guest, host, Tag<TGuest>(), Tag<THost>());
|
||||
}
|
||||
|
||||
template<class RawShape> // Potential O(1) implementation may exist
|
||||
inline TPoint<RawShape>& vertex(RawShape& sh, unsigned long idx,
|
||||
const PolygonTag&)
|
||||
|
@ -251,6 +251,460 @@ inline NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
|
||||
return {rsh, top_nfp};
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
NfpResult<RawShape> nfpSimpleSimple(const RawShape& cstationary,
|
||||
const RawShape& cother)
|
||||
{
|
||||
|
||||
// Algorithms are from the original algorithm proposed in paper:
|
||||
// https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf
|
||||
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
// Algorithm 1: Obtaining the minkowski sum
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// I guess this is not a full minkowski sum of the two input polygons by
|
||||
// definition. This yields a subset that is compatible with the next 2
|
||||
// algorithms.
|
||||
|
||||
using Result = NfpResult<RawShape>;
|
||||
using Vertex = TPoint<RawShape>;
|
||||
using Coord = TCoord<Vertex>;
|
||||
using Edge = _Segment<Vertex>;
|
||||
namespace sl = shapelike;
|
||||
using std::signbit;
|
||||
using std::sort;
|
||||
using std::vector;
|
||||
using std::ref;
|
||||
using std::reference_wrapper;
|
||||
|
||||
// TODO The original algorithms expects the stationary polygon in
|
||||
// counter clockwise and the orbiter in clockwise order.
|
||||
// So for preventing any further complication, I will make the input
|
||||
// the way it should be, than make my way around the orientations.
|
||||
|
||||
// Reverse the stationary contour to counter clockwise
|
||||
auto stcont = sl::contour(cstationary);
|
||||
{
|
||||
std::reverse(sl::begin(stcont), sl::end(stcont));
|
||||
stcont.pop_back();
|
||||
auto it = std::min_element(sl::begin(stcont), sl::end(stcont),
|
||||
[](const Vertex& v1, const Vertex& v2) {
|
||||
return getY(v1) < getY(v2);
|
||||
});
|
||||
std::rotate(sl::begin(stcont), it, sl::end(stcont));
|
||||
sl::addVertex(stcont, sl::front(stcont));
|
||||
}
|
||||
RawShape stationary;
|
||||
sl::contour(stationary) = stcont;
|
||||
|
||||
// Reverse the orbiter contour to counter clockwise
|
||||
auto orbcont = sl::contour(cother);
|
||||
{
|
||||
std::reverse(orbcont.begin(), orbcont.end());
|
||||
|
||||
// Step 1: Make the orbiter reverse oriented
|
||||
|
||||
orbcont.pop_back();
|
||||
auto it = std::min_element(orbcont.begin(), orbcont.end(),
|
||||
[](const Vertex& v1, const Vertex& v2) {
|
||||
return getY(v1) < getY(v2);
|
||||
});
|
||||
|
||||
std::rotate(orbcont.begin(), it, orbcont.end());
|
||||
orbcont.emplace_back(orbcont.front());
|
||||
|
||||
for(auto &v : orbcont) v = -v;
|
||||
|
||||
}
|
||||
|
||||
// Copy the orbiter (contour only), we will have to work on it
|
||||
RawShape orbiter;
|
||||
sl::contour(orbiter) = orbcont;
|
||||
|
||||
// An edge with additional data for marking it
|
||||
struct MarkedEdge {
|
||||
Edge e; Radians turn_angle = 0; bool is_turning_point = false;
|
||||
MarkedEdge() = default;
|
||||
MarkedEdge(const Edge& ed, Radians ta, bool tp):
|
||||
e(ed), turn_angle(ta), is_turning_point(tp) {}
|
||||
|
||||
// debug
|
||||
std::string label;
|
||||
};
|
||||
|
||||
// Container for marked edges
|
||||
using EdgeList = vector<MarkedEdge>;
|
||||
|
||||
EdgeList A, B;
|
||||
|
||||
// This is how an edge list is created from the polygons
|
||||
auto fillEdgeList = [](EdgeList& L, const RawShape& ppoly, int dir) {
|
||||
auto& poly = sl::contour(ppoly);
|
||||
|
||||
L.reserve(sl::contourVertexCount(poly));
|
||||
|
||||
if(dir > 0) {
|
||||
auto it = poly.begin();
|
||||
auto nextit = std::next(it);
|
||||
|
||||
double turn_angle = 0;
|
||||
bool is_turn_point = false;
|
||||
|
||||
while(nextit != poly.end()) {
|
||||
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
|
||||
it++; nextit++;
|
||||
}
|
||||
} else {
|
||||
auto it = sl::rbegin(poly);
|
||||
auto nextit = std::next(it);
|
||||
|
||||
double turn_angle = 0;
|
||||
bool is_turn_point = false;
|
||||
|
||||
while(nextit != sl::rend(poly)) {
|
||||
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
|
||||
it++; nextit++;
|
||||
}
|
||||
}
|
||||
|
||||
auto getTurnAngle = [](const Edge& e1, const Edge& e2) {
|
||||
auto phi = e1.angleToXaxis();
|
||||
auto phi_prev = e2.angleToXaxis();
|
||||
auto turn_angle = phi-phi_prev;
|
||||
if(turn_angle > Pi) turn_angle -= TwoPi;
|
||||
if(turn_angle < -Pi) turn_angle += TwoPi;
|
||||
return turn_angle;
|
||||
};
|
||||
|
||||
auto eit = L.begin();
|
||||
auto enext = std::next(eit);
|
||||
|
||||
eit->turn_angle = getTurnAngle(L.front().e, L.back().e);
|
||||
|
||||
while(enext != L.end()) {
|
||||
enext->turn_angle = getTurnAngle( enext->e, eit->e);
|
||||
eit->is_turning_point =
|
||||
signbit(enext->turn_angle) != signbit(eit->turn_angle);
|
||||
++eit; ++enext;
|
||||
}
|
||||
|
||||
L.back().is_turning_point = signbit(L.back().turn_angle) !=
|
||||
signbit(L.front().turn_angle);
|
||||
|
||||
};
|
||||
|
||||
// Step 2: Fill the edgelists
|
||||
fillEdgeList(A, stationary, 1);
|
||||
fillEdgeList(B, orbiter, 1);
|
||||
|
||||
int i = 1;
|
||||
for(MarkedEdge& me : A) {
|
||||
std::cout << "a" << i << ":\n\t"
|
||||
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
|
||||
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
|
||||
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
|
||||
<< std::endl;
|
||||
|
||||
me.label = "a"; me.label += std::to_string(i);
|
||||
i++;
|
||||
}
|
||||
|
||||
i = 1;
|
||||
for(MarkedEdge& me : B) {
|
||||
std::cout << "b" << i << ":\n\t"
|
||||
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
|
||||
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
|
||||
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
|
||||
<< std::endl;
|
||||
me.label = "b"; me.label += std::to_string(i);
|
||||
i++;
|
||||
}
|
||||
|
||||
// A reference to a marked edge that also knows its container
|
||||
struct MarkedEdgeRef {
|
||||
reference_wrapper<MarkedEdge> eref;
|
||||
reference_wrapper<vector<MarkedEdgeRef>> container;
|
||||
Coord dir = 1; // Direction modifier
|
||||
|
||||
inline Radians angleX() const { return eref.get().e.angleToXaxis(); }
|
||||
inline const Edge& edge() const { return eref.get().e; }
|
||||
inline Edge& edge() { return eref.get().e; }
|
||||
inline bool isTurningPoint() const {
|
||||
return eref.get().is_turning_point;
|
||||
}
|
||||
inline bool isFrom(const vector<MarkedEdgeRef>& cont ) {
|
||||
return &(container.get()) == &cont;
|
||||
}
|
||||
inline bool eq(const MarkedEdgeRef& mr) {
|
||||
return &(eref.get()) == &(mr.eref.get());
|
||||
}
|
||||
|
||||
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
|
||||
reference_wrapper<vector<MarkedEdgeRef>> ec):
|
||||
eref(er), container(ec), dir(1) {}
|
||||
|
||||
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
|
||||
reference_wrapper<vector<MarkedEdgeRef>> ec,
|
||||
Coord d):
|
||||
eref(er), container(ec), dir(d) {}
|
||||
};
|
||||
|
||||
using EdgeRefList = vector<MarkedEdgeRef>;
|
||||
|
||||
// Comparing two marked edges
|
||||
auto sortfn = [](const MarkedEdgeRef& e1, const MarkedEdgeRef& e2) {
|
||||
return e1.angleX() < e2.angleX();
|
||||
};
|
||||
|
||||
EdgeRefList Aref, Bref; // We create containers for the references
|
||||
Aref.reserve(A.size()); Bref.reserve(B.size());
|
||||
|
||||
// Fill reference container for the stationary polygon
|
||||
std::for_each(A.begin(), A.end(), [&Aref](MarkedEdge& me) {
|
||||
Aref.emplace_back( ref(me), ref(Aref) );
|
||||
});
|
||||
|
||||
// Fill reference container for the orbiting polygon
|
||||
std::for_each(B.begin(), B.end(), [&Bref](MarkedEdge& me) {
|
||||
Bref.emplace_back( ref(me), ref(Bref) );
|
||||
});
|
||||
|
||||
auto mink = [sortfn] // the Mink(Q, R, direction) sub-procedure
|
||||
(const EdgeRefList& Q, const EdgeRefList& R, bool positive)
|
||||
{
|
||||
|
||||
// Step 1 "merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)"
|
||||
// Sort the containers of edge references and merge them.
|
||||
// Q could be sorted only once and be reused here but we would still
|
||||
// need to merge it with sorted(R).
|
||||
|
||||
EdgeRefList merged;
|
||||
EdgeRefList S, seq;
|
||||
merged.reserve(Q.size() + R.size());
|
||||
|
||||
merged.insert(merged.end(), R.begin(), R.end());
|
||||
std::stable_sort(merged.begin(), merged.end(), sortfn);
|
||||
merged.insert(merged.end(), Q.begin(), Q.end());
|
||||
std::stable_sort(merged.begin(), merged.end(), sortfn);
|
||||
|
||||
// Step 2 "set i = 1, k = 1, direction = 1, s1 = q1"
|
||||
// we don't use i, instead, q is an iterator into Q. k would be an index
|
||||
// into the merged sequence but we use "it" as an iterator for that
|
||||
|
||||
// here we obtain references for the containers for later comparisons
|
||||
const auto& Rcont = R.begin()->container.get();
|
||||
const auto& Qcont = Q.begin()->container.get();
|
||||
|
||||
// Set the initial direction
|
||||
Coord dir = 1;
|
||||
|
||||
// roughly i = 1 (so q = Q.begin()) and s1 = q1 so S[0] = q;
|
||||
if(positive) {
|
||||
auto q = Q.begin();
|
||||
S.emplace_back(*q);
|
||||
|
||||
// Roughly step 3
|
||||
|
||||
std::cout << "merged size: " << merged.size() << std::endl;
|
||||
auto mit = merged.begin();
|
||||
for(bool finish = false; !finish && q != Q.end();) {
|
||||
++q; // "Set i = i + 1"
|
||||
|
||||
while(!finish && mit != merged.end()) {
|
||||
if(mit->isFrom(Rcont)) {
|
||||
auto s = *mit;
|
||||
s.dir = dir;
|
||||
S.emplace_back(s);
|
||||
}
|
||||
|
||||
if(mit->eq(*q)) {
|
||||
S.emplace_back(*q);
|
||||
if(mit->isTurningPoint()) dir = -dir;
|
||||
if(q == Q.begin()) finish = true;
|
||||
break;
|
||||
}
|
||||
|
||||
mit += dir;
|
||||
// __nfp::advance(mit, merged, dir > 0);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
auto q = Q.rbegin();
|
||||
S.emplace_back(*q);
|
||||
|
||||
// Roughly step 3
|
||||
|
||||
std::cout << "merged size: " << merged.size() << std::endl;
|
||||
auto mit = merged.begin();
|
||||
for(bool finish = false; !finish && q != Q.rend();) {
|
||||
++q; // "Set i = i + 1"
|
||||
|
||||
while(!finish && mit != merged.end()) {
|
||||
if(mit->isFrom(Rcont)) {
|
||||
auto s = *mit;
|
||||
s.dir = dir;
|
||||
S.emplace_back(s);
|
||||
}
|
||||
|
||||
if(mit->eq(*q)) {
|
||||
S.emplace_back(*q);
|
||||
S.back().dir = -1;
|
||||
if(mit->isTurningPoint()) dir = -dir;
|
||||
if(q == Q.rbegin()) finish = true;
|
||||
break;
|
||||
}
|
||||
|
||||
mit += dir;
|
||||
// __nfp::advance(mit, merged, dir > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Step 4:
|
||||
|
||||
// "Let starting edge r1 be in position si in sequence"
|
||||
// whaaat? I guess this means the following:
|
||||
auto it = S.begin();
|
||||
while(!it->eq(*R.begin())) ++it;
|
||||
|
||||
// "Set j = 1, next = 2, direction = 1, seq1 = si"
|
||||
// we don't use j, seq is expanded dynamically.
|
||||
dir = 1;
|
||||
auto next = std::next(R.begin()); seq.emplace_back(*it);
|
||||
|
||||
// Step 5:
|
||||
// "If all si edges have been allocated to seqj" should mean that
|
||||
// we loop until seq has equal size with S
|
||||
auto send = it; //it == S.begin() ? it : std::prev(it);
|
||||
while(it != S.end()) {
|
||||
++it; if(it == S.end()) it = S.begin();
|
||||
if(it == send) break;
|
||||
|
||||
if(it->isFrom(Qcont)) {
|
||||
seq.emplace_back(*it); // "If si is from Q, j = j + 1, seqj = si"
|
||||
|
||||
// "If si is a turning point in Q,
|
||||
// direction = - direction, next = next + direction"
|
||||
if(it->isTurningPoint()) {
|
||||
dir = -dir;
|
||||
next += dir;
|
||||
// __nfp::advance(next, R, dir > 0);
|
||||
}
|
||||
}
|
||||
|
||||
if(it->eq(*next) /*&& dir == next->dir*/) { // "If si = direction.rnext"
|
||||
// "j = j + 1, seqj = si, next = next + direction"
|
||||
seq.emplace_back(*it);
|
||||
next += dir;
|
||||
// __nfp::advance(next, R, dir > 0);
|
||||
}
|
||||
}
|
||||
|
||||
return seq;
|
||||
};
|
||||
|
||||
std::vector<EdgeRefList> seqlist;
|
||||
seqlist.reserve(Bref.size());
|
||||
|
||||
EdgeRefList Bslope = Bref; // copy Bref, we will make a slope diagram
|
||||
|
||||
// make the slope diagram of B
|
||||
std::sort(Bslope.begin(), Bslope.end(), sortfn);
|
||||
|
||||
auto slopeit = Bslope.begin(); // search for the first turning point
|
||||
while(!slopeit->isTurningPoint() && slopeit != Bslope.end()) slopeit++;
|
||||
|
||||
if(slopeit == Bslope.end()) {
|
||||
// no turning point means convex polygon.
|
||||
seqlist.emplace_back(mink(Aref, Bref, true));
|
||||
} else {
|
||||
int dir = 1;
|
||||
|
||||
auto firstturn = Bref.begin();
|
||||
while(!firstturn->eq(*slopeit)) ++firstturn;
|
||||
|
||||
assert(firstturn != Bref.end());
|
||||
|
||||
EdgeRefList bgroup; bgroup.reserve(Bref.size());
|
||||
bgroup.emplace_back(*slopeit);
|
||||
|
||||
auto b_it = std::next(firstturn);
|
||||
while(b_it != firstturn) {
|
||||
if(b_it == Bref.end()) b_it = Bref.begin();
|
||||
|
||||
while(!slopeit->eq(*b_it)) {
|
||||
__nfp::advance(slopeit, Bslope, dir > 0);
|
||||
}
|
||||
|
||||
if(!slopeit->isTurningPoint()) {
|
||||
bgroup.emplace_back(*slopeit);
|
||||
} else {
|
||||
if(!bgroup.empty()) {
|
||||
if(dir > 0) bgroup.emplace_back(*slopeit);
|
||||
for(auto& me : bgroup) {
|
||||
std::cout << me.eref.get().label << ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
seqlist.emplace_back(mink(Aref, bgroup, dir == 1 ? true : false));
|
||||
bgroup.clear();
|
||||
if(dir < 0) bgroup.emplace_back(*slopeit);
|
||||
} else {
|
||||
bgroup.emplace_back(*slopeit);
|
||||
}
|
||||
|
||||
dir *= -1;
|
||||
}
|
||||
++b_it;
|
||||
}
|
||||
}
|
||||
|
||||
// while(it != Bref.end()) // This is step 3 and step 4 in one loop
|
||||
// if(it->isTurningPoint()) {
|
||||
// R = {R.last, it++};
|
||||
// auto seq = mink(Q, R, orientation);
|
||||
|
||||
// // TODO step 6 (should be 5 shouldn't it?): linking edges from A
|
||||
// // I don't get this step
|
||||
|
||||
// seqlist.insert(seqlist.end(), seq.begin(), seq.end());
|
||||
// orientation = !orientation;
|
||||
// } else ++it;
|
||||
|
||||
// if(seqlist.empty()) seqlist = mink(Q, {Bref.begin(), Bref.end()}, true);
|
||||
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
// Algorithm 2: breaking Minkowski sums into track line trips
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
// Algorithm 3: finding the boundary of the NFP from track line trips
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
for(auto& seq : seqlist) {
|
||||
std::cout << "seqlist size: " << seq.size() << std::endl;
|
||||
for(auto& s : seq) {
|
||||
std::cout << (s.dir > 0 ? "" : "-") << s.eref.get().label << ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
auto& seq = seqlist.front();
|
||||
RawShape rsh;
|
||||
Vertex top_nfp;
|
||||
std::vector<Edge> edgelist; edgelist.reserve(seq.size());
|
||||
for(auto& s : seq) {
|
||||
edgelist.emplace_back(s.eref.get().e);
|
||||
}
|
||||
|
||||
__nfp::buildPolygon(edgelist, rsh, top_nfp);
|
||||
|
||||
return Result(rsh, top_nfp);
|
||||
}
|
||||
|
||||
// Specializable NFP implementation class. Specialize it if you have a faster
|
||||
// or better NFP implementation
|
||||
template<class RawShape, NfpLevel nfptype>
|
||||
|
@ -482,17 +482,40 @@ public:
|
||||
|
||||
template<class RawShape>
|
||||
inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) const {
|
||||
return sl::isInside<RawShape>(boundingBox(), box);
|
||||
return sl::isInside(boundingBox(), box);
|
||||
}
|
||||
|
||||
template<class RawShape> inline bool
|
||||
_Item<RawShape>::isInside(const _Circle<TPoint<RawShape>>& circ) const {
|
||||
return sl::isInside<RawShape>(transformedShape(), circ);
|
||||
return sl::isInside(transformedShape(), circ);
|
||||
}
|
||||
|
||||
template<class RawShape> using _ItemRef = std::reference_wrapper<_Item<RawShape>>;
|
||||
template<class RawShape> using _ItemGroup = std::vector<_ItemRef<RawShape>>;
|
||||
|
||||
template<class I> using _ItemRef = std::reference_wrapper<I>;
|
||||
template<class I> using _ItemGroup = std::vector<_ItemRef<I>>;
|
||||
/**
|
||||
* \brief A list of packed item vectors. Each vector represents a bin.
|
||||
*/
|
||||
template<class RawShape>
|
||||
using _PackGroup = std::vector<std::vector<_ItemRef<RawShape>>>;
|
||||
|
||||
/**
|
||||
* \brief A list of packed (index, item) pair vectors. Each vector represents a
|
||||
* bin.
|
||||
*
|
||||
* The index is points to the position of the item in the original input
|
||||
* sequence. This way the caller can use the items as a transformation data
|
||||
* carrier and transform the original objects manually.
|
||||
*/
|
||||
template<class RawShape>
|
||||
using _IndexedPackGroup = std::vector<
|
||||
std::vector<
|
||||
std::pair<
|
||||
unsigned,
|
||||
_ItemRef<RawShape>
|
||||
>
|
||||
>
|
||||
>;
|
||||
|
||||
template<class Iterator>
|
||||
struct ConstItemRange {
|
||||
@ -524,8 +547,10 @@ class PlacementStrategyLike {
|
||||
PlacementStrategy impl_;
|
||||
public:
|
||||
|
||||
using RawShape = typename PlacementStrategy::ShapeType;
|
||||
|
||||
/// The item type that the placer works with.
|
||||
using Item = typename PlacementStrategy::Item;
|
||||
using Item = _Item<RawShape>;
|
||||
|
||||
/// The placer's config type. Should be a simple struct but can be anything.
|
||||
using Config = typename PlacementStrategy::Config;
|
||||
@ -544,8 +569,7 @@ public:
|
||||
*/
|
||||
using PackResult = typename PlacementStrategy::PackResult;
|
||||
|
||||
using ItemRef = _ItemRef<Item>;
|
||||
using ItemGroup = _ItemGroup<Item>;
|
||||
using ItemGroup = _ItemGroup<RawShape>;
|
||||
using DefaultIterator = typename ItemGroup::const_iterator;
|
||||
|
||||
/**
|
||||
@ -619,6 +643,15 @@ public:
|
||||
return impl_.pack(item, remaining);
|
||||
}
|
||||
|
||||
/**
|
||||
* This method makes possible to "preload" some items into the placer. It
|
||||
* will not move these items but will consider them as already packed.
|
||||
*/
|
||||
inline void preload(const ItemGroup& packeditems)
|
||||
{
|
||||
impl_.preload(packeditems);
|
||||
}
|
||||
|
||||
/// Unpack the last element (remove it from the list of packed items).
|
||||
inline void unpackLast() { impl_.unpackLast(); }
|
||||
|
||||
@ -649,11 +682,11 @@ template<class SelectionStrategy>
|
||||
class SelectionStrategyLike {
|
||||
SelectionStrategy impl_;
|
||||
public:
|
||||
using Item = typename SelectionStrategy::Item;
|
||||
using RawShape = typename SelectionStrategy::ShapeType;
|
||||
using Item = _Item<RawShape>;
|
||||
using PackGroup = _PackGroup<RawShape>;
|
||||
using Config = typename SelectionStrategy::Config;
|
||||
|
||||
using ItemRef = std::reference_wrapper<Item>;
|
||||
using ItemGroup = std::vector<ItemRef>;
|
||||
|
||||
/**
|
||||
* @brief Provide a different configuration for the selection strategy.
|
||||
@ -703,60 +736,29 @@ public:
|
||||
std::forward<PConfig>(config));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get the number of bins opened by the selection algorithm.
|
||||
*
|
||||
* Initially it is zero and after the call to packItems it will return
|
||||
* the number of bins opened by the packing procedure.
|
||||
*
|
||||
* \return The number of bins opened.
|
||||
*/
|
||||
inline size_t binCount() const { return impl_.binCount(); }
|
||||
|
||||
/**
|
||||
* @brief Get the items for a particular bin.
|
||||
* @param binIndex The index of the requested bin.
|
||||
* @return Returns a list of all items packed into the requested bin.
|
||||
*/
|
||||
inline ItemGroup itemsForBin(size_t binIndex) {
|
||||
return impl_.itemsForBin(binIndex);
|
||||
inline const PackGroup& getResult() const {
|
||||
return impl_.getResult();
|
||||
}
|
||||
|
||||
/// Same as itemsForBin but for a const context.
|
||||
inline const ItemGroup itemsForBin(size_t binIndex) const {
|
||||
return impl_.itemsForBin(binIndex);
|
||||
}
|
||||
/**
|
||||
* @brief Loading a group of already packed bins. It is best to use a result
|
||||
* from a previous packing. The algorithm will consider this input as if the
|
||||
* objects are already packed and not move them. If any of these items are
|
||||
* outside the bin, it is up to the placer algorithm what will happen.
|
||||
* Packing additional items can fail for the bottom-left and nfp placers.
|
||||
* @param pckgrp A packgroup which is a vector of item vectors. Each item
|
||||
* vector corresponds to a packed bin.
|
||||
*/
|
||||
inline void preload(const PackGroup& pckgrp) { impl_.preload(pckgrp); }
|
||||
|
||||
void clear() { impl_.clear(); }
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* \brief A list of packed item vectors. Each vector represents a bin.
|
||||
*/
|
||||
template<class RawShape>
|
||||
using _PackGroup = std::vector<
|
||||
std::vector<
|
||||
std::reference_wrapper<_Item<RawShape>>
|
||||
>
|
||||
>;
|
||||
|
||||
/**
|
||||
* \brief A list of packed (index, item) pair vectors. Each vector represents a
|
||||
* bin.
|
||||
*
|
||||
* The index is points to the position of the item in the original input
|
||||
* sequence. This way the caller can use the items as a transformation data
|
||||
* carrier and transform the original objects manually.
|
||||
*/
|
||||
template<class RawShape>
|
||||
using _IndexedPackGroup = std::vector<
|
||||
std::vector<
|
||||
std::pair<
|
||||
unsigned,
|
||||
std::reference_wrapper<_Item<RawShape>>
|
||||
>
|
||||
>
|
||||
>;
|
||||
|
||||
/**
|
||||
* The Arranger is the front-end class for the libnest2d library. It takes the
|
||||
* input items and outputs the items with the proper transformations to be
|
||||
@ -868,17 +870,29 @@ public:
|
||||
}
|
||||
|
||||
/// Set a predicate to tell when to abort nesting.
|
||||
inline Nester& stopCondition(StopCondition fn) {
|
||||
inline Nester& stopCondition(StopCondition fn)
|
||||
{
|
||||
selector_.stopCondition(fn); return *this;
|
||||
}
|
||||
|
||||
inline PackGroup lastResult() {
|
||||
PackGroup ret;
|
||||
for(size_t i = 0; i < selector_.binCount(); i++) {
|
||||
auto items = selector_.itemsForBin(i);
|
||||
ret.push_back(items);
|
||||
inline const PackGroup& lastResult() const
|
||||
{
|
||||
return selector_.getResult();
|
||||
}
|
||||
|
||||
inline void preload(const PackGroup& pgrp)
|
||||
{
|
||||
selector_.preload(pgrp);
|
||||
}
|
||||
|
||||
inline void preload(const IndexedPackGroup& ipgrp)
|
||||
{
|
||||
PackGroup pgrp; pgrp.reserve(ipgrp.size());
|
||||
for(auto& ig : ipgrp) {
|
||||
pgrp.emplace_back(); pgrp.back().reserve(ig.size());
|
||||
for(auto& r : ig) pgrp.back().emplace_back(r.second);
|
||||
}
|
||||
return ret;
|
||||
preload(pgrp);
|
||||
}
|
||||
|
||||
private:
|
||||
@ -892,7 +906,7 @@ private:
|
||||
// have to exist for the lifetime of this call.
|
||||
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
|
||||
>
|
||||
inline PackGroup _execute(TIterator from, TIterator to, bool = false)
|
||||
inline const PackGroup& _execute(TIterator from, TIterator to, bool = false)
|
||||
{
|
||||
__execute(from, to);
|
||||
return lastResult();
|
||||
@ -902,7 +916,7 @@ private:
|
||||
class IT = remove_cvref_t<typename TIterator::value_type>,
|
||||
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
|
||||
>
|
||||
inline PackGroup _execute(TIterator from, TIterator to, int = false)
|
||||
inline const PackGroup& _execute(TIterator from, TIterator to, int = false)
|
||||
{
|
||||
item_cache_ = {from, to};
|
||||
|
||||
@ -946,10 +960,12 @@ private:
|
||||
TSel& selector)
|
||||
{
|
||||
IndexedPackGroup pg;
|
||||
pg.reserve(selector.binCount());
|
||||
pg.reserve(selector.getResult().size());
|
||||
|
||||
for(size_t i = 0; i < selector.binCount(); i++) {
|
||||
auto items = selector.itemsForBin(i);
|
||||
const PackGroup& pckgrp = selector.getResult();
|
||||
|
||||
for(size_t i = 0; i < pckgrp.size(); i++) {
|
||||
auto items = pckgrp[i];
|
||||
pg.push_back({});
|
||||
pg[i].reserve(items.size());
|
||||
|
||||
|
@ -48,12 +48,12 @@ else()
|
||||
target_link_libraries(NloptOptimizer INTERFACE Nlopt::Nlopt)
|
||||
endif()
|
||||
|
||||
#target_sources( NloptOptimizer INTERFACE
|
||||
#${CMAKE_CURRENT_SOURCE_DIR}/simplex.hpp
|
||||
#${CMAKE_CURRENT_SOURCE_DIR}/subplex.hpp
|
||||
#${CMAKE_CURRENT_SOURCE_DIR}/genetic.hpp
|
||||
#${CMAKE_CURRENT_SOURCE_DIR}/nlopt_boilerplate.hpp
|
||||
#)
|
||||
target_sources( NloptOptimizer INTERFACE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/simplex.hpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/subplex.hpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/genetic.hpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/nlopt_boilerplate.hpp
|
||||
)
|
||||
|
||||
target_compile_definitions(NloptOptimizer INTERFACE LIBNEST2D_OPTIMIZER_NLOPT)
|
||||
|
||||
|
@ -130,7 +130,7 @@ namespace placers {
|
||||
template<class RawShape>
|
||||
struct NfpPConfig {
|
||||
|
||||
using ItemGroup = _ItemGroup<_Item<RawShape>>;
|
||||
using ItemGroup = _ItemGroup<RawShape>;
|
||||
|
||||
enum class Alignment {
|
||||
CENTER,
|
||||
@ -138,6 +138,8 @@ struct NfpPConfig {
|
||||
BOTTOM_RIGHT,
|
||||
TOP_LEFT,
|
||||
TOP_RIGHT,
|
||||
DONT_ALIGN //!> Warning: parts may end up outside the bin with the
|
||||
//! default object function.
|
||||
};
|
||||
|
||||
/// Which angles to try out for better results.
|
||||
@ -545,8 +547,8 @@ public:
|
||||
_NofitPolyPlacer& operator=(const _NofitPolyPlacer&) = default;
|
||||
|
||||
#ifndef BP2D_COMPILER_MSVC12 // MSVC2013 does not support default move ctors
|
||||
_NofitPolyPlacer(_NofitPolyPlacer&&) /*BP2D_NOEXCEPT*/ = default;
|
||||
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) /*BP2D_NOEXCEPT*/ = default;
|
||||
_NofitPolyPlacer(_NofitPolyPlacer&&) = default;
|
||||
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) = default;
|
||||
#endif
|
||||
|
||||
static inline double overfit(const Box& bb, const RawShape& bin) {
|
||||
@ -905,26 +907,44 @@ private:
|
||||
|
||||
// This is the kernel part of the object function that is
|
||||
// customizable by the library client
|
||||
auto _objfunc = config_.object_function?
|
||||
config_.object_function :
|
||||
[norm, bin, binbb, pbb](const Item& item)
|
||||
{
|
||||
auto ibb = item.boundingBox();
|
||||
auto fullbb = boundingBox(pbb, ibb);
|
||||
std::function<double(const Item&)> _objfunc;
|
||||
if(config_.object_function) _objfunc = config_.object_function;
|
||||
else {
|
||||
|
||||
double score = pl::distance(ibb.center(), binbb.center());
|
||||
score /= norm;
|
||||
// Inside check has to be strict if no alignment was enabled
|
||||
std::function<double(const Box&)> ins_check;
|
||||
if(config_.alignment == Config::Alignment::DONT_ALIGN)
|
||||
ins_check = [&binbb, norm](const Box& fullbb) {
|
||||
double ret = 0;
|
||||
if(!sl::isInside(fullbb, binbb))
|
||||
ret += norm;
|
||||
return ret;
|
||||
};
|
||||
else
|
||||
ins_check = [&bin](const Box& fullbb) {
|
||||
double miss = overfit(fullbb, bin);
|
||||
miss = miss > 0? miss : 0;
|
||||
return std::pow(miss, 2);
|
||||
};
|
||||
|
||||
double miss = overfit(fullbb, bin);
|
||||
miss = miss > 0? miss : 0;
|
||||
score += std::pow(miss, 2);
|
||||
_objfunc = [norm, binbb, pbb, ins_check](const Item& item)
|
||||
{
|
||||
auto ibb = item.boundingBox();
|
||||
auto fullbb = boundingBox(pbb, ibb);
|
||||
|
||||
return score;
|
||||
};
|
||||
double score = pl::distance(ibb.center(),
|
||||
binbb.center());
|
||||
score /= norm;
|
||||
|
||||
score += ins_check(fullbb);
|
||||
|
||||
return score;
|
||||
};
|
||||
}
|
||||
|
||||
// Our object function for placement
|
||||
auto rawobjfunc =
|
||||
[_objfunc, iv, startpos] (Vertex v, Item& itm)
|
||||
auto rawobjfunc = [_objfunc, iv, startpos]
|
||||
(Vertex v, Item& itm)
|
||||
{
|
||||
auto d = v - iv;
|
||||
d += startpos;
|
||||
@ -938,9 +958,10 @@ private:
|
||||
ecache[opt.nfpidx].coords(opt.hidx, opt.relpos);
|
||||
};
|
||||
|
||||
auto boundaryCheck =
|
||||
[&merged_pile, &getNfpPoint, &item, &bin, &iv, &startpos]
|
||||
(const Optimum& o)
|
||||
auto alignment = config_.alignment;
|
||||
|
||||
auto boundaryCheck = [alignment, &merged_pile, &getNfpPoint,
|
||||
&item, &bin, &iv, &startpos] (const Optimum& o)
|
||||
{
|
||||
auto v = getNfpPoint(o);
|
||||
auto d = v - iv;
|
||||
@ -951,7 +972,12 @@ private:
|
||||
auto chull = sl::convexHull(merged_pile);
|
||||
merged_pile.pop_back();
|
||||
|
||||
return overfit(chull, bin);
|
||||
double miss = 0;
|
||||
if(alignment == Config::Alignment::DONT_ALIGN)
|
||||
miss = sl::isInside(chull, bin) ? -1.0 : 1.0;
|
||||
else miss = overfit(chull, bin);
|
||||
|
||||
return miss;
|
||||
};
|
||||
|
||||
Optimum optimum(0, 0);
|
||||
@ -1101,7 +1127,9 @@ private:
|
||||
}
|
||||
|
||||
inline void finalAlign(_Circle<TPoint<RawShape>> cbin) {
|
||||
if(items_.empty()) return;
|
||||
if(items_.empty() ||
|
||||
config_.alignment == Config::Alignment::DONT_ALIGN) return;
|
||||
|
||||
nfp::Shapes<RawShape> m;
|
||||
m.reserve(items_.size());
|
||||
for(Item& item : items_) m.emplace_back(item.transformedShape());
|
||||
@ -1113,7 +1141,9 @@ private:
|
||||
}
|
||||
|
||||
inline void finalAlign(Box bbin) {
|
||||
if(items_.empty()) return;
|
||||
if(items_.empty() ||
|
||||
config_.alignment == Config::Alignment::DONT_ALIGN) return;
|
||||
|
||||
nfp::Shapes<RawShape> m;
|
||||
m.reserve(items_.size());
|
||||
for(Item& item : items_) m.emplace_back(item.transformedShape());
|
||||
@ -1147,6 +1177,7 @@ private:
|
||||
cb = bbin.maxCorner();
|
||||
break;
|
||||
}
|
||||
default: ; // DONT_ALIGN
|
||||
}
|
||||
|
||||
auto d = cb - ci;
|
||||
@ -1184,6 +1215,7 @@ private:
|
||||
cb = bbin.maxCorner();
|
||||
break;
|
||||
}
|
||||
default:;
|
||||
}
|
||||
|
||||
auto d = cb - ci;
|
||||
|
@ -12,6 +12,7 @@ class PlacerBoilerplate {
|
||||
mutable bool farea_valid_ = false;
|
||||
mutable double farea_ = 0.0;
|
||||
public:
|
||||
using ShapeType = RawShape;
|
||||
using Item = _Item<RawShape>;
|
||||
using Vertex = TPoint<RawShape>;
|
||||
using Segment = _Segment<Vertex>;
|
||||
@ -19,7 +20,7 @@ public:
|
||||
using Coord = TCoord<Vertex>;
|
||||
using Unit = Coord;
|
||||
using Config = Cfg;
|
||||
using ItemGroup = _ItemGroup<Item>;
|
||||
using ItemGroup = _ItemGroup<RawShape>;
|
||||
using DefaultIter = typename ItemGroup::const_iterator;
|
||||
|
||||
class PackResult {
|
||||
@ -59,8 +60,7 @@ public:
|
||||
}
|
||||
|
||||
template<class Range = ConstItemRange<DefaultIter>>
|
||||
bool pack(Item& item,
|
||||
const Range& rem = Range()) {
|
||||
bool pack(Item& item, const Range& rem = Range()) {
|
||||
auto&& r = static_cast<Subclass*>(this)->trypack(item, rem);
|
||||
if(r) {
|
||||
items_.push_back(*(r.item_ptr_));
|
||||
@ -69,6 +69,11 @@ public:
|
||||
return r;
|
||||
}
|
||||
|
||||
void preload(const ItemGroup& packeditems) {
|
||||
items_.insert(items_.end(), packeditems.begin(), packeditems.end());
|
||||
farea_valid_ = false;
|
||||
}
|
||||
|
||||
void accept(PackResult& r) {
|
||||
if(r) {
|
||||
r.item_ptr_->translation(r.move_);
|
||||
@ -117,6 +122,7 @@ using Base::bin_; \
|
||||
using Base::items_; \
|
||||
using Base::config_; \
|
||||
public: \
|
||||
using typename Base::ShapeType; \
|
||||
using typename Base::Item; \
|
||||
using typename Base::ItemGroup; \
|
||||
using typename Base::BinType; \
|
||||
|
@ -33,7 +33,7 @@ class _DJDHeuristic: public SelectionBoilerplate<RawShape> {
|
||||
|
||||
public:
|
||||
using typename Base::Item;
|
||||
using typename Base::ItemRef;
|
||||
using ItemRef = std::reference_wrapper<Item>;
|
||||
|
||||
/**
|
||||
* @brief The Config for DJD heuristic.
|
||||
@ -126,6 +126,8 @@ public:
|
||||
|
||||
store_.clear();
|
||||
store_.reserve(last-first);
|
||||
|
||||
// TODO: support preloading
|
||||
packed_bins_.clear();
|
||||
|
||||
std::copy(first, last, std::back_inserter(store_));
|
||||
|
@ -34,6 +34,10 @@ public:
|
||||
store_.clear();
|
||||
auto total = last-first;
|
||||
store_.reserve(total);
|
||||
|
||||
// TODO: support preloading
|
||||
packed_bins_.clear();
|
||||
|
||||
packed_bins_.emplace_back();
|
||||
|
||||
auto makeProgress = [this, &total](
|
||||
|
@ -36,11 +36,19 @@ public:
|
||||
|
||||
store_.clear();
|
||||
store_.reserve(last-first);
|
||||
packed_bins_.clear();
|
||||
|
||||
std::vector<Placer> placers;
|
||||
placers.reserve(last-first);
|
||||
|
||||
// If the packed_items array is not empty we have to create as many
|
||||
// placers as there are elements in packed bins and preload each item
|
||||
// into the appropriate placer
|
||||
for(ItemGroup& ig : packed_bins_) {
|
||||
placers.emplace_back(bin);
|
||||
placers.back().configure(pconfig);
|
||||
placers.back().preload(ig);
|
||||
}
|
||||
|
||||
std::copy(first, last, std::back_inserter(store_));
|
||||
|
||||
auto sortfunc = [](Item& i1, Item& i2) {
|
||||
|
@ -9,27 +9,23 @@ namespace libnest2d { namespace selections {
|
||||
template<class RawShape>
|
||||
class SelectionBoilerplate {
|
||||
public:
|
||||
using ShapeType = RawShape;
|
||||
using Item = _Item<RawShape>;
|
||||
using ItemRef = std::reference_wrapper<Item>;
|
||||
using ItemGroup = std::vector<ItemRef>;
|
||||
using PackGroup = std::vector<ItemGroup>;
|
||||
using ItemGroup = _ItemGroup<RawShape>;
|
||||
using PackGroup = _PackGroup<RawShape>;
|
||||
|
||||
size_t binCount() const { return packed_bins_.size(); }
|
||||
|
||||
ItemGroup itemsForBin(size_t binIndex) {
|
||||
assert(binIndex < packed_bins_.size());
|
||||
return packed_bins_[binIndex];
|
||||
}
|
||||
|
||||
inline const ItemGroup itemsForBin(size_t binIndex) const {
|
||||
assert(binIndex < packed_bins_.size());
|
||||
return packed_bins_[binIndex];
|
||||
inline const PackGroup& getResult() const {
|
||||
return packed_bins_;
|
||||
}
|
||||
|
||||
inline void progressIndicator(ProgressFunction fn) { progress_ = fn; }
|
||||
|
||||
inline void stopCondition(StopCondition cond) { stopcond_ = cond; }
|
||||
|
||||
inline void preload(const PackGroup& pckgrp) { packed_bins_ = pckgrp; }
|
||||
|
||||
inline void clear() { packed_bins_.clear(); }
|
||||
|
||||
protected:
|
||||
|
||||
PackGroup packed_bins_;
|
||||
|
@ -356,13 +356,15 @@ inline double area(const PolygonImpl& shape, const PolygonTag&)
|
||||
#endif
|
||||
|
||||
template<>
|
||||
inline bool isInside(const PointImpl& point, const PolygonImpl& shape)
|
||||
inline bool isInside(const PointImpl& point, const PolygonImpl& shape,
|
||||
const PointTag&, const PolygonTag&)
|
||||
{
|
||||
return boost::geometry::within(point, shape);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline bool isInside(const PolygonImpl& sh1, const PolygonImpl& sh2)
|
||||
inline bool isInside(const PolygonImpl& sh1, const PolygonImpl& sh2,
|
||||
const PolygonTag&, const PolygonTag&)
|
||||
{
|
||||
return boost::geometry::within(sh1, sh2);
|
||||
}
|
||||
|
@ -358,6 +358,29 @@ public:
|
||||
m_rtree.clear();
|
||||
return m_pck.executeIndexed(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
inline void preload(const PackGroup& pg) {
|
||||
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
|
||||
m_pconf.object_function = nullptr; // drop the special objectfunction
|
||||
m_pck.preload(pg);
|
||||
|
||||
// Build the rtree for queries to work
|
||||
for(const ItemGroup& grp : pg)
|
||||
for(unsigned idx = 0; idx < grp.size(); ++idx) {
|
||||
Item& itm = grp[idx];
|
||||
m_rtree.insert({itm.boundingBox(), idx});
|
||||
}
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
}
|
||||
|
||||
bool is_colliding(const Item& item) {
|
||||
if(m_rtree.empty()) return false;
|
||||
std::vector<SpatElement> result;
|
||||
m_rtree.query(bgi::intersects(item.boundingBox()),
|
||||
std::back_inserter(result));
|
||||
return !result.empty();
|
||||
}
|
||||
};
|
||||
|
||||
// Arranger specialization for a Box shaped bin.
|
||||
@ -365,8 +388,8 @@ template<> class AutoArranger<Box>: public _ArrBase<Box> {
|
||||
public:
|
||||
|
||||
AutoArranger(const Box& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
std::function<void(unsigned)> progressind = [](unsigned){},
|
||||
std::function<bool(void)> stopcond = [](){return false;}):
|
||||
_ArrBase<Box>(bin, dist, progressind, stopcond)
|
||||
{
|
||||
|
||||
@ -411,8 +434,8 @@ template<> class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
|
||||
public:
|
||||
|
||||
AutoArranger(const lnCircle& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
std::function<void(unsigned)> progressind = [](unsigned){},
|
||||
std::function<bool(void)> stopcond = [](){return false;}):
|
||||
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
|
||||
|
||||
// As with the box, only the inside check is different.
|
||||
@ -456,8 +479,8 @@ public:
|
||||
template<> class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
|
||||
public:
|
||||
AutoArranger(const PolygonImpl& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
std::function<void(unsigned)> progressind = [](unsigned){},
|
||||
std::function<bool(void)> stopcond = [](){return false;}):
|
||||
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
|
||||
{
|
||||
m_pconf.object_function = [this, &bin] (const Item &item) {
|
||||
@ -791,5 +814,174 @@ bool arrange(Model &model, // The model with the geometries
|
||||
return ret && result.size() == 1;
|
||||
}
|
||||
|
||||
void find_new_position(const Model &model,
|
||||
ModelInstancePtrs toadd,
|
||||
coord_t min_obj_distance,
|
||||
const Polyline &bed)
|
||||
{
|
||||
// Get the 2D projected shapes with their 3D model instance pointers
|
||||
auto shapemap = arr::projectModelFromTop(model);
|
||||
|
||||
// Copy the references for the shapes only as the arranger expects a
|
||||
// sequence of objects convertible to Item or ClipperPolygon
|
||||
PackGroup preshapes; preshapes.emplace_back();
|
||||
ItemGroup shapes;
|
||||
preshapes.front().reserve(shapemap.size());
|
||||
|
||||
std::vector<ModelInstance*> shapes_ptr; shapes_ptr.reserve(toadd.size());
|
||||
IndexedPackGroup result;
|
||||
|
||||
// If there is no hint about the shape, we will try to guess
|
||||
BedShapeHint bedhint = bedShape(bed);
|
||||
|
||||
BoundingBox bbb(bed);
|
||||
|
||||
auto binbb = Box({
|
||||
static_cast<libnest2d::Coord>(bbb.min(0)),
|
||||
static_cast<libnest2d::Coord>(bbb.min(1))
|
||||
},
|
||||
{
|
||||
static_cast<libnest2d::Coord>(bbb.max(0)),
|
||||
static_cast<libnest2d::Coord>(bbb.max(1))
|
||||
});
|
||||
|
||||
for(auto it = shapemap.begin(); it != shapemap.end(); ++it) {
|
||||
if(std::find(toadd.begin(), toadd.end(), it->first) == toadd.end()) {
|
||||
if(it->second.isInside(binbb)) // just ignore items which are outside
|
||||
preshapes.front().emplace_back(std::ref(it->second));
|
||||
}
|
||||
else {
|
||||
shapes_ptr.emplace_back(it->first);
|
||||
shapes.emplace_back(std::ref(it->second));
|
||||
}
|
||||
}
|
||||
|
||||
auto try_first_to_center = [&shapes, &shapes_ptr, &binbb]
|
||||
(std::function<bool(const Item&)> is_colliding,
|
||||
std::function<void(Item&)> preload)
|
||||
{
|
||||
// Try to put the first item to the center, as the arranger will not
|
||||
// do this for us.
|
||||
auto shptrit = shapes_ptr.begin();
|
||||
for(auto shit = shapes.begin(); shit != shapes.end(); ++shit, ++shptrit)
|
||||
{
|
||||
// Try to place items to the center
|
||||
Item& itm = *shit;
|
||||
auto ibb = itm.boundingBox();
|
||||
auto d = binbb.center() - ibb.center();
|
||||
itm.translate(d);
|
||||
if(!is_colliding(itm)) {
|
||||
preload(itm);
|
||||
|
||||
auto offset = itm.translation();
|
||||
Radians rot = itm.rotation();
|
||||
ModelInstance *minst = *shptrit;
|
||||
Vec3d foffset(offset.X*SCALING_FACTOR,
|
||||
offset.Y*SCALING_FACTOR,
|
||||
minst->get_offset()(Z));
|
||||
|
||||
// write the transformation data into the model instance
|
||||
minst->set_rotation(Z, rot);
|
||||
minst->set_offset(foffset);
|
||||
|
||||
shit = shapes.erase(shit);
|
||||
shptrit = shapes_ptr.erase(shptrit);
|
||||
break;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
switch(bedhint.type) {
|
||||
case BedShapeType::BOX: {
|
||||
|
||||
// Create the arranger for the box shaped bed
|
||||
AutoArranger<Box> arrange(binbb, min_obj_distance);
|
||||
|
||||
if(!preshapes.front().empty()) { // If there is something on the plate
|
||||
arrange.preload(preshapes);
|
||||
try_first_to_center(
|
||||
[&arrange](const Item& itm) {return arrange.is_colliding(itm);},
|
||||
[&arrange](Item& itm) { arrange.preload({{itm}}); }
|
||||
);
|
||||
}
|
||||
|
||||
// Arrange and return the items with their respective indices within the
|
||||
// input sequence.
|
||||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
}
|
||||
case BedShapeType::CIRCLE: {
|
||||
|
||||
auto c = bedhint.shape.circ;
|
||||
auto cc = to_lnCircle(c);
|
||||
|
||||
// Create the arranger for the box shaped bed
|
||||
AutoArranger<lnCircle> arrange(cc, min_obj_distance);
|
||||
|
||||
if(!preshapes.front().empty()) { // If there is something on the plate
|
||||
arrange.preload(preshapes);
|
||||
try_first_to_center(
|
||||
[&arrange](const Item& itm) {return arrange.is_colliding(itm);},
|
||||
[&arrange](Item& itm) { arrange.preload({{itm}}); }
|
||||
);
|
||||
}
|
||||
|
||||
// Arrange and return the items with their respective indices within the
|
||||
// input sequence.
|
||||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
}
|
||||
case BedShapeType::IRREGULAR:
|
||||
case BedShapeType::WHO_KNOWS: {
|
||||
using P = libnest2d::PolygonImpl;
|
||||
|
||||
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
|
||||
P irrbed = sl::create<PolygonImpl>(std::move(ctour));
|
||||
|
||||
AutoArranger<P> arrange(irrbed, min_obj_distance);
|
||||
|
||||
if(!preshapes.front().empty()) { // If there is something on the plate
|
||||
arrange.preload(preshapes);
|
||||
try_first_to_center(
|
||||
[&arrange](const Item& itm) {return arrange.is_colliding(itm);},
|
||||
[&arrange](Item& itm) { arrange.preload({{itm}}); }
|
||||
);
|
||||
}
|
||||
|
||||
// Arrange and return the items with their respective indices within the
|
||||
// input sequence.
|
||||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
// Now we go through the result which will contain the fixed and the moving
|
||||
// polygons as well. We will have to search for our item.
|
||||
|
||||
const auto STRIDE_PADDING = 1.2;
|
||||
Coord stride = Coord(STRIDE_PADDING*binbb.width()*SCALING_FACTOR);
|
||||
Coord batch_offset = 0;
|
||||
|
||||
for(auto& group : result) {
|
||||
for(auto& r : group) if(r.first < shapes.size()) {
|
||||
Item& resultitem = r.second;
|
||||
unsigned idx = r.first;
|
||||
auto offset = resultitem.translation();
|
||||
Radians rot = resultitem.rotation();
|
||||
ModelInstance *minst = shapes_ptr[idx];
|
||||
Vec3d foffset(offset.X*SCALING_FACTOR + batch_offset,
|
||||
offset.Y*SCALING_FACTOR,
|
||||
minst->get_offset()(Z));
|
||||
|
||||
// write the transformation data into the model instance
|
||||
minst->set_rotation(Z, rot);
|
||||
minst->set_offset(foffset);
|
||||
}
|
||||
batch_offset += stride;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@ -73,7 +73,13 @@ bool arrange(Model &model, coord_t min_obj_distance,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcondition);
|
||||
|
||||
}
|
||||
/// This will find a suitable position for a new object instance and leave the
|
||||
/// old items untouched.
|
||||
void find_new_position(const Model& model,
|
||||
ModelInstancePtrs instances_to_add,
|
||||
coord_t min_obj_distance,
|
||||
const Slic3r::Polyline& bed);
|
||||
|
||||
}
|
||||
} // arr
|
||||
} // Slic3r
|
||||
#endif // MODELARRANGE_HPP
|
||||
|
@ -1473,24 +1473,19 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &mode
|
||||
const BoundingBoxf bed_shape = bed_shape_bb();
|
||||
const Vec3d bed_size = Slic3r::to_3d(bed_shape.size().cast<double>(), 1.0) - 2.0 * Vec3d::Ones();
|
||||
|
||||
bool need_arrange = false;
|
||||
bool scaled_down = false;
|
||||
std::vector<size_t> obj_idxs;
|
||||
unsigned int obj_count = model.objects.size();
|
||||
|
||||
ModelInstancePtrs new_instances;
|
||||
for (ModelObject *model_object : model_objects) {
|
||||
auto *object = model.add_object(*model_object);
|
||||
std::string object_name = object->name.empty() ? fs::path(object->input_file).filename().string() : object->name;
|
||||
obj_idxs.push_back(obj_count++);
|
||||
|
||||
if (model_object->instances.empty()) {
|
||||
// if object has no defined position(s) we need to rearrange everything after loading
|
||||
need_arrange = true;
|
||||
|
||||
// add a default instance and center object around origin
|
||||
object->center_around_origin(); // also aligns object to Z = 0
|
||||
ModelInstance* instance = object->add_instance();
|
||||
instance->set_offset(Slic3r::to_3d(bed_shape.center().cast<double>(), -object->origin_translation(2)));
|
||||
object->center_around_origin();
|
||||
new_instances.emplace_back(object->add_instance());
|
||||
}
|
||||
|
||||
const Vec3d size = object->bounding_box().size();
|
||||
@ -1518,6 +1513,17 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &mode
|
||||
// print.add_model_object(object);
|
||||
}
|
||||
|
||||
// FIXME distance should be a config value /////////////////////////////////
|
||||
auto min_obj_distance = static_cast<coord_t>(6/SCALING_FACTOR);
|
||||
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
|
||||
assert(bed_shape_opt);
|
||||
auto& bedpoints = bed_shape_opt->values;
|
||||
Polyline bed; bed.points.reserve(bedpoints.size());
|
||||
for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
|
||||
|
||||
arr::find_new_position(model, new_instances, min_obj_distance, bed);
|
||||
// /////////////////////////////////////////////////////////////////////////
|
||||
|
||||
if (scaled_down) {
|
||||
GUI::show_info(q,
|
||||
_(L("Your object appears to be too large, so it was automatically scaled down to fit your print bed.")),
|
||||
|
Loading…
Reference in New Issue
Block a user