Refactored version without voxel grid, init commit

This commit is contained in:
PavelMikus 2022-06-17 12:11:12 +02:00
parent 51d738c564
commit 30f072457f
3 changed files with 517 additions and 2 deletions

View File

@ -245,7 +245,8 @@ set(SLIC3R_SOURCES
SlicingAdaptive.hpp
Subdivide.cpp
Subdivide.hpp
SupportableIssuesSearch.cpp
# SupportableIssuesSearch.cpp
SupportableIssuesSearchRefactoring.cpp
SupportableIssuesSearch.hpp
SupportMaterial.cpp
SupportMaterial.hpp

View File

@ -431,7 +431,7 @@ void PrintObject::find_supportable_issues()
TriangleSelectorWrapper selector { model_volume->mesh() };
for (const SupportableIssues::SupportPoint &support_point : issues.supports_nedded) {
selector.enforce_spot(Vec3f(inv_transform.cast<float>() * support_point.position), 2.0f);
selector.enforce_spot(Vec3f(inv_transform.cast<float>() * support_point.position), 0.5f);
}
model_volume->supported_facets.set(selector.selector);

View File

@ -0,0 +1,514 @@
#include "SupportableIssuesSearch.hpp"
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_reduce.h"
#include <boost/log/trivial.hpp>
#include <cmath>
#include <unordered_set>
#include <stack>
#include "AABBTreeLines.hpp"
#include "libslic3r/Layer.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "Geometry/ConvexHull.hpp"
#define DEBUG_FILES
#ifdef DEBUG_FILES
#include <boost/nowide/cstdio.hpp>
#include "libslic3r/Color.hpp"
#endif
namespace Slic3r {
static const size_t NULL_ACC_ID = std::numeric_limits<size_t>::max();
class ExtrusionLine
{
public:
ExtrusionLine() :
a(Vec2f::Zero()), b(Vec2f::Zero()), len(0.0f) {
}
ExtrusionLine(const Vec2f &_a, const Vec2f &_b) :
a(_a), b(_b), len((_a - _b).norm()) {
}
float length() {
return (a - b).norm();
}
Vec2f a;
Vec2f b;
float len;
size_t supported_segment_accumulator_id = NULL_ACC_ID;
static const constexpr int Dim = 2;
using Scalar = Vec2f::Scalar;
};
auto get_a(ExtrusionLine &&l) {
return l.a;
}
auto get_b(ExtrusionLine &&l) {
return l.b;
}
namespace SupportableIssues {
void Issues::add(const Issues &layer_issues) {
supports_nedded.insert(supports_nedded.end(), layer_issues.supports_nedded.begin(),
layer_issues.supports_nedded.end());
curling_up.insert(curling_up.end(), layer_issues.curling_up.begin(), layer_issues.curling_up.end());
}
bool Issues::empty() const {
return supports_nedded.empty() && curling_up.empty();
}
SupportPoint::SupportPoint(const Vec3f &position, float weight) :
position(position), weight(weight) {
}
CurledFilament::CurledFilament(const Vec3f &position, float estimated_height) :
position(position), estimated_height(estimated_height) {
}
CurledFilament::CurledFilament(const Vec3f &position) :
position(position), estimated_height(0.0f) {
}
class LayerLinesDistancer {
private:
std::vector<ExtrusionLine> lines;
AABBTreeIndirect::Tree<2, float> tree;
public:
explicit LayerLinesDistancer(std::vector<ExtrusionLine> &&lines) :
lines(lines) {
tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(lines);
}
// negative sign means inside
float signed_distance_from_lines(const Point &point, size_t &nearest_line_index_out,
Vec2f &nearest_point_out) const {
Vec2f p = unscaled(point).cast<float>();
auto distance = AABBTreeLines::squared_distance_to_indexed_lines(lines, tree, p, nearest_line_index_out,
nearest_point_out);
if (distance < 0)
return std::numeric_limits<float>::infinity();
distance = sqrt(distance);
const ExtrusionLine &line = lines[nearest_line_index_out];
Vec2f v1 = line.b - line.a;
Vec2f v2 = p - line.a;
if ((v1.x() * v2.y()) - (v1.y() * v2.x()) > 0.0) {
distance *= -1;
}
return distance;
}
const ExtrusionLine& get_line(size_t line_idx) const {
return lines[line_idx];
}
};
class SupportedSegmentAccumulator {
private:
Polygon base_convex_hull { };
Points supported_points { };
Vec3f centroid_accumulator = Vec3f::Zero();
float accumulated_volume { };
float base_area { };
float base_height { };
public:
explicit SupportedSegmentAccumulator(float base_height) :
base_height(base_height) {
}
void add_base_extrusion(const ExtrusionLine &line, float width, float print_z, float cross_section) {
base_area += line.len * width;
supported_points.push_back(Point::new_scale(line.a));
supported_points.push_back(Point::new_scale(line.b));
base_convex_hull.clear();
add_extrusion(line, print_z, cross_section);
}
void add_support_point(const Point &position, float area) {
supported_points.push_back(position);
base_convex_hull.clear();
base_area += area;
}
void add_extrusion(const ExtrusionLine &line, float print_z, float cross_section) {
float volume = line.len * cross_section;
accumulated_volume += volume;
Vec2f center = (line.a + line.b) / 2.0f;
centroid_accumulator += volume * Vec3f(center.x(), center.y(), print_z);
}
const Polygon& segment_base_hull() {
if (this->base_convex_hull.empty()) {
this->base_convex_hull = Geometry::convex_hull(this->supported_points);
}
return this->base_convex_hull;
}
void add_from(const SupportedSegmentAccumulator &acc) {
this->supported_points.insert(this->supported_points.end(), acc.supported_points.begin(),
acc.supported_points.end());
base_convex_hull.clear();
this->centroid_accumulator += acc.centroid_accumulator;
this->accumulated_volume += acc.accumulated_volume;
this->base_area += acc.base_area;
}
bool check_stability() {
return true;
}
};
struct SupportedSegmentAccumulators {
private:
size_t next_id = 0;
std::unordered_map<size_t, size_t> mapping;
std::vector<SupportedSegmentAccumulator> acccumulators;
void merge_to(size_t from_id, size_t to_id) {
SupportedSegmentAccumulator &from_acc = this->access(from_id);
SupportedSegmentAccumulator &to_acc = this->access(to_id);
if (&from_acc == &to_acc) {
return;
}
to_acc.add_from(from_acc);
mapping[from_id] = mapping[to_id];
from_acc = SupportedSegmentAccumulator { 0.0f };
}
public:
SupportedSegmentAccumulators() = default;
int create_accumulator(float base_height) {
size_t id = next_id;
next_id++;
mapping[id] = acccumulators.size();
acccumulators.push_back(SupportedSegmentAccumulator { base_height });
return id;
}
SupportedSegmentAccumulator& access(size_t id) {
return acccumulators[mapping[id]];
}
void merge_accumulators(size_t from_id, size_t to_id) {
if (from_id == NULL_ACC_ID || to_id == NULL_ACC_ID) {
return;
}
SupportedSegmentAccumulator &from_acc = this->access(from_id);
SupportedSegmentAccumulator &to_acc = this->access(to_id);
if (&from_acc == &to_acc) {
return;
}
to_acc.add_from(from_acc);
mapping[from_id] = mapping[to_id];
from_acc = SupportedSegmentAccumulator { 0.0f };
}
std::unordered_set<size_t> get_active_acc_indices() const {
std::unordered_set<size_t> result;
for (const auto &pair : mapping) {
result.insert(pair.second);
}
return result;
}
};
float get_flow_width(const LayerRegion *region, ExtrusionRole role) {
switch (role) {
case ExtrusionRole::erBridgeInfill:
return region->flow(FlowRole::frExternalPerimeter).width();
case ExtrusionRole::erExternalPerimeter:
return region->flow(FlowRole::frExternalPerimeter).width();
case ExtrusionRole::erGapFill:
return region->flow(FlowRole::frInfill).width();
case ExtrusionRole::erPerimeter:
return region->flow(FlowRole::frPerimeter).width();
case ExtrusionRole::erSolidInfill:
return region->flow(FlowRole::frSolidInfill).width();
case ExtrusionRole::erInternalInfill:
return region->flow(FlowRole::frInfill).width();
case ExtrusionRole::erTopSolidInfill:
return region->flow(FlowRole::frTopSolidInfill).width();
default:
return region->flow(FlowRole::frPerimeter).width();
}
}
float get_max_allowed_distance(ExtrusionRole role, float flow_width, bool external_perimeters_first,
const Params &params) { // <= distance / flow_width (can be larger for perimeter, if not external perimeter first)
if ((role == ExtrusionRole::erExternalPerimeter || role == ExtrusionRole::erOverhangPerimeter)
&& (external_perimeters_first)) {
return params.max_first_ex_perim_unsupported_distance_factor * flow_width;
} else {
return params.max_unsupported_distance_factor * flow_width;
}
}
struct ExtrusionPropertiesAccumulator {
float distance = 0; //accumulated distance
float curvature = 0; //accumulated signed ccw angles
float max_curvature = 0; //max absolute accumulated value
void add_distance(float dist) {
distance += dist;
}
void add_angle(float ccw_angle) {
curvature += ccw_angle;
max_curvature = std::max(max_curvature, std::abs(curvature));
}
void reset() {
distance = 0;
curvature = 0;
max_curvature = 0;
}
};
void check_extrusion_entity_stability(const ExtrusionEntity *entity,
SupportedSegmentAccumulators &stability_accs,
Issues &issues,
std::vector<ExtrusionLine> &checked_lines,
float print_z,
const LayerRegion *layer_region,
const LayerLinesDistancer &prev_layer_lines,
const Params &params) {
if (entity->is_collection()) {
for (const auto *e : static_cast<const ExtrusionEntityCollection*>(entity)->entities) {
check_extrusion_entity_stability(e, stability_accs, issues, checked_lines, print_z, layer_region,
prev_layer_lines,
params);
}
} else { //single extrusion path, with possible varying parameters
const auto to_vec3f = [print_z](const Point &point) {
Vec2f tmp = unscale(point).cast<float>();
return Vec3f(tmp.x(), tmp.y(), print_z);
};
Points points { };
entity->collect_points(points);
std::vector<ExtrusionLine> lines;
lines.reserve(points.size() * 1.5);
lines.emplace_back(unscaled(points[0]).cast<float>(), unscaled(points[0]).cast<float>());
for (int point_idx = 0; point_idx < int(points.size() - 1); ++point_idx) {
Vec2f start = unscaled(points[point_idx]).cast<float>();
Vec2f next = unscaled(points[point_idx]).cast<float>();
Vec2f v = next - start; // vector from next to current
float dist_to_next = v.norm();
v.normalize();
int lines_count = int(std::ceil(dist_to_next / params.bridge_distance));
float step_size = dist_to_next / lines_count;
for (int i = 0; i < lines_count; ++i) {
Vec2f a(start + v * (i * step_size));
Vec2f b(start + v * ((i + 1) * step_size));
lines.emplace_back(a, b);
}
}
checked_lines.insert(checked_lines.end(), lines.begin(), lines.end());
size_t current_stability_acc = NULL_ACC_ID;
ExtrusionPropertiesAccumulator bridging_acc { };
bridging_acc.add_distance(params.bridge_distance + 1.0f); // Initialise unsupported distance with larger than tolerable distance ->
// -> it prevents extruding perimeter start and short loops into air.
const float flow_width = get_flow_width(layer_region, entity->role());
const float region_height = layer_region->layer()->height;
const float max_allowed_dist_from_prev_layer = get_max_allowed_distance(entity->role(), flow_width,
layer_region->region().config().external_perimeters_first, params);
for (size_t line_idx = 0; line_idx < lines.size(); ++line_idx) {
ExtrusionLine current_line = lines[line_idx];
Point current = Point::new_scale(current_line.b);
float cross_section = region_height * flow_width * 0.7071f;
float angle = 0;
if (line_idx + 1 < lines.size()) {
const Vec2f v1 = current_line.b - current_line.a;
const Vec2f v2 = lines[line_idx + 1].b - lines[line_idx + 1].a;
float dot = v1(0) * v2(0) + v1(1) * v2(1);
float cross = v1(0) * v2(1) - v1(1) * v2(0);
angle = float(atan2(float(cross), float(dot))); // ccw angle, TODO replace with angle func, once it gets into master
}
bridging_acc.add_angle(angle);
size_t nearest_line_idx;
Vec2f nearest_point;
float dist_from_prev_layer = prev_layer_lines.signed_distance_from_lines(current, nearest_line_idx,
nearest_point);
if (dist_from_prev_layer - flow_width < max_allowed_dist_from_prev_layer) {
const ExtrusionLine &nearest_line = prev_layer_lines.get_line(nearest_line_idx);
size_t acc_id = nearest_line.supported_segment_accumulator_id;
stability_accs.merge_accumulators(std::max(acc_id, current_stability_acc),
std::min(acc_id, current_stability_acc));
current_stability_acc = std::min(acc_id, current_stability_acc);
current_line.supported_segment_accumulator_id = current_stability_acc;
stability_accs.access(current_stability_acc).add_extrusion(current_line, print_z, cross_section);
bridging_acc.reset();
// TODO curving here
} else {
bridging_acc.add_distance(current_line.len);
if (current_stability_acc < 0) {
size_t acc_id = stability_accs.create_accumulator(print_z);
stability_accs.merge_accumulators(std::max(acc_id, current_stability_acc),
std::min(acc_id, current_stability_acc));
current_stability_acc = std::min(acc_id, current_stability_acc);
}
SupportedSegmentAccumulator &current_segment = stability_accs.access(current_stability_acc);
current_segment.add_extrusion(current_line, print_z, cross_section);
if (bridging_acc.distance // if unsupported distance is larger than bridge distance linearly decreased by curvature, enforce supports.
> params.bridge_distance
/ (1.0f + (bridging_acc.max_curvature
* params.bridge_distance_decrease_by_curvature_factor / PI))) {
current_segment.add_support_point(current, 5.0f);
issues.supports_nedded.emplace_back(to_vec3f(current), 1.0);
bridging_acc.reset();
}
}
}
}
}
Issues check_object_stability(const PrintObject *po, const Params &params) {
SupportedSegmentAccumulators stability_accs;
LayerLinesDistancer prev_layer_lines { { } };
Issues issues { };
std::vector<ExtrusionLine> checked_lines;
const Layer *layer = po->layers()[0];
float base_print_z = layer->print_z;
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
const float flow_width = get_flow_width(layer_region, perimeter->role());
const float region_height = layer_region->layer()->height;
const float cross_section = region_height * flow_width * 0.7071f;
int id = stability_accs.create_accumulator(base_print_z);
SupportedSegmentAccumulator &acc = stability_accs.access(id);
Points points { };
perimeter->collect_points(points);
for (int point_idx = 0; point_idx < int(points.size() - 1); ++point_idx) {
Vec2f start = unscaled(points[point_idx]).cast<float>();
Vec2f next = unscaled(points[point_idx]).cast<float>();
ExtrusionLine line{start, next};
line.supported_segment_accumulator_id = id;
acc.add_base_extrusion( line, flow_width, base_print_z, cross_section);
checked_lines.push_back(line);
}
} // perimeter
} // ex_entity
for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) {
for (const ExtrusionEntity *fill : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
const float flow_width = get_flow_width(layer_region, fill->role());
const float region_height = layer_region->layer()->height;
const float cross_section = region_height * flow_width * 0.7071f;
int id = stability_accs.create_accumulator(base_print_z);
SupportedSegmentAccumulator &acc = stability_accs.access(id);
Points points { };
fill->collect_points(points);
for (int point_idx = 0; point_idx < int(points.size() - 1); ++point_idx) {
Vec2f start = unscaled(points[point_idx]).cast<float>();
Vec2f next = unscaled(points[point_idx]).cast<float>();
acc.add_base_extrusion( { start, next }, flow_width, base_print_z, cross_section);
}
} // fill
} // ex_entity
} // region
for (size_t layer_idx = 1; layer_idx < po->layer_count(); ++layer_idx) {
const Layer *layer = po->layers()[layer_idx];
prev_layer_lines = LayerLinesDistancer{std::move(checked_lines)};
checked_lines = std::vector<ExtrusionLine>{};
float print_z = layer->print_z;
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
check_extrusion_entity_stability(perimeter, stability_accs, issues, checked_lines, print_z,
layer_region,
prev_layer_lines, params);
} // perimeter
} // ex_entity
for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) {
for (const ExtrusionEntity *fill : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
if (fill->role() == ExtrusionRole::erGapFill
|| fill->role() == ExtrusionRole::erBridgeInfill) {
check_extrusion_entity_stability(fill, stability_accs, issues, checked_lines, print_z,
layer_region,
prev_layer_lines, params);
}
} // fill
} // ex_entity
} // region
}
std::cout << " SUPP: " << issues.supports_nedded.size() << std::endl;
return issues;
}
#ifdef DEBUG_FILES
void debug_export(Issues issues, std::string file_name) {
Slic3r::CNumericLocalesSetter locales_setter;
{
FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_supports.obj").c_str()).c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "Debug files: Couldn't open " << file_name << " for writing";
return;
}
for (size_t i = 0; i < issues.supports_nedded.size(); ++i) {
fprintf(fp, "v %f %f %f %f %f %f\n", issues.supports_nedded[i].position(0),
issues.supports_nedded[i].position(1),
issues.supports_nedded[i].position(2), 1.0, 0.0, 1.0);
}
fclose(fp);
}
{
FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_curling.obj").c_str()).c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "Debug files: Couldn't open " << file_name << " for writing";
return;
}
for (size_t i = 0; i < issues.curling_up.size(); ++i) {
fprintf(fp, "v %f %f %f %f %f %f\n", issues.curling_up[i].position(0),
issues.curling_up[i].position(1),
issues.curling_up[i].position(2), 0.0, 1.0, 0.0);
}
fclose(fp);
}
}
#endif
std::vector<size_t> quick_search(const PrintObject *po, const Params &params) {
check_object_stability(po, params);
return {};
}
Issues full_search(const PrintObject *po, const Params &params) {
auto issues = check_object_stability(po, params);
debug_export(issues, "issues");
return issues;
}
} //SupportableIssues End
}