Merge branch 'master' of https://github.com/prusa3d/PrusaSlicer into et_sequential_limits
This commit is contained in:
commit
33d489df30
@ -212,36 +212,32 @@ static bool sort_pointfs(const Vec3d& a, const Vec3d& b)
|
||||
}
|
||||
|
||||
// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
|
||||
Polygon convex_hull(Points points)
|
||||
Polygon convex_hull(Points pts)
|
||||
{
|
||||
assert(points.size() >= 3);
|
||||
// sort input points
|
||||
std::sort(points.begin(), points.end(), sort_points);
|
||||
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) < b(0) || (a(0) == b(0) && a(1) < b(1)); });
|
||||
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) == b(0) && a(1) == b(1); }), pts.end());
|
||||
|
||||
int n = points.size(), k = 0;
|
||||
Polygon hull;
|
||||
|
||||
int n = (int)pts.size();
|
||||
if (n >= 3) {
|
||||
int k = 0;
|
||||
hull.points.resize(2 * n);
|
||||
|
||||
// Build lower hull
|
||||
for (int i = 0; i < n; i++) {
|
||||
while (k >= 2 && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
|
||||
hull[k++] = points[i];
|
||||
for (int i = 0; i < n; ++ i) {
|
||||
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
|
||||
// Build upper hull
|
||||
for (int i = n-2, t = k+1; i >= 0; i--) {
|
||||
while (k >= t && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
|
||||
hull[k++] = points[i];
|
||||
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
|
||||
hull.points.resize(k);
|
||||
|
||||
assert(hull.points.front() == hull.points.back());
|
||||
hull.points.pop_back();
|
||||
}
|
||||
|
||||
return hull;
|
||||
}
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
#include "libslic3r.h"
|
||||
#include "Exception.hpp"
|
||||
#include "Model.hpp"
|
||||
#include "ModelArrange.hpp"
|
||||
@ -889,35 +890,22 @@ BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_
|
||||
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
|
||||
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
|
||||
// This method is used by the auto arrange function.
|
||||
#if ENABLE_ALLOW_NEGATIVE_Z
|
||||
Polygon ModelObject::convex_hull_2d(const Transform3d& trafo_instance) const
|
||||
{
|
||||
Points pts;
|
||||
for (const ModelVolume* v : volumes) {
|
||||
if (v->is_model_part())
|
||||
append(pts, its_convex_hull_2d_above(v->mesh().its, (trafo_instance * v->get_matrix()).cast<float>(), 0.0f).points);
|
||||
}
|
||||
return Geometry::convex_hull(std::move(pts));
|
||||
}
|
||||
#else
|
||||
Polygon ModelObject::convex_hull_2d(const Transform3d &trafo_instance) const
|
||||
{
|
||||
Points pts;
|
||||
for (const ModelVolume *v : this->volumes)
|
||||
if (v->is_model_part()) {
|
||||
#if ENABLE_ALLOW_NEGATIVE_Z
|
||||
const Transform3d trafo = trafo_instance * v->get_matrix();
|
||||
const TriangleMesh& hull_3d = v->get_convex_hull();
|
||||
const indexed_triangle_set& its = hull_3d.its;
|
||||
if (its.vertices.empty()) {
|
||||
// Using the STL faces.
|
||||
const stl_file& stl = hull_3d.stl;
|
||||
for (const stl_facet& facet : stl.facet_start) {
|
||||
for (size_t j = 0; j < 3; ++j) {
|
||||
const Vec3d p = trafo * facet.vertex[j].cast<double>();
|
||||
if (p.z() >= 0.0)
|
||||
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
// Using the shared vertices should be a bit quicker than using the STL faces.
|
||||
for (size_t i = 0; i < its.vertices.size(); ++i) {
|
||||
const Vec3d p = trafo * its.vertices[i].cast<double>();
|
||||
if (p.z() >= 0.0)
|
||||
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
|
||||
}
|
||||
}
|
||||
#else
|
||||
Transform3d trafo = trafo_instance * v->get_matrix();
|
||||
const indexed_triangle_set &its = v->mesh().its;
|
||||
if (its.vertices.empty()) {
|
||||
@ -935,34 +923,10 @@ Polygon ModelObject::convex_hull_2d(const Transform3d &trafo_instance) const
|
||||
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
|
||||
}
|
||||
}
|
||||
#endif // ENABLE_ALLOW_NEGATIVE_Z
|
||||
}
|
||||
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) < b(0) || (a(0) == b(0) && a(1) < b(1)); });
|
||||
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) == b(0) && a(1) == b(1); }), pts.end());
|
||||
|
||||
Polygon hull;
|
||||
int n = (int)pts.size();
|
||||
if (n >= 3) {
|
||||
int k = 0;
|
||||
hull.points.resize(2 * n);
|
||||
// Build lower hull
|
||||
for (int i = 0; i < n; ++ i) {
|
||||
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
// Build upper hull
|
||||
for (int i = n-2, t = k+1; i >= 0; i--) {
|
||||
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
hull.points.resize(k);
|
||||
assert(hull.points.front() == hull.points.back());
|
||||
hull.points.pop_back();
|
||||
}
|
||||
return hull;
|
||||
return Geometry::convex_hull(std::move(pts));
|
||||
}
|
||||
#endif // ENABLE_ALLOW_NEGATIVE_Z
|
||||
|
||||
void ModelObject::center_around_origin(bool include_modifiers)
|
||||
{
|
||||
|
@ -117,7 +117,9 @@ bool Point::nearest_point(const Points &points, Point* point) const
|
||||
*/
|
||||
double Point::ccw(const Point &p1, const Point &p2) const
|
||||
{
|
||||
return (double)(p2(0) - p1(0))*(double)((*this)(1) - p1(1)) - (double)(p2(1) - p1(1))*(double)((*this)(0) - p1(0));
|
||||
static_assert(sizeof(coord_t) == 4, "Point::ccw() requires a 32 bit coord_t");
|
||||
return cross2((p2 - p1).cast<int64_t>(), (*this - p1).cast<int64_t>());
|
||||
// return cross2((p2 - p1).cast<double>(), (*this - p1).cast<double>());
|
||||
}
|
||||
|
||||
double Point::ccw(const Line &line) const
|
||||
@ -129,9 +131,9 @@ double Point::ccw(const Line &line) const
|
||||
// i.e. this assumes a CCW rotation from p1 to p2 around this
|
||||
double Point::ccw_angle(const Point &p1, const Point &p2) const
|
||||
{
|
||||
double angle = atan2(p1(0) - (*this)(0), p1(1) - (*this)(1))
|
||||
- atan2(p2(0) - (*this)(0), p2(1) - (*this)(1));
|
||||
|
||||
//FIXME this calculates an atan2 twice! Project one vector into the other!
|
||||
double angle = atan2(p1.x() - (*this).x(), p1.y() - (*this).y())
|
||||
- atan2(p2.x() - (*this).x(), p2.y() - (*this).y());
|
||||
// we only want to return only positive angles
|
||||
return angle <= 0 ? angle + 2*PI : angle;
|
||||
}
|
||||
@ -201,12 +203,12 @@ int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
|
||||
{
|
||||
Slic3r::Vector v1(p2 - p1);
|
||||
Slic3r::Vector v2(p3 - p1);
|
||||
return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
|
||||
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
|
||||
}
|
||||
|
||||
int cross(const Vec2crd &v1, const Vec2crd &v2)
|
||||
{
|
||||
return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
|
||||
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -611,7 +611,7 @@ TriangleMesh TriangleMesh::convex_hull_3d() const
|
||||
return output_mesh;
|
||||
}
|
||||
|
||||
std::vector<ExPolygons> TriangleMesh::slice(const std::vector<double> &z)
|
||||
std::vector<ExPolygons> TriangleMesh::slice(const std::vector<double> &z) const
|
||||
{
|
||||
// convert doubles to floats
|
||||
std::vector<float> z_f(z.begin(), z.end());
|
||||
@ -900,25 +900,42 @@ void its_shrink_to_fit(indexed_triangle_set &its)
|
||||
}
|
||||
|
||||
template<typename TransformVertex>
|
||||
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const TransformVertex &transform_fn, const float z)
|
||||
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const TransformVertex &transform_fn, const float z, Points &all_pts)
|
||||
{
|
||||
Points all_pts;
|
||||
all_pts.reserve(all_pts.size() + its.indices.size() * 3);
|
||||
for (const stl_triangle_vertex_indices &tri : its.indices) {
|
||||
const Vec3f pts[3] = { transform_fn(its.vertices[tri(0)]), transform_fn(its.vertices[tri(1)]), transform_fn(its.vertices[tri(2)]) };
|
||||
int iprev = 3;
|
||||
int iprev = 2;
|
||||
for (int iedge = 0; iedge < 3; ++ iedge) {
|
||||
const Vec3f &p1 = pts[iprev];
|
||||
const Vec3f &p2 = pts[iedge];
|
||||
if ((p1.z() < z && p2.z() > z) || (p2.z() < z && p1.z() > z)) {
|
||||
// Edge crosses the z plane. Calculate intersection point with the plane.
|
||||
float t = z / (p2.z() - p1.z());
|
||||
all_pts.emplace_back(scaled<coord_t>(p1.x() + (p2.x() - p1.x()) * t), scaled<coord_t>(p2.x() + (p2.y() - p2.y()) * t));
|
||||
float t = (z - p1.z()) / (p2.z() - p1.z());
|
||||
all_pts.emplace_back(scaled<coord_t>(p1.x() + (p2.x() - p1.x()) * t), scaled<coord_t>(p1.y() + (p2.y() - p1.y()) * t));
|
||||
}
|
||||
if (p2.z() > z)
|
||||
all_pts.emplace_back(scaled<coord_t>(p2.x()), scaled<coord_t>(p2.y()));
|
||||
iprev = iedge;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Matrix3f &m, const float z, Points &all_pts)
|
||||
{
|
||||
return its_collect_mesh_projection_points_above(its, [m](const Vec3f &p){ return m * p; }, z, all_pts);
|
||||
}
|
||||
|
||||
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Transform3f &t, const float z, Points &all_pts)
|
||||
{
|
||||
return its_collect_mesh_projection_points_above(its, [t](const Vec3f &p){ return t * p; }, z, all_pts);
|
||||
}
|
||||
|
||||
template<typename TransformVertex>
|
||||
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const TransformVertex &transform_fn, const float z)
|
||||
{
|
||||
Points all_pts;
|
||||
its_collect_mesh_projection_points_above(its, transform_fn, z, all_pts);
|
||||
return Geometry::convex_hull(std::move(all_pts));
|
||||
}
|
||||
|
||||
|
@ -65,7 +65,7 @@ public:
|
||||
// Returns the convex hull of this TriangleMesh
|
||||
TriangleMesh convex_hull_3d() const;
|
||||
// Slice this mesh at the provided Z levels and return the vector
|
||||
std::vector<ExPolygons> slice(const std::vector<double>& z);
|
||||
std::vector<ExPolygons> slice(const std::vector<double>& z) const;
|
||||
void reset_repair_stats();
|
||||
bool needed_repair() const;
|
||||
void require_shared_vertices();
|
||||
@ -113,6 +113,11 @@ int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit = true
|
||||
// Shrink the vectors of its.vertices and its.faces to a minimum size by reallocating the two vectors.
|
||||
void its_shrink_to_fit(indexed_triangle_set &its);
|
||||
|
||||
// For convex hull calculation: Transform mesh, trim it by the Z plane and collect all vertices. Duplicate vertices will be produced.
|
||||
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Matrix3f &m, const float z, Points &all_pts);
|
||||
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Transform3f &t, const float z, Points &all_pts);
|
||||
|
||||
// Calculate 2D convex hull of a transformed and clipped mesh. Uses the function above.
|
||||
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Matrix3f &m, const float z);
|
||||
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Transform3f &t, const float z);
|
||||
|
||||
|
@ -1075,7 +1075,7 @@ std::vector<Polygons> slice_mesh(
|
||||
auto t = params.trafo;
|
||||
t.prescale(Vec3d(s, s, 1.));
|
||||
auto tf = t.cast<float>();
|
||||
slice_make_lines(mesh.vertices, [tf](const Vec3f &p) { return tf * p; }, mesh.indices, facets_edges, zs, throw_on_cancel);
|
||||
lines = slice_make_lines(mesh.vertices, [tf](const Vec3f &p) { return tf * p; }, mesh.indices, facets_edges, zs, throw_on_cancel);
|
||||
}
|
||||
} else {
|
||||
// Copy and scale vertices in XY, don't scale in Z.
|
||||
@ -1179,6 +1179,7 @@ std::vector<ExPolygons> slice_mesh_ex(
|
||||
return layers;
|
||||
}
|
||||
|
||||
// Remove duplicates of slice_vertices, optionally triangulate the cut.
|
||||
static void triangulate_slice(
|
||||
indexed_triangle_set &its,
|
||||
IntersectionLines &lines,
|
||||
@ -1186,7 +1187,8 @@ static void triangulate_slice(
|
||||
// Vertices of the original (unsliced) mesh. Newly added vertices are those on the slice.
|
||||
int num_original_vertices,
|
||||
// Z height of the slice.
|
||||
float z)
|
||||
float z,
|
||||
bool triangulate)
|
||||
{
|
||||
sort_remove_duplicates(slice_vertices);
|
||||
|
||||
@ -1230,33 +1232,35 @@ static void triangulate_slice(
|
||||
f(i) = map_duplicate_vertex[f(i) - num_original_vertices];
|
||||
}
|
||||
|
||||
size_t idx_vertex_new_first = its.vertices.size();
|
||||
Pointf3s triangles = triangulate_expolygons_3d(make_expolygons_simple(lines), z, true);
|
||||
for (size_t i = 0; i < triangles.size(); ) {
|
||||
stl_triangle_vertex_indices facet;
|
||||
for (size_t j = 0; j < 3; ++ j) {
|
||||
Vec3f v = triangles[i ++].cast<float>();
|
||||
auto it = lower_bound_by_predicate(map_vertex_to_index.begin(), map_vertex_to_index.end(),
|
||||
[&v](const std::pair<Vec2f, int> &l) { return l.first.x() < v.x() || (l.first.x() == v.x() && l.first.y() < v.y()); });
|
||||
int idx = -1;
|
||||
if (it != map_vertex_to_index.end() && it->first.x() == v.x() && it->first.y() == v.y())
|
||||
idx = it->second;
|
||||
else {
|
||||
// Try to find the vertex in the list of newly added vertices. Those vertices are not matched on the cut and they shall be rare.
|
||||
for (size_t k = idx_vertex_new_first; k < its.vertices.size(); ++ k)
|
||||
if (its.vertices[k] == v) {
|
||||
idx = int(k);
|
||||
break;
|
||||
if (triangulate) {
|
||||
size_t idx_vertex_new_first = its.vertices.size();
|
||||
Pointf3s triangles = triangulate_expolygons_3d(make_expolygons_simple(lines), z, true);
|
||||
for (size_t i = 0; i < triangles.size(); ) {
|
||||
stl_triangle_vertex_indices facet;
|
||||
for (size_t j = 0; j < 3; ++ j) {
|
||||
Vec3f v = triangles[i ++].cast<float>();
|
||||
auto it = lower_bound_by_predicate(map_vertex_to_index.begin(), map_vertex_to_index.end(),
|
||||
[&v](const std::pair<Vec2f, int> &l) { return l.first.x() < v.x() || (l.first.x() == v.x() && l.first.y() < v.y()); });
|
||||
int idx = -1;
|
||||
if (it != map_vertex_to_index.end() && it->first.x() == v.x() && it->first.y() == v.y())
|
||||
idx = it->second;
|
||||
else {
|
||||
// Try to find the vertex in the list of newly added vertices. Those vertices are not matched on the cut and they shall be rare.
|
||||
for (size_t k = idx_vertex_new_first; k < its.vertices.size(); ++ k)
|
||||
if (its.vertices[k] == v) {
|
||||
idx = int(k);
|
||||
break;
|
||||
}
|
||||
if (idx == -1) {
|
||||
idx = int(its.vertices.size());
|
||||
its.vertices.emplace_back(v);
|
||||
}
|
||||
if (idx == -1) {
|
||||
idx = int(its.vertices.size());
|
||||
its.vertices.emplace_back(v);
|
||||
}
|
||||
facet(j) = idx;
|
||||
}
|
||||
facet(j) = idx;
|
||||
if (facet(0) != facet(1) && facet(0) != facet(2) && facet(1) != facet(2))
|
||||
its.indices.emplace_back(facet);
|
||||
}
|
||||
if (facet(0) != facet(1) && facet(0) != facet(2) && facet(1) != facet(2))
|
||||
its.indices.emplace_back(facet);
|
||||
}
|
||||
|
||||
// Remove vertices, which are not referenced by any face.
|
||||
@ -1266,7 +1270,7 @@ static void triangulate_slice(
|
||||
// its_remove_degenerate_faces(its);
|
||||
}
|
||||
|
||||
void cut_mesh(const indexed_triangle_set &mesh, float z, indexed_triangle_set *upper, indexed_triangle_set *lower)
|
||||
void cut_mesh(const indexed_triangle_set &mesh, float z, indexed_triangle_set *upper, indexed_triangle_set *lower, bool triangulate_caps)
|
||||
{
|
||||
assert(upper || lower);
|
||||
if (upper == nullptr && lower == nullptr)
|
||||
@ -1413,10 +1417,10 @@ void cut_mesh(const indexed_triangle_set &mesh, float z, indexed_triangle_set *u
|
||||
}
|
||||
|
||||
if (upper != nullptr)
|
||||
triangulate_slice(*upper, upper_lines, upper_slice_vertices, int(mesh.vertices.size()), z);
|
||||
triangulate_slice(*upper, upper_lines, upper_slice_vertices, int(mesh.vertices.size()), z, triangulate_caps);
|
||||
|
||||
if (lower != nullptr)
|
||||
triangulate_slice(*lower, lower_lines, lower_slice_vertices, int(mesh.vertices.size()), z);
|
||||
triangulate_slice(*lower, lower_lines, lower_slice_vertices, int(mesh.vertices.size()), z, triangulate_caps);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -76,7 +76,8 @@ void cut_mesh(
|
||||
const indexed_triangle_set &mesh,
|
||||
float z,
|
||||
indexed_triangle_set *upper,
|
||||
indexed_triangle_set *lower);
|
||||
indexed_triangle_set *lower,
|
||||
bool triangulate_caps = true);
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user