Merge branch 'master' into fs_emboss

This commit is contained in:
Filip Sykala 2022-05-11 16:05:40 +02:00
commit 34304a40bf
42 changed files with 1155 additions and 695 deletions

View File

@ -10,7 +10,7 @@ if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
endif()
set(_unicode_utf8 OFF)
if (UNIX) # wxWidgets will not use char as the underlying type for wxString unless its forced to.
if (UNIX AND NOT APPLE) # wxWidgets will not use char as the underlying type for wxString unless its forced to.
set (_unicode_utf8 ON)
endif()

View File

@ -15,20 +15,4 @@ sub config {
return $self->object->config;
}
sub region {
my $self = shift;
my ($region_id) = @_;
while ($self->region_count <= $region_id) {
$self->add_region($self->object->print->get_region($self->region_count));
}
return $self->get_region($region_id);
}
sub regions {
my ($self) = @_;
return [ map $self->get_region($_), 0..($self->region_count-1) ];
}
1;

View File

@ -17,15 +17,20 @@ src/slic3r/GUI/GalleryDialog.cpp
src/slic3r/GUI/GCodeViewer.cpp
src/slic3r/GUI/GLCanvas3D.cpp
src/slic3r/GUI/Gizmos/GLGizmoCut.cpp
src/slic3r/GUI/Gizmos/GLGizmoCut.hpp
src/slic3r/GUI/Gizmos/GLGizmoFdmSupports.cpp
src/slic3r/GUI/Gizmos/GLGizmoFdmSupports.hpp
src/slic3r/GUI/Gizmos/GLGizmoFlatten.cpp
src/slic3r/GUI/Gizmos/GLGizmoHollow.cpp
src/slic3r/GUI/Gizmos/GLGizmoMmuSegmentation.cpp
src/slic3r/GUI/Gizmos/GLGizmoMmuSegmentation.hpp
src/slic3r/GUI/Gizmos/GLGizmoMove.cpp
src/slic3r/GUI/Gizmos/GLGizmoRotate.cpp
src/slic3r/GUI/Gizmos/GLGizmoScale.cpp
src/slic3r/GUI/Gizmos/GLGizmoSeam.cpp
src/slic3r/GUI/Gizmos/GLGizmoSeam.hpp
src/slic3r/GUI/Gizmos/GLGizmoSimplify.cpp
src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.hpp
src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.cpp
src/slic3r/GUI/Gizmos/GLGizmosManager.cpp
src/slic3r/GUI/Gizmos/GLGizmoPainterBase.cpp

View File

@ -1,2 +1,4 @@
min_slic3r_version = 2.4.2
1.0.1 Added 350mm Voron v1 variant. Updated max print heights. Removed redundant v1 volcano nozzle variants.
min_slic3r_version = 2.4.0-beta0
1.0.0 Initial version

View File

@ -7,7 +7,7 @@
name = Voron
# Configuration version of this file. Config file will only be installed, if the config_version differs.
# This means, the server may force the PrusaSlicer configuration to be downgraded.
config_version = 1.0.0
config_version = 1.0.1
# Where to get the updates from?
config_update_url = https://files.prusa3d.com/wp-content/uploads/repository/PrusaSlicer-settings-master/live/Voron/
@ -72,21 +72,30 @@ default_materials = Basic PLA @VORON; Basic PLA VOLCANO @VORON; Basic PET @VORON
[printer_model:Voron_v1_250_afterburner]
name = Voron v1 250mm3
variants = 0.4; 0.25; 0.3; 0.5; 0.6; 0.8; volcano 0.6; volcano 0.8; volcano 1.0; volcano 1.2
variants = 0.4; 0.25; 0.3; 0.5; 0.6; 0.8
technology = FFF
family = Voron v1 Afterburner
bed_model = printbed-v1-250.stl
bed_texture = bedtexture-v1-250.png
default_materials = Basic PLA @VORON; Basic PLA VOLCANO @VORON; Basic PET @VORON; Basic PET VOLCANO @VORON; Basic ABS @VORON; Basic ABS VOLCANO @VORON
default_materials = Basic PLA @VORON; Basic PET @VORON; Basic ABS @VORON
[printer_model:Voron_v1_300_afterburner]
name = Voron v1 300mm3
variants = 0.4; 0.25; 0.3; 0.5; 0.6; 0.8; volcano 0.6; volcano 0.8; volcano 1.0; volcano 1.2
variants = 0.4; 0.25; 0.3; 0.5; 0.6; 0.8
technology = FFF
family = Voron v1 Afterburner
bed_model = printbed-v1-300.stl
bed_texture = bedtexture-v1-300.png
default_materials = Basic PLA @VORON; Basic PLA VOLCANO @VORON; Basic PET @VORON; Basic PET VOLCANO @VORON; Basic ABS @VORON; Basic ABS VOLCANO @VORON
default_materials = Basic PLA @VORON; Basic PET @VORON; Basic ABS @VORON
[printer_model:Voron_v1_350_afterburner]
name = Voron v1 350mm3
variants = 0.4; 0.25; 0.3; 0.5; 0.6; 0.8
technology = FFF
family = Voron v1 Afterburner
bed_model = printbed-v1-350.stl
bed_texture = bedtexture-v2-350.png
default_materials = Basic PLA @VORON; Basic PET @VORON; Basic ABS @VORON
[printer_model:Voron_v0_120]
name = Voron Zero 120mm3
@ -239,21 +248,21 @@ retract_speed = 50
[printer:*Voron_v2_250*]
inherits = *common*
bed_shape = 0x0,250x0,250x250,0x250
max_print_height = 250
max_print_height = 230
printer_model = Voron_v2_250
printer_notes = Unoffical profile.\nPRINTER_HAS_BOWDEN\nE3DV6
[printer:*Voron_v2_300*]
inherits = *common*
bed_shape = 0x0,300x0,300x300,0x300
max_print_height = 300
max_print_height = 280
printer_model = Voron_v2_300
printer_notes = Unoffical profile.\nPRINTER_HAS_BOWDEN\nE3DV6
[printer:*Voron_v2_350*]
inherits = *common*
bed_shape = 0x0,350x0,350x350,0x350
max_print_height = 350
max_print_height = 330
printer_model = Voron_v2_350
printer_notes = Unoffical profile.\nPRINTER_HAS_BOWDEN\nE3DV6
@ -282,10 +291,17 @@ printer_notes = Unoffical profile.\nE3DV6
[printer:*Voron_v1_300_afterburner*]
inherits = *common*; *afterburner*
bed_shape = 0x0,300x0,300x300,0x300
max_print_height = 230
max_print_height = 280
printer_model = Voron_v1_300_afterburner
printer_notes = Unoffical profile.\nE3DV6
[printer:*Voron_v1_350_afterburner*]
inherits = *common*; *afterburner*
bed_shape = 0x0,350x0,350x350,0x350
max_print_height = 330
printer_model = Voron_v1_350_afterburner
printer_notes = Unoffical profile.\nE3DV6
[printer:*Voron_v0_120*]
inherits = *common*
bed_shape = 0x0,120x0,120x120,0x120
@ -455,6 +471,24 @@ inherits = *Voron_v1_300_afterburner*; *0.6nozzle*
[printer:Voron_v1_300_afterburner 0.8 nozzle]
inherits = *Voron_v1_300_afterburner*; *0.8nozzle*
[printer:Voron_v1_350_afterburner 0.25 nozzle]
inherits = *Voron_v1_350_afterburner*; *0.25nozzle*
[printer:Voron_v1_350_afterburner 0.3 nozzle]
inherits = *Voron_v1_350_afterburner*; *0.3nozzle*
[printer:Voron_v1_350_afterburner 0.4 nozzle]
inherits = *Voron_v1_350_afterburner*; *0.4nozzle*
[printer:Voron_v1_350_afterburner 0.5 nozzle]
inherits = *Voron_v1_350_afterburner*; *0.5nozzle*
[printer:Voron_v1_350_afterburner 0.6 nozzle]
inherits = *Voron_v1_350_afterburner*; *0.6nozzle*
[printer:Voron_v1_350_afterburner 0.8 nozzle]
inherits = *Voron_v1_350_afterburner*; *0.8nozzle*
[printer:Voron_v2_250_afterburner 0.25 nozzle]
inherits = *Voron_v2_250_afterburner*; *0.25nozzle*
@ -652,7 +686,7 @@ fill_angle = 45
fill_density = 15%
fill_pattern = gyroid
first_layer_acceleration = 1000
first_layer_height = 75%
first_layer_height = 0.2
first_layer_speed = 30
gap_fill_speed = 40
gcode_comments = 0

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

After

Width:  |  Height:  |  Size: 39 KiB

View File

@ -771,8 +771,8 @@ inline bool is_any_triangle_in_radius(
auto distancer = detail::IndexedTriangleSetDistancer<VertexType, IndexedFaceType, TreeType, VectorType>
{ vertices, faces, tree, point };
size_t hit_idx;
VectorType hit_point = VectorType::Ones() * (std::nan(""));
size_t hit_idx;
VectorType hit_point = VectorType::Ones() * (NaN<typename VectorType::Scalar>);
if(tree.empty())
{
@ -828,22 +828,22 @@ struct Intersecting<Eigen::AlignedBox<CoordType, NumD>> {
template<class G> auto intersecting(const G &g) { return Intersecting<G>{g}; }
template<class G> struct Containing {};
template<class G> struct Within {};
// Intersection predicate specialization for box-box intersections
template<class CoordType, int NumD>
struct Containing<Eigen::AlignedBox<CoordType, NumD>> {
struct Within<Eigen::AlignedBox<CoordType, NumD>> {
Eigen::AlignedBox<CoordType, NumD> box;
Containing(const Eigen::AlignedBox<CoordType, NumD> &bb): box{bb} {}
Within(const Eigen::AlignedBox<CoordType, NumD> &bb): box{bb} {}
bool operator() (const typename Tree<NumD, CoordType>::Node &node) const
{
return box.contains(node.bbox);
return node.is_leaf() ? box.contains(node.bbox) : box.intersects(node.bbox);
}
};
template<class G> auto containing(const G &g) { return Containing<G>{g}; }
template<class G> auto within(const G &g) { return Within<G>{g}; }
namespace detail {
@ -858,7 +858,7 @@ void traverse_recurse(const Tree<Dims, T> &tree,
if (!pred(tree.node(idx))) return;
if (tree.node(idx).is_leaf()) {
callback(tree.node(idx).idx);
callback(tree.node(idx));
} else {
// call this with left and right node idx:

182
src/libslic3r/AStar.hpp Normal file
View File

@ -0,0 +1,182 @@
#ifndef ASTAR_HPP
#define ASTAR_HPP
#include "libslic3r/Point.hpp"
#include "libslic3r/MutablePriorityQueue.hpp"
#include <unordered_map>
namespace Slic3r { namespace astar {
// Input interface for the Astar algorithm. Specialize this struct for a
// particular type and implement all the 4 methods and specify the Node type
// to register the new type for the astar implementation.
template<class T> struct TracerTraits_
{
// The type of a node used by this tracer. Usually a point in space.
using Node = typename T::Node;
// Call fn for every new node reachable from node 'src'. fn should have the
// candidate node as its only argument.
template<class Fn>
static void foreach_reachable(const T &tracer, const Node &src, Fn &&fn)
{
tracer.foreach_reachable(src, fn);
}
// Get the distance from node 'a' to node 'b'. This is sometimes referred
// to as the g value of a node in AStar context.
static float distance(const T &tracer, const Node &a, const Node &b)
{
return tracer.distance(a, b);
}
// Get the estimated distance heuristic from node 'n' to the destination.
// This is referred to as the h value in AStar context.
// If node 'n' is the goal, this function should return a negative value.
static float goal_heuristic(const T &tracer, const Node &n)
{
return tracer.goal_heuristic(n);
}
// Return a unique identifier (hash) for node 'n'.
static size_t unique_id(const T &tracer, const Node &n)
{
return tracer.unique_id(n);
}
};
// Helper definition to get the node type of a tracer
template<class T>
using TracerNodeT = typename TracerTraits_<remove_cvref_t<T>>::Node;
namespace detail {
// Helper functions dispatching calls through the TracerTraits_ interface
template<class T> using TracerTraits = TracerTraits_<remove_cvref_t<T>>;
template<class T, class Fn>
void foreach_reachable(const T &tracer, const TracerNodeT<T> &from, Fn &&fn)
{
TracerTraits<T>::foreach_reachable(tracer, from, fn);
}
template<class T>
float trace_distance(const T &tracer, const TracerNodeT<T> &a, const TracerNodeT<T> &b)
{
return TracerTraits<T>::distance(tracer, a, b);
}
template<class T>
float goal_heuristic(const T &tracer, const TracerNodeT<T> &n)
{
return TracerTraits<T>::goal_heuristic(tracer, n);
}
template<class T>
size_t unique_id(const T &tracer, const TracerNodeT<T> &n)
{
return TracerTraits<T>::unique_id(tracer, n);
}
} // namespace astar_detail
// Run the AStar algorithm on a tracer implementation.
// The 'tracer' argument encapsulates the domain (grid, point cloud, etc...)
// The 'source' argument is the starting node.
// The 'out' argument is the output iterator into which the output nodes are
// written.
// Note that no destination node is given. The tracer's goal_heuristic() method
// should return a negative value if a node is a destination node.
template<class Tracer, class It>
bool search_route(const Tracer &tracer, const TracerNodeT<Tracer> &source, It out)
{
using namespace detail;
using Node = TracerNodeT<Tracer>;
enum class QueueType { Open, Closed, None };
struct QNode // Queue node. Keeps track of scores g, and h
{
Node node; // The actual node itself
QueueType qtype = QueueType::None; // Which queue holds this node
float g = 0.f, h = 0.f;
float f() const { return g + h; }
};
// TODO: apply a linear memory allocator
using QMap = std::unordered_map<size_t, QNode>;
// The traversed nodes are stored here encapsulated in QNodes
QMap cached_nodes;
struct LessPred { // Comparison functor needed by MutablePriorityQueue
QMap &m;
bool operator ()(size_t node_a, size_t node_b) {
auto ait = m.find(node_a);
auto bit = m.find(node_b);
assert (ait != m.end() && bit != m.end());
return ait->second.f() < bit->second.f();
}
};
auto qopen =
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
LessPred{cached_nodes});
auto qclosed =
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
LessPred{cached_nodes});
QNode initial{source, QueueType::Open};
cached_nodes.insert({unique_id(tracer, source), initial});
qopen.push(unique_id(tracer, source));
bool goal_reached = false;
while (!goal_reached && !qopen.empty()) {
size_t q_id = qopen.top();
qopen.pop();
QNode q = cached_nodes.at(q_id);
foreach_reachable(tracer, q.node, [&](const Node &nd) {
if (goal_reached) return goal_reached;
float h = goal_heuristic(tracer, nd);
if (h < 0.f) {
goal_reached = true;
} else {
float dst = trace_distance(tracer, q.node, nd);
QNode qnd{nd, QueueType::None, q.g + dst, h};
size_t qnd_id = unique_id(tracer, nd);
auto it = cached_nodes.find(qnd_id);
if (it == cached_nodes.end() ||
(it->second.qtype != QueueType::None && qnd.f() < it->second.f())) {
qnd.qtype = QueueType::Open;
cached_nodes.insert_or_assign(qnd_id, qnd);
qopen.push(qnd_id);
}
}
return goal_reached;
});
q.qtype = QueueType::Closed;
cached_nodes.insert_or_assign(q_id, q);
qclosed.push(q_id);
// write the output
*out = q.node;
++out;
}
return goal_reached;
}
}} // namespace Slic3r::astar
#endif // ASTAR_HPP

View File

@ -15,7 +15,7 @@ class CircleBed {
double radius_;
public:
inline CircleBed(): center_(0, 0), radius_(std::nan("")) {}
inline CircleBed(): center_(0, 0), radius_(NaNd) {}
explicit inline CircleBed(const Point& c, double r): center_(c), radius_(r) {}
inline double radius() const { return radius_; }

View File

@ -17,6 +17,7 @@ endif()
set(SLIC3R_SOURCES
pchheader.cpp
pchheader.hpp
AStar.hpp
BoundingBox.cpp
BoundingBox.hpp
BridgeDetector.cpp
@ -219,6 +220,7 @@ set(SLIC3R_SOURCES
PrintObject.cpp
PrintObjectSlice.cpp
PrintRegion.cpp
PointGrid.hpp
PNGReadWrite.hpp
PNGReadWrite.cpp
QuadricEdgeCollapse.cpp

View File

@ -30,8 +30,8 @@ template<class EP> using AsTraits = Traits<remove_cvref_t<EP>>;
// Each execution policy should declare two types of mutexes. A a spin lock and
// a blocking mutex. These types should satisfy the BasicLockable concept.
template<class EP> using SpinningMutex = typename Traits<EP>::SpinningMutex;
template<class EP> using BlockingMutex = typename Traits<EP>::BlockingMutex;
template<class EP> using SpinningMutex = typename AsTraits<EP>::SpinningMutex;
template<class EP> using BlockingMutex = typename AsTraits<EP>::BlockingMutex;
// Query the available threads for concurrency.
template<class EP, class = ExecutionPolicyOnly<EP> >

View File

@ -85,7 +85,7 @@ public:
virtual ExtrusionEntity* clone() const = 0;
// Create a new object, initialize it with this object using the move semantics.
virtual ExtrusionEntity* clone_move() = 0;
virtual ~ExtrusionEntity() {}
virtual ~ExtrusionEntity() = default;
virtual void reverse() = 0;
virtual const Point& first_point() const = 0;
virtual const Point& last_point() const = 0;

View File

@ -36,9 +36,13 @@ public:
ExtrusionEntityCollection(ExtrusionEntityCollection &&other) : entities(std::move(other.entities)), no_sort(other.no_sort) {}
explicit ExtrusionEntityCollection(const ExtrusionPaths &paths);
ExtrusionEntityCollection& operator=(const ExtrusionEntityCollection &other);
ExtrusionEntityCollection& operator=(ExtrusionEntityCollection &&other)
{ this->entities = std::move(other.entities); this->no_sort = other.no_sort; return *this; }
~ExtrusionEntityCollection() { clear(); }
ExtrusionEntityCollection& operator=(ExtrusionEntityCollection &&other) {
this->clear();
this->entities = std::move(other.entities);
this->no_sort = other.no_sort;
return *this;
}
~ExtrusionEntityCollection() override { clear(); }
explicit operator ExtrusionPaths() const;
bool is_collection() const override { return true; }

View File

@ -1991,14 +1991,15 @@ void GCodeProcessor::process_tags(const std::string_view comment, bool producers
if (comment == reserved_tag(ETags::Layer_Change)) {
++m_layer_id;
if (m_spiral_vase_active) {
if (m_result.moves.empty())
m_result.spiral_vase_layers.push_back({ m_first_layer_height, { 0, 0 } });
if (m_result.moves.empty() || m_result.spiral_vase_layers.empty())
// add a placeholder for layer height. the actual value will be set inside process_G1() method
m_result.spiral_vase_layers.push_back({ FLT_MAX, { 0, 0 } });
else {
const size_t move_id = m_result.moves.size() - 1;
if (!m_result.spiral_vase_layers.empty() && m_end_position[Z] == m_result.spiral_vase_layers.back().first)
if (!m_result.spiral_vase_layers.empty())
m_result.spiral_vase_layers.back().second.second = move_id;
else
m_result.spiral_vase_layers.push_back({ static_cast<float>(m_end_position[Z]), { move_id, move_id } });
// add a placeholder for layer height. the actual value will be set inside process_G1() method
m_result.spiral_vase_layers.push_back({ FLT_MAX, { move_id, move_id } });
}
}
return;
@ -2828,8 +2829,13 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
m_seams_detector.set_first_vertex(m_result.moves.back().position - m_extruder_offsets[m_extruder_id]);
}
if (m_spiral_vase_active && !m_result.spiral_vase_layers.empty() && !m_result.moves.empty())
m_result.spiral_vase_layers.back().second.second = m_result.moves.size() - 1;
if (m_spiral_vase_active && !m_result.spiral_vase_layers.empty()) {
if (m_result.spiral_vase_layers.back().first == FLT_MAX && delta_pos[Z] > 0.0)
// replace layer height placeholder with correct value
m_result.spiral_vase_layers.back().first = static_cast<float>(m_end_position[Z]);
if (!m_result.moves.empty())
m_result.spiral_vase_layers.back().second.second = m_result.moves.size() - 1;
}
// store move
#if ENABLE_PROCESS_G2_G3_LINES

View File

@ -11,231 +11,276 @@
namespace Slic3r {
enum class VisitorReturnMask : unsigned int {
CONTINUE_LEFT = 1,
CONTINUE_RIGHT = 2,
STOP = 4,
};
// KD tree for N-dimensional closest point search.
template<size_t ANumDimensions, typename ACoordType, typename ACoordinateFn>
class KDTreeIndirect
{
public:
static constexpr size_t NumDimensions = ANumDimensions;
using CoordinateFn = ACoordinateFn;
using CoordType = ACoordType;
static constexpr size_t NumDimensions = ANumDimensions;
using CoordinateFn = ACoordinateFn;
using CoordType = ACoordType;
// Following could be static constexpr size_t, but that would not link in C++11
enum : size_t {
npos = size_t(-1)
};
KDTreeIndirect(CoordinateFn coordinate) : coordinate(coordinate) {}
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> indices) : coordinate(coordinate) { this->build(std::move(indices)); }
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> &&indices) : coordinate(coordinate) { this->build(std::move(indices)); }
KDTreeIndirect(CoordinateFn coordinate, size_t num_indices) : coordinate(coordinate) { this->build(num_indices); }
KDTreeIndirect(KDTreeIndirect &&rhs) : m_nodes(std::move(rhs.m_nodes)), coordinate(std::move(rhs.coordinate)) {}
KDTreeIndirect& operator=(KDTreeIndirect &&rhs) { m_nodes = std::move(rhs.m_nodes); coordinate = std::move(rhs.coordinate); return *this; }
void clear() { m_nodes.clear(); }
KDTreeIndirect(CoordinateFn coordinate) : coordinate(coordinate) {}
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> indices) : coordinate(coordinate) { this->build(indices); }
KDTreeIndirect(CoordinateFn coordinate, size_t num_indices) : coordinate(coordinate) { this->build(num_indices); }
KDTreeIndirect(KDTreeIndirect &&rhs) : m_nodes(std::move(rhs.m_nodes)), coordinate(std::move(rhs.coordinate)) {}
KDTreeIndirect& operator=(KDTreeIndirect &&rhs) { m_nodes = std::move(rhs.m_nodes); coordinate = std::move(rhs.coordinate); return *this; }
void clear() { m_nodes.clear(); }
void build(size_t num_indices)
{
std::vector<size_t> indices;
indices.reserve(num_indices);
for (size_t i = 0; i < num_indices; ++ i)
indices.emplace_back(i);
this->build(std::move(indices));
}
void build(size_t num_indices)
{
std::vector<size_t> indices;
indices.reserve(num_indices);
for (size_t i = 0; i < num_indices; ++ i)
indices.emplace_back(i);
this->build(indices);
}
void build(std::vector<size_t> &&indices)
{
if (indices.empty())
clear();
else {
// Allocate enough memory for a full binary tree.
m_nodes.assign(next_highest_power_of_2(indices.size() + 1), npos);
build_recursive(indices, 0, 0, 0, indices.size() - 1);
}
indices.clear();
}
void build(std::vector<size_t> &indices)
{
if (indices.empty())
clear();
else {
// Allocate enough memory for a full binary tree.
m_nodes.assign(next_highest_power_of_2(indices.size() + 1), npos);
build_recursive(indices, 0, 0, 0, indices.size() - 1);
}
indices.clear();
}
enum class VisitorReturnMask : unsigned int
{
CONTINUE_LEFT = 1,
CONTINUE_RIGHT = 2,
STOP = 4,
};
template<typename CoordType>
unsigned int descent_mask(const CoordType &point_coord, const CoordType &search_radius, size_t idx, size_t dimension) const
{
CoordType dist = point_coord - this->coordinate(idx, dimension);
return (dist * dist < search_radius + CoordType(EPSILON)) ?
// The plane intersects a hypersphere centered at point_coord of search_radius.
((unsigned int)(VisitorReturnMask::CONTINUE_LEFT) | (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT)) :
// The plane does not intersect the hypersphere.
(dist > CoordType(0)) ? (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT) : (unsigned int)(VisitorReturnMask::CONTINUE_LEFT);
}
template<typename CoordType>
unsigned int descent_mask(const CoordType &point_coord, const CoordType &search_radius, size_t idx, size_t dimension) const
{
CoordType dist = point_coord - this->coordinate(idx, dimension);
return (dist * dist < search_radius + CoordType(EPSILON)) ?
// The plane intersects a hypersphere centered at point_coord of search_radius.
((unsigned int)(VisitorReturnMask::CONTINUE_LEFT) | (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT)) :
// The plane does not intersect the hypersphere.
(dist > CoordType(0)) ? (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT) : (unsigned int)(VisitorReturnMask::CONTINUE_LEFT);
}
// Visitor is supposed to return a bit mask of VisitorReturnMask.
template<typename Visitor>
void visit(Visitor &visitor) const
{
// Visitor is supposed to return a bit mask of VisitorReturnMask.
template<typename Visitor>
void visit(Visitor &visitor) const
{
visit_recursive(0, 0, visitor);
}
}
CoordinateFn coordinate;
CoordinateFn coordinate;
private:
// Build a balanced tree by splitting the input sequence by an axis aligned plane at a dimension.
void build_recursive(std::vector<size_t> &input, size_t node, const size_t dimension, const size_t left, const size_t right)
{
if (left > right)
return;
// Build a balanced tree by splitting the input sequence by an axis aligned plane at a dimension.
void build_recursive(std::vector<size_t> &input, size_t node, const size_t dimension, const size_t left, const size_t right)
{
if (left > right)
return;
assert(node < m_nodes.size());
assert(node < m_nodes.size());
if (left == right) {
// Insert a node into the balanced tree.
m_nodes[node] = input[left];
return;
}
if (left == right) {
// Insert a node into the balanced tree.
m_nodes[node] = input[left];
return;
}
// Partition the input to left / right pieces of the same length to produce a balanced tree.
size_t center = (left + right) / 2;
partition_input(input, dimension, left, right, center);
// Insert a node into the tree.
m_nodes[node] = input[center];
// Build up the left / right subtrees.
size_t next_dimension = dimension;
if (++ next_dimension == NumDimensions)
next_dimension = 0;
if (center > left)
build_recursive(input, node * 2 + 1, next_dimension, left, center - 1);
build_recursive(input, node * 2 + 2, next_dimension, center + 1, right);
}
// Partition the input to left / right pieces of the same length to produce a balanced tree.
size_t center = (left + right) / 2;
partition_input(input, dimension, left, right, center);
// Insert a node into the tree.
m_nodes[node] = input[center];
// Build up the left / right subtrees.
size_t next_dimension = dimension;
if (++ next_dimension == NumDimensions)
next_dimension = 0;
if (center > left)
build_recursive(input, node * 2 + 1, next_dimension, left, center - 1);
build_recursive(input, node * 2 + 2, next_dimension, center + 1, right);
}
// Partition the input m_nodes <left, right> at "k" and "dimension" using the QuickSelect method:
// https://en.wikipedia.org/wiki/Quickselect
// Items left of the k'th item are lower than the k'th item in the "dimension",
// items right of the k'th item are higher than the k'th item in the "dimension",
void partition_input(std::vector<size_t> &input, const size_t dimension, size_t left, size_t right, const size_t k) const
{
while (left < right) {
size_t center = (left + right) / 2;
CoordType pivot;
{
// Bubble sort the input[left], input[center], input[right], so that a median of the three values
// will end up in input[center].
CoordType left_value = this->coordinate(input[left], dimension);
CoordType center_value = this->coordinate(input[center], dimension);
CoordType right_value = this->coordinate(input[right], dimension);
if (left_value > center_value) {
std::swap(input[left], input[center]);
std::swap(left_value, center_value);
}
if (left_value > right_value) {
std::swap(input[left], input[right]);
right_value = left_value;
}
if (center_value > right_value) {
std::swap(input[center], input[right]);
center_value = right_value;
}
pivot = center_value;
}
if (right <= left + 2)
// The <left, right> interval is already sorted.
break;
size_t i = left;
size_t j = right - 1;
std::swap(input[center], input[j]);
// Partition the set based on the pivot.
for (;;) {
// Skip left points that are already at correct positions.
// Search will certainly stop at position (right - 1), which stores the pivot.
while (this->coordinate(input[++ i], dimension) < pivot) ;
// Skip right points that are already at correct positions.
while (this->coordinate(input[-- j], dimension) > pivot && i < j) ;
if (i >= j)
break;
std::swap(input[i], input[j]);
}
// Restore pivot to the center of the sequence.
std::swap(input[i], input[right - 1]);
// Which side the kth element is in?
if (k < i)
right = i - 1;
else if (k == i)
// Sequence is partitioned, kth element is at its place.
break;
else
left = i + 1;
}
}
// Partition the input m_nodes <left, right> at "k" and "dimension" using the QuickSelect method:
// https://en.wikipedia.org/wiki/Quickselect
// Items left of the k'th item are lower than the k'th item in the "dimension",
// items right of the k'th item are higher than the k'th item in the "dimension",
void partition_input(std::vector<size_t> &input, const size_t dimension, size_t left, size_t right, const size_t k) const
{
while (left < right) {
size_t center = (left + right) / 2;
CoordType pivot;
{
// Bubble sort the input[left], input[center], input[right], so that a median of the three values
// will end up in input[center].
CoordType left_value = this->coordinate(input[left], dimension);
CoordType center_value = this->coordinate(input[center], dimension);
CoordType right_value = this->coordinate(input[right], dimension);
if (left_value > center_value) {
std::swap(input[left], input[center]);
std::swap(left_value, center_value);
}
if (left_value > right_value) {
std::swap(input[left], input[right]);
right_value = left_value;
}
if (center_value > right_value) {
std::swap(input[center], input[right]);
center_value = right_value;
}
pivot = center_value;
}
if (right <= left + 2)
// The <left, right> interval is already sorted.
break;
size_t i = left;
size_t j = right - 1;
std::swap(input[center], input[j]);
// Partition the set based on the pivot.
for (;;) {
// Skip left points that are already at correct positions.
// Search will certainly stop at position (right - 1), which stores the pivot.
while (this->coordinate(input[++ i], dimension) < pivot) ;
// Skip right points that are already at correct positions.
while (this->coordinate(input[-- j], dimension) > pivot && i < j) ;
if (i >= j)
break;
std::swap(input[i], input[j]);
}
// Restore pivot to the center of the sequence.
std::swap(input[i], input[right - 1]);
// Which side the kth element is in?
if (k < i)
right = i - 1;
else if (k == i)
// Sequence is partitioned, kth element is at its place.
break;
else
left = i + 1;
}
}
template<typename Visitor>
void visit_recursive(size_t node, size_t dimension, Visitor &visitor) const
{
assert(! m_nodes.empty());
if (node >= m_nodes.size() || m_nodes[node] == npos)
return;
template<typename Visitor>
void visit_recursive(size_t node, size_t dimension, Visitor &visitor) const
{
assert(! m_nodes.empty());
if (node >= m_nodes.size() || m_nodes[node] == npos)
return;
// Left / right child node index.
size_t left = node * 2 + 1;
size_t right = left + 1;
unsigned int mask = visitor(m_nodes[node], dimension);
if ((mask & (unsigned int)VisitorReturnMask::STOP) == 0) {
size_t next_dimension = (++ dimension == NumDimensions) ? 0 : dimension;
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_LEFT)
visit_recursive(left, next_dimension, visitor);
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_RIGHT)
visit_recursive(right, next_dimension, visitor);
}
}
// Left / right child node index.
size_t left = node * 2 + 1;
size_t right = left + 1;
unsigned int mask = visitor(m_nodes[node], dimension);
if ((mask & (unsigned int)VisitorReturnMask::STOP) == 0) {
size_t next_dimension = (++ dimension == NumDimensions) ? 0 : dimension;
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_LEFT)
visit_recursive(left, next_dimension, visitor);
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_RIGHT)
visit_recursive(right, next_dimension, visitor);
}
}
std::vector<size_t> m_nodes;
std::vector<size_t> m_nodes;
};
// Find a closest point using Euclidian metrics.
// Returns npos if not found.
template<typename KDTreeIndirectType, typename PointType, typename FilterFn>
size_t find_closest_point(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter)
template<size_t K,
typename PointType,
typename FilterFn,
size_t D,
typename CoordT,
typename CoordFn>
std::array<size_t, K> find_closest_points(
const KDTreeIndirect<D, CoordT, CoordFn> &kdtree,
const PointType &point,
FilterFn filter)
{
using CoordType = typename KDTreeIndirectType::CoordType;
using Tree = KDTreeIndirect<D, CoordT, CoordFn>;
struct Visitor {
const KDTreeIndirectType &kdtree;
const PointType &point;
const FilterFn filter;
size_t min_idx = KDTreeIndirectType::npos;
CoordType min_dist = std::numeric_limits<CoordType>::max();
struct Visitor
{
const Tree &kdtree;
const PointType &point;
const FilterFn filter;
Visitor(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter) : kdtree(kdtree), point(point), filter(filter) {}
unsigned int operator()(size_t idx, size_t dimension) {
if (this->filter(idx)) {
auto dist = CoordType(0);
for (size_t i = 0; i < KDTreeIndirectType::NumDimensions; ++ i) {
CoordType d = point[i] - kdtree.coordinate(idx, i);
dist += d * d;
}
if (dist < min_dist) {
min_dist = dist;
min_idx = idx;
}
}
return kdtree.descent_mask(point[dimension], min_dist, idx, dimension);
}
} visitor(kdtree, point, filter);
std::array<std::pair<size_t, CoordT>, K> results;
kdtree.visit(visitor);
return visitor.min_idx;
Visitor(const Tree &kdtree, const PointType &point, FilterFn filter)
: kdtree(kdtree), point(point), filter(filter)
{
results.fill(std::make_pair(Tree::npos,
std::numeric_limits<CoordT>::max()));
}
unsigned int operator()(size_t idx, size_t dimension)
{
if (this->filter(idx)) {
auto dist = CoordT(0);
for (size_t i = 0; i < D; ++i) {
CoordT d = point[i] - kdtree.coordinate(idx, i);
dist += d * d;
}
auto res = std::make_pair(idx, dist);
auto it = std::lower_bound(results.begin(), results.end(),
res, [](auto &r1, auto &r2) {
return r1.second < r2.second;
});
if (it != results.end()) {
std::rotate(it, std::prev(results.end()), results.end());
*it = res;
}
}
return kdtree.descent_mask(point[dimension],
results.front().second, idx,
dimension);
}
} visitor(kdtree, point, filter);
kdtree.visit(visitor);
std::array<size_t, K> ret;
for (size_t i = 0; i < K; i++) ret[i] = visitor.results[i].first;
return ret;
}
template<size_t K, typename PointType, size_t D, typename CoordT, typename CoordFn>
std::array<size_t, K> find_closest_points(
const KDTreeIndirect<D, CoordT, CoordFn> &kdtree, const PointType &point)
{
return find_closest_points<K>(kdtree, point, [](size_t) { return true; });
}
template<typename PointType,
typename FilterFn,
size_t D,
typename CoordT,
typename CoordFn>
size_t find_closest_point(const KDTreeIndirect<D, CoordT, CoordFn> &kdtree,
const PointType &point,
FilterFn filter)
{
return find_closest_points<1>(kdtree, point, filter)[0];
}
template<typename KDTreeIndirectType, typename PointType>
size_t find_closest_point(const KDTreeIndirectType& kdtree, const PointType& point)
{
return find_closest_point(kdtree, point, [](size_t) { return true; });
return find_closest_point(kdtree, point, [](size_t) { return true; });
}
// Find nearby points (spherical neighbourhood) using Euclidian metrics.
template<typename KDTreeIndirectType, typename PointType, typename FilterFn>
std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree, const PointType &center,
const typename KDTreeIndirectType::CoordType& max_distance, FilterFn filter)
{
const typename KDTreeIndirectType::CoordType& max_distance, FilterFn filter)
{
using CoordType = typename KDTreeIndirectType::CoordType;
struct Visitor {
@ -247,7 +292,7 @@ std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree, const P
Visitor(const KDTreeIndirectType &kdtree, const PointType& center, const CoordType &max_distance,
FilterFn filter) :
kdtree(kdtree), center(center), max_distance_squared(max_distance*max_distance), filter(filter) {
kdtree(kdtree), center(center), max_distance_squared(max_distance*max_distance), filter(filter) {
}
unsigned int operator()(size_t idx, size_t dimension) {
if (this->filter(idx)) {
@ -260,7 +305,7 @@ std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree, const P
result.push_back(idx);
}
}
return kdtree.descent_mask(center[dimension], max_distance_squared, idx, dimension);
return kdtree.descent_mask(center[dimension], max_distance_squared, idx, dimension);
}
} visitor(kdtree, center, max_distance, filter);
@ -270,13 +315,59 @@ std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree, const P
template<typename KDTreeIndirectType, typename PointType>
std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree, const PointType &center,
const typename KDTreeIndirectType::CoordType& max_distance)
{
const typename KDTreeIndirectType::CoordType& max_distance)
{
return find_nearby_points(kdtree, center, max_distance, [](size_t) {
return true;
});
}
// Find nearby points (spherical neighbourhood) using Euclidian metrics.
template<typename KDTreeIndirectType, typename PointType, typename FilterFn>
std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree,
const PointType &bb_min,
const PointType &bb_max,
FilterFn filter)
{
struct Visitor {
const KDTreeIndirectType &kdtree;
const PointType &bb_min, &bb_max;
const FilterFn filter;
std::vector<size_t> result;
Visitor(const KDTreeIndirectType &kdtree, const PointType& bbmin, const PointType& bbmax,
FilterFn filter) :
kdtree(kdtree), bb_min{bbmin}, bb_max{bbmax}, filter(filter) {
}
unsigned int operator()(size_t idx, size_t dimension) {
unsigned int ret =
static_cast<unsigned int>(VisitorReturnMask::CONTINUE_LEFT) |
static_cast<unsigned int>(VisitorReturnMask::CONTINUE_RIGHT);
if (this->filter(idx)) {
PointType p;
bool contains = true;
for (size_t i = 0; i < KDTreeIndirectType::NumDimensions; ++i) {
p(i) = kdtree.coordinate(idx, i);
contains = contains && bb_min(i) <= p(i) && p(i) <= bb_max(i);
}
if (p(dimension) < bb_min(dimension))
ret = static_cast<unsigned int>(VisitorReturnMask::CONTINUE_RIGHT);
if (p(dimension) > bb_max(dimension))
ret = static_cast<unsigned int>(VisitorReturnMask::CONTINUE_LEFT);
if (contains)
result.emplace_back(idx);
}
return ret;
}
} visitor(kdtree, bb_min, bb_max, filter);
kdtree.visit(visitor);
return visitor.result;
}
} // namespace Slic3r

View File

@ -41,13 +41,13 @@ template<size_t N> using Bounds = std::array<Bound, N>;
class StopCriteria {
// If the absolute value difference between two scores.
double m_abs_score_diff = std::nan("");
double m_abs_score_diff = NaNd;
// If the relative value difference between two scores.
double m_rel_score_diff = std::nan("");
double m_rel_score_diff = NaNd;
// Stop if this value or better is found.
double m_stop_score = std::nan("");
double m_stop_score = NaNd;
// A predicate that if evaluates to true, the optimization should terminate
// and the best result found prior to termination should be returned.

View File

@ -0,0 +1,74 @@
#ifndef POINTGRID_HPP
#define POINTGRID_HPP
#include <libslic3r/Execution/Execution.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/BoundingBox.hpp>
namespace Slic3r {
template<class T>
class PointGrid {
Vec3i m_size;
std::vector<Vec<3, T>> m_data;
const int XY;
public:
explicit PointGrid(std::vector<Vec<3, T>> data, const Vec3i &size)
: m_data(std::move(data)), m_size{size}, XY{m_size.x() * m_size.y()}
{}
const Vec<3, T> & get(size_t idx) const { return m_data[idx]; }
const Vec<3, T> & get(const Vec3i &coord) const
{
return m_data[get_idx(coord)];
}
size_t get_idx(const Vec3i &coord) const
{
size_t ret = coord.z() * XY + coord.y() * m_size.x() + coord.x();
return ret;
}
Vec3i get_coord(size_t idx) const {
int iz = idx / XY;
int iy = (idx / m_size.x()) % m_size.y();
int ix = idx % m_size.x();
return {ix, iy, iz};
}
const std::vector<Vec<3, T>> & data() const { return m_data; }
size_t point_count() const { return m_data.size(); }
bool empty() const { return m_data.empty(); }
};
template<class Ex, class CoordT>
PointGrid<CoordT> point_grid(Ex policy,
const BoundingBox3Base<Vec<3, CoordT>> &bounds,
const Vec<3, CoordT> &stride)
{
Vec3i numpts = Vec3i::Zero();
for (int n = 0; n < 3; ++n)
numpts(n) = (bounds.max(n) - bounds.min(n)) / stride(n);
std::vector<Vec<3, CoordT>> out(numpts.x() * numpts.y() * numpts.z());
size_t XY = numpts[X] * numpts[Y];
execution::for_each(policy, size_t(0), out.size(), [&](size_t i) {
int iz = i / XY;
int iy = (i / numpts[X]) % numpts[Y];
int ix = i % numpts[X];
out[i] = Vec<3, CoordT>(ix * stride.x(), iy * stride.y(), iz * stride.z());
});
return PointGrid{std::move(out), numpts};
}
} // namespace Slic3r
#endif // POINTGRID_HPP

View File

@ -220,6 +220,16 @@ public:
config.set_deserialize_strict(items);
return config;
}
static DynamicPrintConfig new_with(const t_config_option_key &opt_key, const std::string &str, bool append = false) {
DynamicPrintConfig config;
config.set_deserialize_strict(opt_key, str, append);
return config;
}
static DynamicPrintConfig new_with(std::initializer_list<SetDeserializeItem> items) {
DynamicPrintConfig config;
config.set_deserialize_strict(items);
return config;
}
static DynamicPrintConfig* new_from_defaults_keys(const std::vector<std::string> &keys);
// Overrides ConfigBase::def(). Static configuration definition. Any value stored into this ConfigBase shall have its definition here.
@ -1131,6 +1141,8 @@ public:
void set(const std::string &opt_key, T value) { m_data.set(opt_key, value, true); this->touch(); }
void set_deserialize(const t_config_option_key &opt_key, const std::string &str, ConfigSubstitutionContext &substitution_context, bool append = false)
{ m_data.set_deserialize(opt_key, str, substitution_context, append); this->touch(); }
void set_deserialize_strict(const t_config_option_key &opt_key, const std::string &str, bool append = false)
{ m_data.set_deserialize_strict(opt_key, str, append); this->touch(); }
bool erase(const t_config_option_key &opt_key) { bool out = m_data.erase(opt_key); if (out) this->touch(); return out; }
// Getters are thread safe.

View File

@ -76,7 +76,7 @@ struct Facestats {
// Try to guess the number of support points needed to support a mesh
double get_misalginment_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
if (mesh.its.vertices.empty()) return NaNd;
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
@ -117,7 +117,7 @@ inline double get_supportedness_score(const Facestats &fc)
// Try to guess the number of support points needed to support a mesh
double get_supportedness_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
if (mesh.its.vertices.empty()) return NaNd;
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
@ -149,10 +149,10 @@ float find_ground_level(const TriangleMesh &mesh,
return execution::reduce(ex_tbb, size_t(0), vsize, zmin, minfn, accessfn, granularity);
}
float get_supportedness_onfloor_score(const TriangleMesh &mesh,
const Transform3f & tr)
double get_supportedness_onfloor_score(const TriangleMesh &mesh,
const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
if (mesh.its.vertices.empty()) return NaNd;
size_t Nthreads = std::thread::hardware_concurrency();

View File

@ -654,7 +654,7 @@ void SupportTreeBuildsteps::filter()
for (const SupportPoint &sp : m_support_pts) {
m_thr();
heads.emplace_back(
std::nan(""),
NaNd,
sp.head_front_radius,
0.,
m_cfg.head_penetration_mm,

View File

@ -408,9 +408,9 @@ void SLAPrint::Steps::drill_holes(SLAPrintObject &po)
AABBTreeIndirect::traverse(
tree,
AABBTreeIndirect::intersecting(ebb),
[&part_to_drill, &hollowed_mesh](size_t faceid)
[&part_to_drill, &hollowed_mesh](const auto& node)
{
part_to_drill.indices.emplace_back(hollowed_mesh.its.indices[faceid]);
part_to_drill.indices.emplace_back(hollowed_mesh.its.indices[node.idx]);
});
auto cgal_meshpart = MeshBoolean::cgal::triangle_mesh_to_cgal(
@ -1036,7 +1036,7 @@ void SLAPrint::Steps::merge_slices_and_eval_stats() {
// Estimated printing time
// A layers count o the highest object
if (printer_input.size() == 0)
print_statistics.estimated_print_time = std::nan("");
print_statistics.estimated_print_time = NaNd;
else {
print_statistics.estimated_print_time = estim_time;
print_statistics.layers_times = layers_times;

View File

@ -347,6 +347,12 @@ public:
inline bool empty() const { return size() == 0; }
};
template<class T, class = FloatingOnly<T>>
constexpr T NaN = std::numeric_limits<T>::quiet_NaN();
constexpr float NaNf = NaN<float>;
constexpr double NaNd = NaN<double>;
} // namespace Slic3r
#endif

View File

@ -10,6 +10,7 @@
#include "libslic3r/Platform.hpp"
#include "libslic3r/Config.hpp"
#include <boost/nowide/fstream.hpp>
#include <boost/filesystem.hpp>
#include <boost/log/trivial.hpp>
#include <boost/dll/runtime_symbol_info.hpp>

View File

@ -1163,7 +1163,7 @@ void Control::draw_ruler(wxDC& dc)
}
};
double short_tick = std::nan("");
double short_tick = NaNd;
int tick = 0;
double value = 0.0;
size_t sequence = 0;

View File

@ -828,7 +828,7 @@ public:
class WipeTowerInfo {
protected:
Vec2d m_pos = {std::nan(""), std::nan("")};
Vec2d m_pos = {NaNd, NaNd};
double m_rotation = 0.;
BoundingBoxf m_bb;
friend class GLCanvas3D;

View File

@ -13,6 +13,7 @@
#include <cstdlib>
#include <regex>
#include <string_view>
#include <boost/nowide/fstream.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>

View File

@ -5,6 +5,7 @@
#include <boost/filesystem.hpp>
#include <boost/log/trivial.hpp>
#include <boost/nowide/fstream.hpp>
#include <boost/nowide/convert.hpp>
#include <boost/property_tree/ini_parser.hpp>
#include <curl/curl.h>
@ -242,7 +243,7 @@ boost::filesystem::path AppUpdater::priv::download_file(const DownloadAppData& d
tmp_path += format(".%1%%2%", get_current_pid(), ".download");
try
{
boost::filesystem::fstream file(tmp_path, std::ios::out | std::ios::binary | std::ios::trunc);
boost::nowide::fstream file(tmp_path.string(), std::ios::out | std::ios::binary | std::ios::trunc);
file.write(body.c_str(), body.size());
file.close();
boost::filesystem::rename(tmp_path, dest_path);

View File

@ -1,210 +0,0 @@
use Test::More tests => 38;
use strict;
use warnings;
BEGIN {
use FindBin;
use lib "$FindBin::Bin/../lib";
use local::lib "$FindBin::Bin/../local-lib";
}
use List::Util qw(first);
use Slic3r;
use Slic3r::Test;
{
my $config = Slic3r::Config::new_from_defaults;
my $test = sub {
my ($conf) = @_;
$conf ||= $config;
my $print = Slic3r::Test::init_print('2x20x10', config => $conf);
my $last_move_was_z_change = 0;
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
my ($self, $cmd, $args, $info) = @_;
if ($last_move_was_z_change && $cmd ne $config->layer_gcode) {
fail 'custom layer G-code was not applied after Z change';
}
if (!$last_move_was_z_change && $cmd eq $config->layer_gcode) {
fail 'custom layer G-code was not applied after Z change';
}
$last_move_was_z_change = (defined $info->{dist_Z} && $info->{dist_Z} > 0);
});
1;
};
$config->set('start_gcode', '_MY_CUSTOM_START_GCODE_'); # to avoid dealing with the nozzle lift in start G-code
$config->set('layer_gcode', '_MY_CUSTOM_LAYER_GCODE_');
ok $test->(), "custom layer G-code is applied after Z move and before other moves";
}
#==========================================================
{
my $config = Slic3r::Config::new_from_defaults;
$config->set('output_filename_format', 'ts_[travel_speed]_lh_[layer_height].gcode');
$config->set('start_gcode', "TRAVEL:[travel_speed] HEIGHT:[layer_height]\n");
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $output_file = $print->print->output_filepath;
my ($t, $h) = map $config->$_, qw(travel_speed layer_height);
ok $output_file =~ /ts_${t}_/, 'print config options are replaced in output filename';
ok $output_file =~ /lh_$h\./, 'region config options are replaced in output filename';
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /TRAVEL:$t/, 'print config options are replaced in custom G-code';
ok $gcode =~ /HEIGHT:$h/, 'region config options are replaced in custom G-code';
}
{
my $config = Slic3r::Config->new;
$config->set('nozzle_diameter', [0.6,0.6,0.6,0.6]);
$config->set('extruder', 2);
$config->set('first_layer_temperature', [200,205]);
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /M104 S205 T1/, 'temperature set correctly for non-zero yet single extruder';
ok $gcode !~ /M104 S\d+ T0/, 'unused extruder correctly ignored';
}
$config->set('infill_extruder', 1);
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /M104 S200 T0/, 'temperature set correctly for first extruder';
ok $gcode =~ /M104 S205 T1/, 'temperature set correctly for second extruder';
}
my @start_gcode = (qq!
;__temp0:[first_layer_temperature_0]__
;__temp1:[first_layer_temperature_1]__
;__temp2:[first_layer_temperature_2]__
!, qq!
;__temp0:{first_layer_temperature[0]}__
;__temp1:{first_layer_temperature[1]}__
;__temp2:{first_layer_temperature[2]}__
!);
my @syntax_description = (' (legacy syntax)', ' (new syntax)');
for my $i (0, 1) {
$config->set('start_gcode', $start_gcode[$i]);
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
# we use the [infill_extruder] placeholder to make sure this test doesn't
# catch a false positive caused by the unparsed start G-code option itself
# being embedded in the G-code
ok $gcode =~ /temp0:200/, 'temperature placeholder for first extruder correctly populated' . $syntax_description[$i];
ok $gcode =~ /temp1:205/, 'temperature placeholder for second extruder correctly populated' . $syntax_description[$i];
ok $gcode =~ /temp2:200/, 'temperature placeholder for unused extruder populated with first value' . $syntax_description[$i];
}
}
$config->set('start_gcode', qq!
;substitution:{if infill_extruder==1}extruder1
{elsif infill_extruder==2}extruder2
{else}extruder3{endif}
!);
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /substitution:extruder1/, 'if / else / endif - first block returned';
}
}
{
my $config = Slic3r::Config::new_from_defaults;
$config->set('before_layer_gcode', ';BEFORE [layer_num]');
$config->set('layer_gcode', ';CHANGE [layer_num]');
$config->set('support_material', 1);
$config->set('layer_height', 0.2);
my $print = Slic3r::Test::init_print('overhang', config => $config);
my $gcode = Slic3r::Test::gcode($print);
my @before = ();
my @change = ();
foreach my $line (split /\R+/, $gcode) {
if ($line =~ /;BEFORE (\d+)/) {
push @before, $1;
} elsif ($line =~ /;CHANGE (\d+)/) {
push @change, $1;
fail 'inconsistent layer_num before and after layer change'
if $1 != $before[-1];
}
}
is_deeply \@before, \@change, 'layer_num is consistent before and after layer changes';
ok !defined(first { $change[$_] != $change[$_-1]+1 } 1..$#change),
'layer_num grows continously'; # i.e. no duplicates or regressions
}
{
my $config = Slic3r::Config->new;
$config->set('nozzle_diameter', [0.6,0.6,0.6,0.6,0.6]);
$config->set('start_gcode', qq!
;substitution:{if infill_extruder==1}if block
{elsif infill_extruder==2}elsif block 1
{elsif infill_extruder==3}elsif block 2
{elsif infill_extruder==4}elsif block 3
{else}endif block{endif}
!);
my @returned = ('', 'if block', 'elsif block 1', 'elsif block 2', 'elsif block 3', 'endif block');
for my $i (1,2,3,4,5) {
$config->set('infill_extruder', $i);
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
my $found_other = 0;
for my $j (1,2,3,4,5) {
next if $i == $j;
$found_other = 1 if $gcode =~ /substitution:$returned[$j]/;
}
ok $gcode =~ /substitution:$returned[$i]/, 'if / else / endif - ' . $returned[$i] . ' returned';
ok !$found_other, 'if / else / endif - only ' . $returned[$i] . ' returned';
}
}
{
my $config = Slic3r::Config->new;
$config->set('nozzle_diameter', [0.6,0.6,0.6,0.6]);
$config->set('start_gcode',
';substitution:{if infill_extruder==1}{if perimeter_extruder==1}block11{else}block12{endif}' .
'{elsif infill_extruder==2}{if perimeter_extruder==1}block21{else}block22{endif}' .
'{else}{if perimeter_extruder==1}block31{else}block32{endif}{endif}:end');
for my $i (1,2,3) {
$config->set('infill_extruder', $i);
for my $j (1,2) {
$config->set('perimeter_extruder', $j);
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /substitution:block$i$j:end/, "two level if / else / endif - block$i$j returned";
}
}
}
{
my $config = Slic3r::Config->new;
$config->set('start_gcode',
';substitution:{if notes=="MK2"}MK2{elsif notes=="MK3"}MK3{else}MK1{endif}:end');
for my $printer_name ("MK2", "MK3", "MK1") {
$config->set('notes', $printer_name);
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /substitution:$printer_name:end/, "printer name $printer_name matched";
}
}
{
my $config = Slic3r::Config::new_from_defaults;
$config->set('complete_objects', 1);
$config->set('between_objects_gcode', '_MY_CUSTOM_GCODE_');
my $print = Slic3r::Test::init_print('20mm_cube', config => $config, duplicate => 3);
my $gcode = Slic3r::Test::gcode($print);
is scalar(() = $gcode =~ /^_MY_CUSTOM_GCODE_/gm), 2, 'between_objects_gcode is applied correctly';
}
__END__

View File

@ -1,65 +0,0 @@
use Test::More tests => 6;
use strict;
use warnings;
BEGIN {
use FindBin;
use lib "$FindBin::Bin/../lib";
use local::lib "$FindBin::Bin/../local-lib";
}
use List::Util qw(first);
use Slic3r;
use Slic3r::Geometry qw(unscale X Y);
use Slic3r::Test;
{
my $config = Slic3r::Config::new_from_defaults;
my $print_center = [100,100];
my $print = Slic3r::Test::init_print('20mm_cube', config => $config, print_center => $print_center);
my @extrusion_points = ();
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
my ($self, $cmd, $args, $info) = @_;
if ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
push @extrusion_points, my $point = Slic3r::Point->new_scale($args->{X}, $args->{Y});
}
});
my $bb = Slic3r::Geometry::BoundingBox->new_from_points(\@extrusion_points);
my $center = $bb->center;
ok abs(unscale($center->[X]) - $print_center->[X]) < 0.005, 'print is centered around print_center (X)';
ok abs(unscale($center->[Y]) - $print_center->[Y]) < 0.005, 'print is centered around print_center (Y)';
}
{
# this represents the aggregate config from presets
my $config = Slic3r::Config::new_from_defaults;
# Define 4 extruders.
$config->set('nozzle_diameter', [0.4, 0.4, 0.4, 0.4]);
# user adds one object to the plater
my $print = Slic3r::Test::init_print(my $model = Slic3r::Test::model('20mm_cube'), config => $config);
# user sets a per-region option
my $model2 = $model->clone;
$model2->get_object(0)->config->set('fill_density', 100);
$print->apply($model2, $config);
is $print->print->regions->[0]->config->fill_density, 100, 'region config inherits model object config';
# user exports G-code, thus the default config is reapplied
$model2->get_object(0)->config->erase('fill_density');
$print->apply($model2, $config);
is $print->print->regions->[0]->config->fill_density, 20, 'region config is resetted';
# user assigns object extruders
$model2->get_object(0)->config->set('extruder', 3);
$model2->get_object(0)->config->set('perimeter_extruder', 2);
$print->apply($model2, $config);
is $print->print->regions->[0]->config->infill_extruder, 3, 'extruder setting is correctly expanded';
is $print->print->regions->[0]->config->perimeter_extruder, 2, 'extruder setting does not override explicitely specified extruders';
}
__END__

View File

@ -1,8 +1,11 @@
#include <catch2/catch.hpp>
#include <exception>
#include <numeric>
#include <sstream>
#include <boost/regex.hpp>
#include "libslic3r/Config.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/PrintConfig.hpp"
@ -12,11 +15,12 @@
using namespace Slic3r;
#if 0
SCENARIO("Output file format", "[CustomGCode]")
{
WHEN("output_file_format set") {
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "travel_speed", "130"},
{ "layer_height", "0.4"},
{ "output_filename_format", "ts_[travel_speed]_lh_[layer_height].gcode" },
{ "start_gcode", "TRAVEL:[travel_speed] HEIGHT:[layer_height]\n" }
});
@ -25,20 +29,9 @@ SCENARIO("Output file format", "[CustomGCode]")
Model model;
Test::init_print({ Test::TestMesh::cube_2x20x10 }, print, model, config);
std::string output_file = print.output_filepath();
std::string output_file = print.output_filepath({}, {});
THEN("print config options are replaced in output filename") {
output_file.find(std::string("ts_") + )
}
my ($t, $h) = map $config->$_, qw(travel_speed layer_height);
ok $output_file =~ /ts_${t}_/, '';
ok $output_file =~ /lh_$h\./, 'region config options are replaced in output filename';
std::string gcode = print.gcode(print);
THEN("print config options are replaced in custom G-code") {
ok $gcode =~ /TRAVEL:$t/, '';
}
THEN("region config options are replaced in custom G-code") {
ok $gcode =~ /HEIGHT:$h/, '';
REQUIRE(output_file == "ts_130_lh_0.4.gcode");
}
}
}
@ -56,165 +49,213 @@ SCENARIO("Custom G-code", "[CustomGCode]")
parser.parse_buffer(Slic3r::Test::slice({ Test::TestMesh::cube_2x20x10 }, config),
[&last_move_was_z_change, &num_layer_changes_not_applied](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
if (line.extruding(self)) {
if (! was_extruding)
seam_points.emplace_back(self.xy_scaled());
was_extruding = true;
} else if (! line.cmd_is("M73")) {
// skips remaining time lines (M73)
was_extruding = false;
}
if (last_move_was_z_change != line.cmd_is("_MY_CUSTOM_LAYER_GCODE_"))
++ num_layer_changes_not_applied;
last_move_was_z_change = line.dist_Z(self) > 0;
});
THEN("custom layer G-code is applied after Z move and before other moves");
THEN("custom layer G-code is applied after Z move and before other moves") {
REQUIRE(num_layer_changes_not_applied == 0);
}
};
{
my $config = Slic3r::Config->new;
$config->set('nozzle_diameter', [0.6,0.6,0.6,0.6]);
$config->set('extruder', 2);
$config->set('first_layer_temperature', [200,205]);
auto config = Slic3r::DynamicPrintConfig::new_with({
{ "nozzle_diameter", { 0.6,0.6,0.6,0.6 } },
{ "extruder", 2 },
{ "first_layer_temperature", { 200, 205 } }
});
config.normalize_fdm();
WHEN("Printing with single but non-zero extruder") {
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
THEN("temperature set correctly for non-zero yet single extruder") {
REQUIRE(Slic3r::Test::contains(gcode, "\nM104 S205 T1 ;"));
}
THEN("unused extruder correctly ignored") {
REQUIRE(! Slic3r::Test::contains_regex(gcode, "M104 S\\d+ T0"));
}
}
WHEN("Printing with two extruders") {
config.opt_int("infill_extruder") = 1;
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
THEN("temperature set correctly for first extruder") {
REQUIRE(Slic3r::Test::contains(gcode, "\nM104 S200 T0 ;"));
};
THEN("temperature set correctly for second extruder") {
REQUIRE(Slic3r::Test::contains(gcode, "\nM104 S205 T1 ;"));
};
}
auto test = [](DynamicPrintConfig &config) {
// we use the [infill_extruder] placeholder to make sure this test doesn't
// catch a false positive caused by the unparsed start G-code option itself
// being embedded in the G-code
config.opt_int("infill_extruder") = 1;
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
THEN("temperature placeholder for first extruder correctly populated") {
REQUIRE(Slic3r::Test::contains(gcode, "temp0:200"));
}
THEN("temperature placeholder for second extruder correctly populated") {
REQUIRE(Slic3r::Test::contains(gcode, "temp1:205"));
}
THEN("temperature placeholder for unused extruder populated with first value") {
REQUIRE(Slic3r::Test::contains(gcode, "temp2:200"));
}
};
WHEN("legacy syntax") {
config.set_deserialize_strict("start_gcode",
";__temp0:[first_layer_temperature_0]__\n"
";__temp1:[first_layer_temperature_1]__\n"
";__temp2:[first_layer_temperature_2]__\n");
test(config);
}
WHEN("new syntax") {
config.set_deserialize_strict("start_gcode",
";__temp0:{first_layer_temperature[0]}__\n"
";__temp1:{first_layer_temperature[1]}__\n"
";__temp2:{first_layer_temperature[2]}__\n");
test(config);
}
WHEN("Vojtech's syntax") {
config.set_deserialize_strict({
{ "infill_extruder", 1 },
{ "start_gcode",
";substitution:{if infill_extruder==1}extruder1"
"{elsif infill_extruder==2}extruder2"
"{else}extruder3{endif}"
}
});
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
THEN("if / else / endif - first block returned") {
REQUIRE(Test::contains(gcode, "\n;substitution:extruder1\n"));
}
}
GIVEN("Layer change G-codes")
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /M104 S205 T1/, 'temperature set correctly for non-zero yet single extruder';
ok $gcode !~ /M104 S\d+ T0/, 'unused extruder correctly ignored';
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "before_layer_gcode", ";BEFORE [layer_num]" },
{ "layer_gcode", ";CHANGE [layer_num]" },
{ "support_material", 1 },
{ "layer_height", 0.2 }
});
WHEN("before and after layer change G-codes set") {
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::overhang }, config);
GCodeReader parser;
std::vector<int> before;
std::vector<int> change;
parser.parse_buffer(gcode, [&before, &change](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line){
int d;
if (sscanf(line.raw().c_str(), ";BEFORE %d", &d) == 1)
before.emplace_back(d);
else if (sscanf(line.raw().c_str(), ";CHANGE %d", &d) == 1) {
change.emplace_back(d);
if (d != before.back())
throw std::runtime_error("inconsistent layer_num before and after layer change");
}
});
THEN("layer_num is consistent before and after layer changes") {
REQUIRE(before == change);
}
THEN("layer_num grows continously") {
// i.e. no duplicates or regressions
bool successive = true;
for (size_t i = 1; i < change.size(); ++ i)
if (change[i - 1] + 1 != change[i])
successive = false;
REQUIRE(successive);
}
}
}
$config->set('infill_extruder', 1);
GIVEN("if / elsif / elsif / elsif / else / endif")
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /M104 S200 T0/, 'temperature set correctly for first extruder';
ok $gcode =~ /M104 S205 T1/, 'temperature set correctly for second extruder';
auto config = Slic3r::DynamicPrintConfig::new_with({
{ "nozzle_diameter", { 0.6,0.6,0.6,0.6,0.6 } },
{ "start_gcode",
";substitution:{if infill_extruder==1}if block"
"{elsif infill_extruder==2}elsif block 1"
"{elsif infill_extruder==3}elsif block 2"
"{elsif infill_extruder==4}elsif block 3"
"{else}endif block{endif}"
":end"
}
});
std::string returned[] = { "" /* indexed by one based extruder ID */, "if block", "elsif block 1", "elsif block 2", "elsif block 3", "endif block" };
auto test = [&config, &returned](int i) {
config.set_deserialize_strict({ { "infill_extruder", i } });
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
int found_error = 0;
for (int j = 1; j <= 5; ++ j)
if (i != j && Slic3r::Test::contains(gcode, std::string("substitution:") + returned[j] + ":end"))
// failure
++ found_error;
THEN(std::string("if / else / endif returned ") + returned[i]) {
REQUIRE(Slic3r::Test::contains(gcode, std::string("substitution:") + returned[i] + ":end"));
}
THEN(std::string("if / else / endif - only ") + returned[i] + "returned") {
REQUIRE(found_error == 0);
}
};
WHEN("infill_extruder == 1") { test(1); }
WHEN("infill_extruder == 2") { test(2); }
WHEN("infill_extruder == 3") { test(3); }
WHEN("infill_extruder == 4") { test(4); }
WHEN("infill_extruder == 5") { test(5); }
}
my @start_gcode = (qq!
;__temp0:[first_layer_temperature_0]__
;__temp1:[first_layer_temperature_1]__
;__temp2:[first_layer_temperature_2]__
!, qq!
;__temp0:{first_layer_temperature[0]}__
;__temp1:{first_layer_temperature[1]}__
;__temp2:{first_layer_temperature[2]}__
!);
my @syntax_description = (' (legacy syntax)', ' (new syntax)');
for my $i (0, 1) {
$config->set('start_gcode', $start_gcode[$i]);
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
# we use the [infill_extruder] placeholder to make sure this test doesn't
# catch a false positive caused by the unparsed start G-code option itself
# being embedded in the G-code
ok $gcode =~ /temp0:200/, 'temperature placeholder for first extruder correctly populated' . $syntax_description[$i];
ok $gcode =~ /temp1:205/, 'temperature placeholder for second extruder correctly populated' . $syntax_description[$i];
ok $gcode =~ /temp2:200/, 'temperature placeholder for unused extruder populated with first value' . $syntax_description[$i];
}
GIVEN("nested if / if / else / endif") {
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "nozzle_diameter", { 0.6,0.6,0.6,0.6,0.6 } },
{ "start_gcode",
";substitution:{if infill_extruder==1}{if perimeter_extruder==1}block11{else}block12{endif}"
"{elsif infill_extruder==2}{if perimeter_extruder==1}block21{else}block22{endif}"
"{else}{if perimeter_extruder==1}block31{else}block32{endif}{endif}:end"
}
});
auto test = [&config](int i) {
config.opt_int("infill_extruder") = i;
int failed = 0;
for (int j = 1; j <= 2; ++ j) {
config.opt_int("perimeter_extruder") = j;
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
if (! Slic3r::Test::contains(gcode, std::string("substitution:block") + std::to_string(i) + std::to_string(j) + ":end"))
++ failed;
}
THEN(std::string("two level if / else / endif - block for infill_extruder ") + std::to_string(i) + "succeeded") {
REQUIRE(failed == 0);
}
};
WHEN("infill_extruder == 1") { test(1); }
WHEN("infill_extruder == 2") { test(2); }
WHEN("infill_extruder == 3") { test(3); }
}
$config->set('start_gcode', qq!
;substitution:{if infill_extruder==1}extruder1
{elsif infill_extruder==2}extruder2
{else}extruder3{endif}
!);
{
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /substitution:extruder1/, 'if / else / endif - first block returned';
GIVEN("printer type in notes") {
auto config = Slic3r::DynamicPrintConfig::new_with({
{ "start_gcode",
";substitution:{if notes==\"MK2\"}MK2{elsif notes==\"MK3\"}MK3{else}MK1{endif}:end"
}
});
auto test = [&config](const std::string &printer_name) {
config.set_deserialize_strict("notes", printer_name);
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
THEN(std::string("printer name ") + printer_name + " matched") {
REQUIRE(Slic3r::Test::contains(gcode, std::string("substitution:") + printer_name + ":end"));
}
};
WHEN("printer MK2") { test("MK2"); }
WHEN("printer MK3") { test("MK3"); }
WHEN("printer MK1") { test("MK1"); }
}
}
{
my $config = Slic3r::Config::new_from_defaults;
$config->set('before_layer_gcode', ';BEFORE [layer_num]');
$config->set('layer_gcode', ';CHANGE [layer_num]');
$config->set('support_material', 1);
$config->set('layer_height', 0.2);
my $print = Slic3r::Test::init_print('overhang', config => $config);
my $gcode = Slic3r::Test::gcode($print);
my @before = ();
my @change = ();
foreach my $line (split /\R+/, $gcode) {
if ($line =~ /;BEFORE (\d+)/) {
push @before, $1;
} elsif ($line =~ /;CHANGE (\d+)/) {
push @change, $1;
fail 'inconsistent layer_num before and after layer change'
if $1 != $before[-1];
}
}
is_deeply \@before, \@change, 'layer_num is consistent before and after layer changes';
ok !defined(first { $change[$_] != $change[$_-1]+1 } 1..$#change),
'layer_num grows continously'; # i.e. no duplicates or regressions
}
{
my $config = Slic3r::Config->new;
$config->set('nozzle_diameter', [0.6,0.6,0.6,0.6,0.6]);
$config->set('start_gcode', qq!
;substitution:{if infill_extruder==1}if block
{elsif infill_extruder==2}elsif block 1
{elsif infill_extruder==3}elsif block 2
{elsif infill_extruder==4}elsif block 3
{else}endif block{endif}
!);
my @returned = ('', 'if block', 'elsif block 1', 'elsif block 2', 'elsif block 3', 'endif block');
for my $i (1,2,3,4,5) {
$config->set('infill_extruder', $i);
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
my $found_other = 0;
for my $j (1,2,3,4,5) {
next if $i == $j;
$found_other = 1 if $gcode =~ /substitution:$returned[$j]/;
}
ok $gcode =~ /substitution:$returned[$i]/, 'if / else / endif - ' . $returned[$i] . ' returned';
ok !$found_other, 'if / else / endif - only ' . $returned[$i] . ' returned';
}
}
{
my $config = Slic3r::Config->new;
$config->set('nozzle_diameter', [0.6,0.6,0.6,0.6]);
$config->set('start_gcode',
';substitution:{if infill_extruder==1}{if perimeter_extruder==1}block11{else}block12{endif}' .
'{elsif infill_extruder==2}{if perimeter_extruder==1}block21{else}block22{endif}' .
'{else}{if perimeter_extruder==1}block31{else}block32{endif}{endif}:end');
for my $i (1,2,3) {
$config->set('infill_extruder', $i);
for my $j (1,2) {
$config->set('perimeter_extruder', $j);
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /substitution:block$i$j:end/, "two level if / else / endif - block$i$j returned";
GIVEN("sequential print with between_objects_gcode") {
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "complete_objects", 1 },
{ "between_objects_gcode", "_MY_CUSTOM_GCODE_" }
});
std::string gcode = Slic3r::Test::slice(
// 3x 20mm box
{ Slic3r::Test::TestMesh::cube_20x20x20, Slic3r::Test::TestMesh::cube_20x20x20, Slic3r::Test::TestMesh::cube_20x20x20 },
config);
THEN("between_objects_gcode is applied correctly") {
const boost::regex expression("^_MY_CUSTOM_GCODE_");
const std::ptrdiff_t match_count =
std::distance(boost::sregex_iterator(gcode.begin(), gcode.end(), expression), boost::sregex_iterator());
REQUIRE(match_count == 2);
}
}
}
{
my $config = Slic3r::Config->new;
$config->set('start_gcode',
';substitution:{if notes=="MK2"}MK2{elsif notes=="MK3"}MK3{else}MK1{endif}:end');
for my $printer_name ("MK2", "MK3", "MK1") {
$config->set('notes', $printer_name);
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
my $gcode = Slic3r::Test::gcode($print);
ok $gcode =~ /substitution:$printer_name:end/, "printer name $printer_name matched";
}
}
{
my $config = Slic3r::Config::new_from_defaults;
$config->set('complete_objects', 1);
$config->set('between_objects_gcode', '_MY_CUSTOM_GCODE_');
my $print = Slic3r::Test::init_print('20mm_cube', config => $config, duplicate => 3);
my $gcode = Slic3r::Test::gcode($print);
is scalar(() = $gcode =~ /^_MY_CUSTOM_GCODE_/gm), 2, 'between_objects_gcode is applied correctly';
}
#endif

View File

@ -13,6 +13,7 @@
#include <boost/nowide/cstdio.hpp>
#include <boost/nowide/fstream.hpp>
#include <boost/filesystem.hpp>
#include <boost/regex.hpp>
#include <libslic3r/ModelArrange.hpp>
using namespace std;
@ -228,6 +229,7 @@ void init_print(std::vector<TriangleMesh> &&meshes, Slic3r::Print &print, Slic3r
object->add_instance();
}
arrange_objects(model, InfiniteBed{}, ArrangeParams{ scaled(min_object_distance(config))});
model.center_instances_around_point({100, 100});
for (ModelObject *mo : model.objects) {
mo->ensure_on_bed();
print.auto_assign_extruders(mo);
@ -352,6 +354,17 @@ std::string slice(std::initializer_list<TriangleMesh> meshes, std::initializer_l
return gcode(print);
}
bool contains(const std::string &data, const std::string &pattern)
{
return data.find(pattern) != data.npos;
}
bool contains_regex(const std::string &data, const std::string &pattern)
{
boost::regex re(pattern);
return boost::regex_match(data, re);
}
} } // namespace Slic3r::Test
#include <catch2/catch.hpp>

View File

@ -81,6 +81,9 @@ std::string slice(std::initializer_list<TriangleMesh> meshes, const DynamicPrint
std::string slice(std::initializer_list<TestMesh> meshes, std::initializer_list<Slic3r::ConfigBase::SetDeserializeItem> config_items, bool comments = false);
std::string slice(std::initializer_list<TriangleMesh> meshes, std::initializer_list<Slic3r::ConfigBase::SetDeserializeItem> config_items, bool comments = false);
bool contains(const std::string &data, const std::string &pattern);
bool contains_regex(const std::string &data, const std::string &pattern);
} } // namespace Slic3r::Test

View File

@ -126,3 +126,62 @@ SCENARIO("Print: Brim generation", "[Print]") {
}
}
}
SCENARIO("Ported from Perl", "[Print]") {
GIVEN("20mm cube") {
WHEN("Print center is set to 100x100 (test framework default)") {
auto config = Slic3r::DynamicPrintConfig::full_print_config();
std::string gcode = Slic3r::Test::slice({ TestMesh::cube_20x20x20 }, config);
GCodeReader parser;
Points extrusion_points;
parser.parse_buffer(gcode, [&extrusion_points](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
if (line.cmd_is("G1") && line.extruding(self) && line.dist_XY(self) > 0)
extrusion_points.emplace_back(line.new_XY_scaled(self));
});
Vec2d center = unscaled<double>(BoundingBox(extrusion_points).center());
THEN("print is centered around print_center") {
REQUIRE(is_approx(center.x(), 100.));
REQUIRE(is_approx(center.y(), 100.));
}
}
}
GIVEN("Model with multiple objects") {
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "nozzle_diameter", { 0.4, 0.4, 0.4, 0.4 } }
});
Print print;
Model model;
Slic3r::Test::init_print({ TestMesh::cube_20x20x20 }, print, model, config);
// User sets a per-region option, also testing a deep copy of Model.
Model model2(model);
model2.objects.front()->config.set_deserialize_strict("fill_density", "100%");
WHEN("fill_density overridden") {
print.apply(model2, config);
THEN("region config inherits model object config") {
REQUIRE(print.get_print_region(0).config().fill_density == 100);
}
}
model2.objects.front()->config.erase("fill_density");
WHEN("fill_density resetted") {
print.apply(model2, config);
THEN("region config is resetted") {
REQUIRE(print.get_print_region(0).config().fill_density == 20);
}
}
WHEN("extruder is assigned") {
model2.objects.front()->config.set("extruder", 3);
model2.objects.front()->config.set("perimeter_extruder", 2);
print.apply(model2, config);
THEN("extruder setting is correctly expanded") {
REQUIRE(print.get_print_region(0).config().infill_extruder == 3);
}
THEN("extruder setting does not override explicitely specified extruders") {
REQUIRE(print.get_print_region(0).config().perimeter_extruder == 2);
}
}
}
}

View File

@ -38,6 +38,7 @@ TEST_CASE("Skirt height is honored", "[Skirt]") {
{ "support_material_speed", 99 },
// avoid altering speeds unexpectedly
{ "cooling", false },
// avoid altering speeds unexpectedly
{ "first_layer_speed", "100%" }
});

View File

@ -4,6 +4,7 @@ add_executable(${_TEST_NAME}_tests
${_TEST_NAME}_tests.cpp
test_3mf.cpp
test_aabbindirect.cpp
test_kdtreeindirect.cpp
test_clipper_offset.cpp
test_clipper_utils.cpp
test_color.cpp
@ -28,6 +29,7 @@ add_executable(${_TEST_NAME}_tests
test_triangulation.cpp
test_emboss.cpp
test_indexed_triangle_set.cpp
test_astar.cpp
../libnest2d/printer_parts.cpp
)

View File

@ -0,0 +1,71 @@
#include <catch2/catch.hpp>
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/AStar.hpp"
#include "libslic3r/Execution/ExecutionSeq.hpp"
#include "libslic3r/PointGrid.hpp"
using namespace Slic3r;
struct PointGridTracer {
using Node = size_t;
const PointGrid<float> &grid;
size_t final;
PointGridTracer(const PointGrid<float> &g, size_t goal) :
grid{g}, final{goal} {}
template<class Fn>
void foreach_reachable(size_t from, Fn &&fn) const
{
Vec3i from_crd = grid.get_coord(from);
REQUIRE(grid.get_idx(from_crd) == from);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 0, 0}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 0}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, 1}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 0}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 1}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 1}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, 0, 0}); from_crd.x() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, 0}); from_crd.y() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, -1}); from_crd.z() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, 0}); from_crd.x() > 0 && from_crd.y() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, -1}); from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, -1}); from_crd.x() > 0 && from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
}
float distance(size_t a, size_t b) const
{
return (grid.get(a) - grid.get(b)).squaredNorm();
}
float goal_heuristic(size_t n) const
{
return n == final ? -1.f : (grid.get(n) - grid.get(final)).squaredNorm();
}
size_t unique_id(size_t n) const { return n; }
};
TEST_CASE("astar algorithm test over 3D point grid", "[AStar]") {
auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {1.f, 1.f, 1.f}};
auto pgrid = point_grid(ex_seq, vol, {0.1f, 0.1f, 0.1f});
size_t target = pgrid.point_count() - 1;
std::cout << "Tracing route to " << pgrid.get_coord(target).transpose() << std::endl;
PointGridTracer pgt{pgrid, pgrid.point_count() - 1};
std::vector<size_t> out;
bool found = astar::search_route(pgt, size_t(0), std::back_inserter(out));
std::cout << "Route taken: ";
for (size_t i : out) {
std::cout << "(" << pgrid.get_coord(i).transpose() << ") ";
}
std::cout << std::endl;
REQUIRE(found);
}

View File

@ -0,0 +1,142 @@
#include <catch2/catch.hpp>
#include "libslic3r/KDTreeIndirect.hpp"
#include "libslic3r/Execution/ExecutionSeq.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/PointGrid.hpp"
using namespace Slic3r;
//template<class G>
//struct Within { // Wrapper for the `within` predicate that counts calls.
// kdtree::Within<G> pred;
// Within(G box): pred{box} {}
// // Number of times the predicate was called
// mutable size_t call_count = 0;
// std::pair<bool, unsigned int> operator() (const Vec3f &p, size_t dim)
// {
// ++call_count;
// return pred(p, dim);
// }
//};
static double volume(const BoundingBox3Base<Vec3f> &box)
{
auto sz = box.size();
return sz.x() * sz.y() * sz.z();
}
static double volume(const Eigen::AlignedBox<float, 3> &box)
{
return box.volume();
}
TEST_CASE("Test kdtree query for a Box", "[KDTreeIndirect]")
{
auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {10.f, 10.f, 10.f}};
auto pgrid = point_grid(ex_seq, vol, Vec3f{0.1f, 0.1f, 0.1f});
REQUIRE(!pgrid.empty());
auto coordfn = [&pgrid] (size_t i, size_t D) { return pgrid.get(i)(int(D)); };
KDTreeIndirect<3, float, decltype(coordfn)> tree{coordfn, pgrid.point_count()};
std::vector<size_t> out;
auto qbox = BoundingBox3Base{Vec3f{0.f, 0.f, 0.f}, Vec3f{.5f, .5f, .5f}};
size_t call_count = 0;
out = find_nearby_points(tree, qbox.min, qbox.max, [&call_count](size_t) {
call_count++;
return true;
});
// Output shall be non-empty
REQUIRE(!out.empty());
std::sort(out.begin(), out.end());
// No duplicates allowed in the output
auto it = std::unique(out.begin(), out.end());
REQUIRE(it == out.end());
// Test if inside points are in the output and outside points are not.
bool succ = true;
for (size_t i = 0; i < pgrid.point_count(); ++i) {
auto foundit = std::find(out.begin(), out.end(), i);
bool contains = qbox.contains(pgrid.get(i));
succ = succ && contains ? foundit != out.end() : foundit == out.end();
if (!succ) {
std::cout << "invalid point: " << i << " " << pgrid.get(i).transpose()
<< std::endl;
break;
}
}
REQUIRE(succ);
// Test for the expected cost of the query.
double gridvolume = volume(vol);
double queryvolume = volume(qbox);
double volratio = (queryvolume / gridvolume);
REQUIRE(call_count < 3 * volratio * pgrid.point_count());
REQUIRE(call_count < pgrid.point_count());
}
//TEST_CASE("Test kdtree query for a Sphere", "[KDTreeIndirect]") {
// auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {10.f, 10.f, 10.f}};
// auto pgrid = point_grid(ex_seq, vol, Vec3f{0.1f, 0.1f, 0.1f});
// REQUIRE(!pgrid.empty());
// auto coordfn = [&pgrid] (size_t i, size_t D) { return pgrid.get(i)(int(D)); };
// kdtree::KDTreeIndirect<3, float, decltype(coordfn)> tree{coordfn, pgrid.point_count()};
// std::vector<size_t> out;
// auto querysphere = kdtree::Sphere{Vec3f{5.f, 5.f, 5.f}, 2.f};
// auto pred = Within(querysphere);
// kdtree::query(tree, pred, std::back_inserter(out));
// // Output shall be non-empty
// REQUIRE(!out.empty());
// std::sort(out.begin(), out.end());
// // No duplicates allowed in the output
// auto it = std::unique(out.begin(), out.end());
// REQUIRE(it == out.end());
// // Test if inside points are in the output and outside points are not.
// bool succ = true;
// for (size_t i = 0; i < pgrid.point_count(); ++i) {
// auto foundit = std::find(out.begin(), out.end(), i);
// bool contains = (querysphere.center - pgrid.get(i)).squaredNorm() < pred.pred.r2;
// succ = succ && contains ? foundit != out.end() : foundit == out.end();
// if (!succ) {
// std::cout << "invalid point: " << i << " " << pgrid.get(i).transpose()
// << std::endl;
// break;
// }
// }
// REQUIRE(succ);
// // Test for the expected cost of the query.
// double gridvolume = volume(vol);
// double queryvolume = volume(querysphere);
// double volratio = (queryvolume / gridvolume);
// REQUIRE(pred.call_count < 3 * volratio * pgrid.point_count());
// REQUIRE(pred.call_count < pgrid.point_count());
//}

View File

@ -343,7 +343,7 @@ TEST_CASE("Mutable priority queue - reshedule first", "[MutableSkipHeapPriorityQ
TEST_CASE("Mutable priority queue - first pop", "[MutableSkipHeapPriorityQueue]")
{
struct MyValue{
int id;
size_t id;
float val;
};
size_t count = 50000;
@ -356,15 +356,15 @@ TEST_CASE("Mutable priority queue - first pop", "[MutableSkipHeapPriorityQueue]"
[](MyValue &l, MyValue &r) { return l.val < r.val; });
q.reserve(count);
for (size_t id = 0; id < count; id++) {
MyValue mv;
mv.id = id;
mv.val = rand();
MyValue mv{ id, rand() / 100.f };
q.push(mv);
}
MyValue it = q.top(); // copy
q.pop();
bool valid = (it.id != 0) && (idxs[0] < 3 * count);
CHECK(valid);
// is valid id (no initial value default value)
CHECK(it.id != 0);
// is first item in queue valid value
CHECK(idxs[0] != std::numeric_limits<size_t>::max());
}
TEST_CASE("Mutable priority queue complex", "[MutableSkipHeapPriorityQueue]")

View File

@ -386,7 +386,7 @@ long raster_pxsum(const sla::RasterGrayscaleAA &raster)
double raster_white_area(const sla::RasterGrayscaleAA &raster)
{
if (raster.resolution().pixels() == 0) return std::nan("");
if (raster.resolution().pixels() == 0) return NaNd;
auto res = raster.resolution();
double a = 0;

View File

@ -60,8 +60,6 @@
size_t object_count()
%code%{ RETVAL = THIS->objects().size(); %};
PrintRegionPtrs* regions()
%code%{ RETVAL = const_cast<PrintRegionPtrs*>(&THIS->print_regions_mutable()); %};
void auto_assign_extruders(ModelObject* model_object);
std::string output_filepath(std::string path = "")