GCodeViewer -> Newer version of shader for options

This commit is contained in:
enricoturri1966 2020-05-27 16:19:40 +02:00
parent aa04f0e555
commit 35190936a3
13 changed files with 187 additions and 98 deletions

View file

@ -5,7 +5,7 @@ uniform vec3 uniform_color;
uniform float percent_outline_radius;
uniform float percent_center_radius;
vec4 hard_color(float sq_radius)
vec4 hardcoded_color(float sq_radius)
{
if ((sq_radius < 0.005625) || (sq_radius > 0.180625))
return vec4(0.5 * uniform_color, 1.0);
@ -13,7 +13,7 @@ vec4 hard_color(float sq_radius)
return vec4(uniform_color, 1.0);
}
vec4 custom_color(float sq_radius)
vec4 customizable_color(float sq_radius)
{
float in_radius = 0.5 * percent_center_radius;
float out_radius = 0.5 * (1.0 - percent_outline_radius);
@ -30,5 +30,6 @@ void main()
if (sq_radius > 0.25)
discard;
gl_FragColor = custom_color(sq_radius);
gl_FragColor = customizable_color(sq_radius);
// gl_FragColor = hardcoded_color(sq_radius);
}

View file

@ -0,0 +1,88 @@
// version 120 is needed for gl_PointCoord
#version 120
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
uniform vec3 uniform_color;
uniform float percent_outline_radius;
uniform float percent_center_radius;
// x = width, y = height
uniform ivec2 viewport_sizes;
uniform vec2 z_range;
uniform mat4 inv_proj_matrix;
varying vec3 eye_center;
float radius = 0.5;
// x = tainted, y = specular;
vec2 intensity;
vec3 eye_position_from_fragment()
{
// Convert screen coordinates to normalized device coordinates (NDC)
vec4 ndc = vec4(
(gl_FragCoord.x / viewport_sizes.x - 0.5) * 2.0,
(gl_FragCoord.y / viewport_sizes.y - 0.5) * 2.0,
(gl_FragCoord.z - 0.5) * 2.0,
1.0);
// Convert NDC throuch inverse clip coordinates to view coordinates
vec4 clip = inv_proj_matrix * ndc;
return (clip / clip.w).xyz;
}
vec3 eye_position_on_sphere(vec3 eye_fragment_position)
{
vec3 eye_dir = normalize(eye_fragment_position);
float a = dot(eye_dir, eye_dir);
float b = 2.0 * dot(-eye_center, eye_dir);
float c = dot(eye_center, eye_center) - radius * radius;
float discriminant = b * b - 4 * a * c;
float t = -(b + sqrt(discriminant)) / (2.0 * a);
return t * eye_dir;
}
vec4 on_sphere_color(vec3 eye_on_sphere_position)
{
vec3 eye_normal = normalize(eye_on_sphere_position - eye_center);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_on_sphere_position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
return vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color.rgb * intensity.x, 1.0);
}
void main()
{
vec2 pos = gl_PointCoord - vec2(0.5, 0.5);
float sq_radius = dot(pos, pos);
if (sq_radius > 0.25)
discard;
vec3 eye_on_sphere_position = eye_position_on_sphere(eye_position_from_fragment());
// gl_FragDepth = eye_on_sphere_position.z;
// gl_FragDepth = (eye_on_sphere_position.z - z_range.x) / (z_range.y - z_range.x);
gl_FragColor = on_sphere_color(eye_on_sphere_position);
}

View file

@ -0,0 +1,14 @@
#version 120
uniform float zoom;
// x = min, y = max
uniform vec2 point_sizes;
varying vec3 eye_center;
void main()
{
gl_PointSize = clamp(zoom, point_sizes.x, point_sizes.y);
eye_center = (gl_ModelViewMatrix * gl_Vertex).xyz;
gl_Position = ftransform();
}

View file

@ -1,13 +0,0 @@
#version 110
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
uniform vec4 uniform_color;
// x = tainted, y = specular;
varying vec2 intensity;
void main()
{
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color.rgb * intensity.x, uniform_color.a);
}

View file

@ -1,42 +0,0 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
// x = tainted, y = specular;
varying vec2 intensity;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 normal = normalize(gl_NormalMatrix * gl_Normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = 0.0;
if (NdotL > 0.0)
{
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
}
// Perform the same lighting calculation for the 2nd light source (no specular applied).
intensity.x += max(dot(normal, LIGHT_FRONT_DIR), 0.0) * LIGHT_FRONT_DIFFUSE;
gl_Position = ftransform();
}