refactored init method - split into several parts,

added blur filter to seam placement distribution
This commit is contained in:
PavelMikus 2022-02-14 16:46:18 +01:00
parent 1a25058456
commit 36a4906536
2 changed files with 251 additions and 224 deletions

View File

@ -15,13 +15,26 @@
#include "libslic3r/SVG.hpp" #include "libslic3r/SVG.hpp"
#include "libslic3r/Layer.hpp" #include "libslic3r/Layer.hpp"
// TODO remove
#include <boost/nowide/cstdio.hpp> #include <boost/nowide/cstdio.hpp>
namespace Slic3r { namespace Slic3r {
namespace SeamPlacerImpl { namespace SeamPlacerImpl {
void atomic_fetch_add_float(std::atomic<float> &atomic, float increment)
{
float old_val;
float new_val;
do
{
old_val = atomic.load(std::memory_order_relaxed);
new_val = old_val + increment;
} while (!atomic.compare_exchange_weak(old_val, new_val,
std::memory_order_release,
std::memory_order_relaxed));
}
/// Coordinate frame /// Coordinate frame
class Frame { class Frame {
public: public:
@ -82,13 +95,18 @@ Vec3d sample_power_cosine_hemisphere(const Vec2f &samples, float power) {
return Vec3d(cos(term1) * term3, sin(term1) * term3, term2); return Vec3d(cos(term1) * term3, sin(term1) * term3, term2);
} }
std::vector<HitInfo> raycast_visibility(size_t ray_count, std::vector<HitInfo> raycast_visibility(const AABBTreeIndirect::Tree<3, float> &raycasting_tree,
const AABBTreeIndirect::Tree<3, float> &raycasting_tree,
const indexed_triangle_set &triangles) { const indexed_triangle_set &triangles) {
auto bbox = raycasting_tree.node(0).bbox; auto bbox = raycasting_tree.node(0).bbox;
Vec3d vision_sphere_center = bbox.center().cast<double>(); Vec3d vision_sphere_center = bbox.center().cast<double>();
float vision_sphere_raidus = (bbox.sizes().maxCoeff() * 0.55); // 0.5 (half) covers whole object, Vec3d side_sizes = bbox.sizes().cast<double>();
// 0.05 added to avoid corner cases float vision_sphere_raidus = (sqrt(side_sizes.dot(side_sizes)) * 0.55); // 0.5 (half) covers whole object,
// 0.05 added to avoid corner cases
double approx_area = 2 * side_sizes.x() * side_sizes.y() + 2 * side_sizes.x() * side_sizes.z()
+ 2 * side_sizes.y() * side_sizes.z();
auto considered_hits_area = PI * SeamPlacer::considered_hits_distance * SeamPlacer::considered_hits_distance;
size_t ray_count = SeamPlacer::expected_hits_per_area * (approx_area / considered_hits_area);
// Prepare random samples per ray // Prepare random samples per ray
// std::random_device rnd_device; // std::random_device rnd_device;
@ -153,6 +171,20 @@ std::vector<HitInfo> raycast_visibility(size_t ray_count,
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: raycast visibility for " << ray_count << " rays: end"; << "SeamPlacer: raycast visibility for " << ray_count << " rays: end";
its_write_obj(triangles, "triangles.obj");
Slic3r::CNumericLocalesSetter locales_setter;
FILE *fp = boost::nowide::fopen("hits.obj", "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "Couldn't open " << "hits.obj" << " for writing";
}
for (size_t i = 0; i < hit_points.size(); ++i)
fprintf(fp, "v %f %f %f \n", hit_points[i].m_position[0], hit_points[i].m_position[1],
hit_points[i].m_position[2]);
fclose(fp);
return hit_points; return hit_points;
} }
@ -389,7 +421,6 @@ float calculate_overhang(const SeamCandidate &point, const SeamCandidate &under_
} }
return Vec2d((p - b).norm(), std::min(abs(dist_ab), abs(dist_bc))).norm(); return Vec2d((p - b).norm(), std::min(abs(dist_ab), abs(dist_bc))).norm();
} }
template<typename CompareFunc> template<typename CompareFunc>
@ -419,8 +450,7 @@ void gather_global_model_info(GlobalModelInfo &result, const PrintObject *po) {
auto raycasting_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(triangle_set.vertices, auto raycasting_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(triangle_set.vertices,
triangle_set.indices); triangle_set.indices);
result.geometry_raycast_hits = raycast_visibility(SeamPlacer::ray_count_per_object, raycasting_tree, result.geometry_raycast_hits = raycast_visibility(raycasting_tree, triangle_set);
triangle_set);
result.raycast_hits_tree.build(result.geometry_raycast_hits.size()); result.raycast_hits_tree.build(result.geometry_raycast_hits.size());
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
@ -450,6 +480,7 @@ void gather_global_model_info(GlobalModelInfo &result, const PrintObject *po) {
struct DefaultSeamComparator { struct DefaultSeamComparator {
//is A better? //is A better?
bool operator()(const SeamCandidate &a, const SeamCandidate &b) const { bool operator()(const SeamCandidate &a, const SeamCandidate &b) const {
// Blockers/Enforcers discrimination, top priority
if (a.m_type > b.m_type) { if (a.m_type > b.m_type) {
return true; return true;
} }
@ -457,136 +488,217 @@ struct DefaultSeamComparator {
return false; return false;
} }
//avoid overhangs
if (a.m_overhang > 0.5 && b.m_overhang < a.m_overhang) { if (a.m_overhang > 0.5 && b.m_overhang < a.m_overhang) {
return false; return false;
} }
if (a.m_ccw_angle < -float(0.4 * PI) && b.m_ccw_angle > -float(0.4 * PI)) { auto angle_score = [](float ccw_angle) {
if (ccw_angle > 0) {
float normalized = (ccw_angle / float(PI));
return normalized * normalized * normalized * 0.8;
} else {
float normalized = (-ccw_angle / float(PI));
return normalized * normalized * normalized * 1.0;
}
};
auto vis_score = [](float visibility) {
return 1.0 - visibility / SeamPlacer::expected_hits_per_area;
};
auto align_score = [](float nearby_seams) {
return nearby_seams / (0.25 * (sqrt(2) * SeamPlacer::seam_align_layer_dist));
};
float score_a = angle_score(a.m_ccw_angle) + vis_score(a.m_visibility) + align_score(*a.m_nearby_seam_points);
float score_b = angle_score(b.m_ccw_angle) + vis_score(b.m_visibility) + align_score(*b.m_nearby_seam_points);
if (score_a > score_b)
return true; return true;
} else
return false;
std::vector<float> hysteresis_values { 3.0, 2.0, 1.6, 1.2, 1.0 };
for (float hysteresis : hysteresis_values) {
if (*a.m_nearby_seam_points > *b.m_nearby_seam_points * hysteresis) {
return true;
}
if (*b.m_nearby_seam_points > *a.m_nearby_seam_points * hysteresis) {
return false;
}
if (a.m_visibility * hysteresis < b.m_visibility) {
return true;
}
if (b.m_visibility * hysteresis < a.m_visibility) {
return false;
}
}
if (abs(a.m_ccw_angle) > abs(b.m_ccw_angle)) {
return true;
}
return false;
} }
} }
; ;
} // namespace SeamPlacerImpl } // namespace SeamPlacerImpl
void SeamPlacer::init(const Print &print) { void SeamPlacer::gather_seam_candidates(const PrintObject *po,
const SeamPlacerImpl::GlobalModelInfo &global_model_info) {
using namespace SeamPlacerImpl; using namespace SeamPlacerImpl;
m_perimeter_points_trees_per_object.clear();
m_perimeter_points_per_object.clear();
for (const PrintObject *po : print.objects()) { m_perimeter_points_per_object.emplace(po, po->layer_count());
m_perimeter_points_trees_per_object.emplace(po, po->layer_count());
GlobalModelInfo global_model_info { }; tbb::parallel_for(tbb::blocked_range<size_t>(0, po->layers().size()),
gather_global_model_info(global_model_info, po); [&](tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
std::vector<SeamCandidate> &layer_candidates = m_perimeter_points_per_object[po][layer_idx];
const Layer *layer = po->get_layer(layer_idx);
auto unscaled_z = layer->slice_z;
Polygons polygons = extract_perimeter_polygons(layer);
for (const auto &poly : polygons) {
process_perimeter_polygon(poly, unscaled_z, layer_candidates,
global_model_info);
}
auto functor = SeamCandidateCoordinateFunctor { &layer_candidates };
m_perimeter_points_trees_per_object[po][layer_idx] = (std::make_unique<SeamCandidatesTree>(
functor, layer_candidates.size()));
}
}
);
}
BOOST_LOG_TRIVIAL(debug) void SeamPlacer::calculate_candidates_visibility(const PrintObject *po,
<< "SeamPlacer: gather and build KD trees with seam candidates: start"; const SeamPlacerImpl::GlobalModelInfo &global_model_info) {
using namespace SeamPlacerImpl;
m_perimeter_points_per_object.emplace(po, po->layer_count()); tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()),
m_perimeter_points_trees_per_object.emplace(po, po->layer_count()); [&](tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
tbb::parallel_for(tbb::blocked_range<size_t>(0, po->layers().size()), for (auto &perimeter_point : m_perimeter_points_per_object[po][layer_idx]) {
[&](tbb::blocked_range<size_t> r) { perimeter_point.m_visibility = global_model_info.calculate_point_visibility(
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) { perimeter_point.m_position, considered_hits_distance);
std::vector<SeamCandidate> &layer_candidates = m_perimeter_points_per_object[po][layer_idx];
const Layer *layer = po->get_layer(layer_idx);
auto unscaled_z = layer->slice_z;
Polygons polygons = extract_perimeter_polygons(layer);
for (const auto &poly : polygons) {
process_perimeter_polygon(poly, unscaled_z, layer_candidates,
global_model_info);
}
auto functor = SeamCandidateCoordinateFunctor { &layer_candidates };
m_perimeter_points_trees_per_object[po][layer_idx] = (std::make_unique<SeamCandidatesTree>(
functor, layer_candidates.size()));
} }
} }
); });
}
BOOST_LOG_TRIVIAL(debug) void SeamPlacer::calculate_overhangs(const PrintObject *po) {
<< "SeamPlacer: gather and build KD tree with seam candidates: end"; using namespace SeamPlacerImpl;
BOOST_LOG_TRIVIAL(debug) tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()),
<< "SeamPlacer: gather visibility data into perimeter points : start"; [&](tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
for (SeamCandidate &perimeter_point : m_perimeter_points_per_object[po][layer_idx]) {
if (layer_idx > 0) {
size_t closest_supporter = find_closest_point(
*m_perimeter_points_trees_per_object[po][layer_idx - 1],
perimeter_point.m_position);
const SeamCandidate &supporter_point =
m_perimeter_points_per_object[po][layer_idx - 1][closest_supporter];
auto prev_next = find_previous_and_next_perimeter_point(m_perimeter_points_per_object[po][layer_idx-1], closest_supporter);
const SeamCandidate &prev_point =
m_perimeter_points_per_object[po][layer_idx - 1][prev_next.first];
const SeamCandidate &next_point =
m_perimeter_points_per_object[po][layer_idx - 1][prev_next.second];
perimeter_point.m_overhang = calculate_overhang(perimeter_point, prev_point,
supporter_point, next_point);
tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()),
[&](tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
for (auto &perimeter_point : m_perimeter_points_per_object[po][layer_idx]) {
perimeter_point.m_visibility = global_model_info.calculate_point_visibility(
perimeter_point.m_position, considered_hits_distance);
} }
} }
}); }
});
}
BOOST_LOG_TRIVIAL(debug) void SeamPlacer::distribute_seam_positions_for_alignment(const PrintObject *po) {
<< "SeamPlacer: gather visibility data into perimeter points : end"; using namespace SeamPlacerImpl;
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: compute overhangs : start";
tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()), tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()),
[&](tbb::blocked_range<size_t> r) { [&](tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) { for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
for (SeamCandidate &perimeter_point : m_perimeter_points_per_object[po][layer_idx]) { std::vector<SeamCandidate> &layer_perimeter_points =
if (layer_idx > 0) { m_perimeter_points_per_object[po][layer_idx];
size_t closest_supporter = find_closest_point( size_t current = 0;
*m_perimeter_points_trees_per_object[po][layer_idx - 1], while (current < layer_perimeter_points.size()) {
perimeter_point.m_position); Vec3d seam_position =
const SeamCandidate &supporter_point = layer_perimeter_points[layer_perimeter_points[current].m_seam_index].m_position;
m_perimeter_points_per_object[po][layer_idx - 1][closest_supporter];
auto prev_next = find_previous_and_next_perimeter_point(m_perimeter_points_per_object[po][layer_idx-1], closest_supporter); int other_layer_idx_bottom = std::max(
const SeamCandidate &prev_point = (int) layer_idx - (int) seam_align_layer_dist, 0);
m_perimeter_points_per_object[po][layer_idx - 1][prev_next.first]; int other_layer_idx_top = std::min(layer_idx + seam_align_layer_dist,
const SeamCandidate &next_point = m_perimeter_points_per_object[po].size() - 1);
m_perimeter_points_per_object[po][layer_idx - 1][prev_next.second];
perimeter_point.m_overhang = calculate_overhang(perimeter_point, prev_point, for (int other_layer_idx = layer_idx + 1;
supporter_point, next_point); other_layer_idx <= other_layer_idx_top; ++other_layer_idx) {
std::vector<size_t> nearby_point_indexes = find_nearby_points(
*m_perimeter_points_trees_per_object[po][other_layer_idx],
seam_position,
seam_align_tolerable_dist * (other_layer_idx - layer_idx));
if (nearby_point_indexes.empty()) {
break;
}
for (size_t nearby_point_index : nearby_point_indexes) {
SeamCandidate &point_ref =
m_perimeter_points_per_object[po][other_layer_idx][nearby_point_index];
float distance = (seam_position - point_ref.m_position).norm();
atomic_fetch_add_float(*point_ref.m_nearby_seam_points, 1.0 / distance);
}
} }
if (layer_idx > 0) {
for (int other_layer_idx = layer_idx - 1;
other_layer_idx >= other_layer_idx_bottom; --other_layer_idx) {
std::vector<size_t> nearby_point_indexes = find_nearby_points(
*m_perimeter_points_trees_per_object[po][other_layer_idx],
seam_position,
seam_align_tolerable_dist * (layer_idx - other_layer_idx));
if (nearby_point_indexes.empty()) {
break;
}
for (size_t nearby_point_index : nearby_point_indexes) {
SeamCandidate &point_ref =
m_perimeter_points_per_object[po][other_layer_idx][nearby_point_index];
float distance = (seam_position - point_ref.m_position).norm();
atomic_fetch_add_float(*point_ref.m_nearby_seam_points, 1.0 / distance);
}
}
}
current += layer_perimeter_points[current].m_polygon_index_reverse + 1;
} }
} }
}); });
}
BOOST_LOG_TRIVIAL(debug) void SeamPlacer::init(const Print &print) {
<< "SeamPlacer: compute overhangs : end"; using namespace SeamPlacerImpl;
m_perimeter_points_trees_per_object.clear();
m_perimeter_points_per_object.clear();
for (size_t iteration = 0; iteration < seam_align_iterations; ++iteration) { for (const PrintObject *po : print.objects()) {
if (iteration > 0) { //skip this in first iteration, no seam has been picked yet GlobalModelInfo global_model_info { };
BOOST_LOG_TRIVIAL(debug) gather_global_model_info(global_model_info, po);
<< "SeamPlacer: distribute seam positions to other layers : start";
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: gather_seam_candidates: start";
gather_seam_candidates(po, global_model_info);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: gather_seam_candidates: end";
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_candidates_visibility : start";
calculate_candidates_visibility(po, global_model_info);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_candidates_visibility : end";
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_overhangs : start";
calculate_overhangs(po);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: calculate_overhangs : end";
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: distribute_seam_positions_for_alignment, pick_seams : start";
for (size_t iteration = 0; iteration < seam_align_iterations; ++iteration) {
if (iteration > 0) { //skip this in first iteration, no seam has been picked yet; nothing to distribute
distribute_seam_positions_for_alignment(po);
}
tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()), tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()),
[&](tbb::blocked_range<size_t> r) { [&](tbb::blocked_range<size_t> r) {
@ -595,139 +707,47 @@ for (const PrintObject *po : print.objects()) {
m_perimeter_points_per_object[po][layer_idx]; m_perimeter_points_per_object[po][layer_idx];
size_t current = 0; size_t current = 0;
while (current < layer_perimeter_points.size()) { while (current < layer_perimeter_points.size()) {
Vec3d seam_position = pick_seam_point(layer_perimeter_points, current,
layer_perimeter_points[layer_perimeter_points[current].m_seam_index].m_position; current + layer_perimeter_points[current].m_polygon_index_reverse,
DefaultSeamComparator { });
int other_layer_idx_bottom = std::max(
(int) layer_idx - (int) seam_align_layer_dist, 0);
int other_layer_idx_top = std::min(layer_idx + seam_align_layer_dist,
m_perimeter_points_per_object[po].size() - 1);
Vec3d seam_projected_position = seam_position;
for (int other_layer_idx = layer_idx + 1;
other_layer_idx <= other_layer_idx_top; ++other_layer_idx) {
auto layer_z = po->get_layer(other_layer_idx)->slice_z;
seam_projected_position = Vec3d { seam_projected_position.x(),
seam_projected_position.y(),
layer_z };
size_t closest_point_index = find_closest_point(
*m_perimeter_points_trees_per_object[po][other_layer_idx],
seam_projected_position);
SeamCandidate &closest_point =
m_perimeter_points_per_object[po][other_layer_idx][closest_point_index];
double distance = (seam_projected_position - closest_point.m_position).norm();
if (distance < seam_align_tolerable_dist) {
closest_point.m_nearby_seam_points->fetch_add(1, std::memory_order_relaxed);
seam_projected_position = closest_point.m_position;
} else {
break;
}
}
seam_projected_position = seam_position;
if (layer_idx > 0) {
for (int other_layer_idx = layer_idx - 1;
other_layer_idx >= other_layer_idx_bottom; --other_layer_idx) {
auto layer_z = po->get_layer(other_layer_idx)->slice_z;
seam_projected_position = Vec3d { seam_projected_position.x(),
seam_projected_position.y(),
layer_z };
size_t closest_point_index = find_closest_point(
*m_perimeter_points_trees_per_object[po][other_layer_idx],
seam_projected_position);
SeamCandidate &closest_point =
m_perimeter_points_per_object[po][other_layer_idx][closest_point_index];
double distance = (seam_projected_position - closest_point.m_position).norm();
if (distance < seam_align_tolerable_dist) {
closest_point.m_nearby_seam_points->fetch_add(1, std::memory_order_relaxed);
seam_projected_position = closest_point.m_position;
} else {
break;
}
}
}
current += layer_perimeter_points[current].m_polygon_index_reverse + 1; current += layer_perimeter_points[current].m_polygon_index_reverse + 1;
} }
} }
}); });
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: distribute seam positions to other layers : end";
Slic3r::CNumericLocalesSetter locales_setter;
FILE *fp = boost::nowide::fopen("seams.obj", "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "Couldn't open " << "seams.obj" << " for writing";
}
for (size_t layer_idx = 0; layer_idx < m_perimeter_points_per_object[po].size(); ++layer_idx) {
const auto &points = m_perimeter_points_per_object[po][layer_idx];
for (size_t i = 0; i < points.size(); ++i)
fprintf(fp, "v %f %f %f %zu\n", points[i].m_position[0], points[i].m_position[1],
points[i].m_position[2],
points[i].m_nearby_seam_points.get()->load(std::memory_order_relaxed));
}
fclose(fp);
} }
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: find seam for each perimeter polygon and store its position in each member of the polygon : start"; << "SeamPlacer: distribute_seam_positions_for_alignment, pick_seams : end";
tbb::parallel_for(tbb::blocked_range<size_t>(0, m_perimeter_points_per_object[po].size()),
[&](tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
std::vector<SeamCandidate> &layer_perimeter_points =
m_perimeter_points_per_object[po][layer_idx];
size_t current = 0;
while (current < layer_perimeter_points.size()) {
pick_seam_point(layer_perimeter_points, current,
current + layer_perimeter_points[current].m_polygon_index_reverse,
DefaultSeamComparator { });
current += layer_perimeter_points[current].m_polygon_index_reverse + 1;
}
}
});
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: find seam for each perimeter polygon and store its position in each member of the polygon : end";
} }
} }
}
void SeamPlacer::place_seam(const PrintObject *po, ExtrusionLoop &loop, coordf_t unscaled_z, int layer_index, void SeamPlacer::place_seam(const PrintObject *po, ExtrusionLoop &loop, coordf_t unscaled_z, int layer_index,
bool external_first) { bool external_first) {
assert(m_perimeter_points_trees_per_object.find(po) != nullptr); assert(m_perimeter_points_trees_per_object.find(po) != nullptr);
assert(m_perimeter_points_per_object.find(po) != nullptr); assert(m_perimeter_points_per_object.find(po) != nullptr);
assert(layer_index >= 0); assert(layer_index >= 0);
const auto &perimeter_points_tree = *m_perimeter_points_trees_per_object[po][layer_index]; const auto &perimeter_points_tree = *m_perimeter_points_trees_per_object[po][layer_index];
const auto &perimeter_points = m_perimeter_points_per_object[po][layer_index]; const auto &perimeter_points = m_perimeter_points_per_object[po][layer_index];
const Point &fp = loop.first_point(); const Point &fp = loop.first_point();
auto unscaled_p = unscale(fp); auto unscaled_p = unscale(fp);
auto closest_perimeter_point_index = find_closest_point(perimeter_points_tree, auto closest_perimeter_point_index = find_closest_point(perimeter_points_tree,
Vec3d { unscaled_p.x(), unscaled_p.y(), unscaled_z }); Vec3d { unscaled_p.x(), unscaled_p.y(), unscaled_z });
size_t perimeter_seam_index = perimeter_points[closest_perimeter_point_index].m_seam_index; size_t perimeter_seam_index = perimeter_points[closest_perimeter_point_index].m_seam_index;
Vec3d seam_position = perimeter_points[perimeter_seam_index].m_position; Vec3d seam_position = perimeter_points[perimeter_seam_index].m_position;
Point seam_point = scaled(Vec2d { seam_position.x(), seam_position.y() }); Point seam_point = scaled(Vec2d { seam_position.x(), seam_position.y() });
if (!loop.split_at_vertex(seam_point)) if (!loop.split_at_vertex(seam_point))
// The point is not in the original loop. // The point is not in the original loop.
// Insert it. // Insert it.
loop.split_at(seam_point, true); loop.split_at(seam_point, true);
} }
#ifdef DEBUG_FILES // Disabled debug code, can be used to export debug data into obj files (e.g. point cloud of visibility hits
#if 0
#include <boost/nowide/cstdio.hpp>
Slic3r::CNumericLocalesSetter locales_setter; Slic3r::CNumericLocalesSetter locales_setter;
FILE *fp = boost::nowide::fopen("perimeters.obj", "w"); FILE *fp = boost::nowide::fopen("perimeters.obj", "w");
if (fp == nullptr) { if (fp == nullptr) {
@ -741,8 +761,7 @@ if (!loop.split_at_vertex(seam_point))
fclose(fp); fclose(fp);
#endif #endif
//TODO disable, only debug code #if 0
#ifdef DEBUG_FILES
its_write_obj(triangles, "triangles.obj"); its_write_obj(triangles, "triangles.obj");
Slic3r::CNumericLocalesSetter locales_setter; Slic3r::CNumericLocalesSetter locales_setter;

View File

@ -26,6 +26,8 @@ class Grid;
namespace SeamPlacerImpl { namespace SeamPlacerImpl {
struct GlobalModelInfo;
enum EnforcedBlockedSeamPoint { enum EnforcedBlockedSeamPoint {
BLOCKED = 0, BLOCKED = 0,
NONE = 1, NONE = 1,
@ -37,7 +39,7 @@ struct SeamCandidate {
m_position(pos), m_visibility(0.0), m_overhang(0.0), m_polygon_index_reverse(polygon_index_reverse), m_seam_index( m_position(pos), m_visibility(0.0), m_overhang(0.0), m_polygon_index_reverse(polygon_index_reverse), m_seam_index(
0), m_ccw_angle( 0), m_ccw_angle(
ccw_angle), m_type(type) { ccw_angle), m_type(type) {
m_nearby_seam_points = std::make_unique<std::atomic<size_t>>(0); m_nearby_seam_points = std::make_unique<std::atomic<float>>(0.0);
} }
Vec3d m_position; Vec3d m_position;
float m_visibility; float m_visibility;
@ -45,7 +47,7 @@ struct SeamCandidate {
size_t m_polygon_index_reverse; size_t m_polygon_index_reverse;
size_t m_seam_index; size_t m_seam_index;
float m_ccw_angle; float m_ccw_angle;
std::unique_ptr<std::atomic<size_t>> m_nearby_seam_points; std::unique_ptr<std::atomic<float>> m_nearby_seam_points;
EnforcedBlockedSeamPoint m_type; EnforcedBlockedSeamPoint m_type;
}; };
@ -79,13 +81,13 @@ class SeamPlacer {
public: public:
using SeamCandidatesTree = using SeamCandidatesTree =
KDTreeIndirect<3, coordf_t, SeamPlacerImpl::SeamCandidateCoordinateFunctor>; KDTreeIndirect<3, coordf_t, SeamPlacerImpl::SeamCandidateCoordinateFunctor>;
static constexpr size_t ray_count_per_object = 200000; static constexpr double considered_hits_distance = 2.0;
static constexpr double considered_hits_distance = 4.0; static constexpr double expected_hits_per_area = 40.0;
static constexpr float cosine_hemisphere_sampling_power = 1.5; static constexpr float cosine_hemisphere_sampling_power = 1.5;
static constexpr float polygon_angles_arm_distance = 0.6; static constexpr float polygon_angles_arm_distance = 1.0;
static constexpr float enforcer_blocker_sqr_distance_tolerance = 0.2; static constexpr float enforcer_blocker_sqr_distance_tolerance = 0.4;
static constexpr size_t seam_align_iterations = 10; static constexpr size_t seam_align_iterations = 5;
static constexpr size_t seam_align_layer_dist = 30; static constexpr size_t seam_align_layer_dist = 50;
static constexpr float seam_align_tolerable_dist = 1; static constexpr float seam_align_tolerable_dist = 1;
//perimeter points per object per layer idx, and their corresponding KD trees //perimeter points per object per layer idx, and their corresponding KD trees
std::unordered_map<const PrintObject*, std::vector<std::vector<SeamPlacerImpl::SeamCandidate>>> m_perimeter_points_per_object; std::unordered_map<const PrintObject*, std::vector<std::vector<SeamPlacerImpl::SeamCandidate>>> m_perimeter_points_per_object;
@ -95,6 +97,12 @@ public:
void place_seam(const PrintObject *po, ExtrusionLoop &loop, coordf_t unscaled_z, int layer_index, void place_seam(const PrintObject *po, ExtrusionLoop &loop, coordf_t unscaled_z, int layer_index,
bool external_first); bool external_first);
private:
void gather_seam_candidates(const PrintObject* po, const SeamPlacerImpl::GlobalModelInfo& global_model_info);
void calculate_candidates_visibility(const PrintObject* po, const SeamPlacerImpl::GlobalModelInfo& global_model_info);
void calculate_overhangs(const PrintObject* po);
void distribute_seam_positions_for_alignment(const PrintObject* po);
}; };
} // namespace Slic3r } // namespace Slic3r