Experimental new implementation for Selection::synchronize_unselected_instances()

This commit is contained in:
enricoturri1966 2023-01-25 10:12:47 +01:00
parent 4078b7eafc
commit 388ecdd0aa

View File

@ -2889,6 +2889,225 @@ static void verify_instances_rotation_synchronized(const Model &model, const GLV
} }
#endif /* NDEBUG */ #endif /* NDEBUG */
#if ENABLE_WORLD_COORDINATE
#define NO_TEST 0
#define TEST_1 1
#define TEST_2 2
#define TEST_3 3
#define USE_ALGORITHM TEST_3
#if USE_ALGORITHM == TEST_1
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
const GLVolume& volume_i = *(*m_volumes)[i];
if (volume_i.is_wipe_tower)
continue;
const Geometry::Transformation& trafo_inst_i = volume_i.get_instance_transformation();
const Vec3d offset_i = trafo_inst_i.get_offset();
const double rotation_z_i = trafo_inst_i.get_rotation().z();
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume& volume_j = *(*m_volumes)[j];
if (volume_j.object_idx() != volume_i.object_idx() || volume_j.instance_idx() == volume_i.instance_idx())
continue;
const Geometry::Transformation& trafo_inst_j = m_cache.volumes_data[j].get_instance_transform();
const Vec3d offset_j = trafo_inst_j.get_offset();
const double rotation_z_j = trafo_inst_j.get_rotation().z();
const double diff_rotation_z = rotation_z_j - rotation_z_i;
const Transform3d new_matrix_inst_j = Geometry::translation_transform(offset_j) * Geometry::rotation_transform(diff_rotation_z * Vec3d::UnitZ()) *
Geometry::translation_transform(-offset_i) * trafo_inst_i.get_matrix();
volume_j.set_instance_transformation(Geometry::Transformation(new_matrix_inst_j));
done.insert(j);
}
}
//#ifndef NDEBUG
// verify_instances_rotation_synchronized(*m_model, *m_volumes);
//#endif /* NDEBUG */
}
#elif USE_ALGORITHM == TEST_2
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
auto fix_rotation = [](const Vec3d& rotation) {
const bool x = std::abs(std::abs(rotation.x()) - (double)PI) < EPSILON;
const bool y = std::abs(std::abs(rotation.y()) - (double)PI) < EPSILON;
const bool z = std::abs(std::abs(rotation.z()) - (double)PI) < EPSILON;
Vec3d ret = rotation;
if ((x && y) || (x && z) || (y && z)) {
ret += (double)PI * Vec3d::Ones();
if (ret.x() >= 2.0f * (double)PI) ret.x() -= 2.0f * (double)PI;
if (ret.y() >= 2.0f * (double)PI) ret.y() -= 2.0f * (double)PI;
if (ret.z() >= 2.0f * (double)PI) ret.z() -= 2.0f * (double)PI;
}
return ret;
};
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
const GLVolume& volume_i = *(*m_volumes)[i];
if (volume_i.is_wipe_tower)
continue;
const Geometry::Transformation& trafo_inst_i = volume_i.get_instance_transformation();
const Vec3d offset_i = trafo_inst_i.get_offset();
const double rotation_z_i = fix_rotation(trafo_inst_i.get_rotation()).z();
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume& volume_j = *(*m_volumes)[j];
if (volume_j.object_idx() != volume_i.object_idx() || volume_j.instance_idx() == volume_i.instance_idx())
continue;
const Geometry::Transformation& trafo_inst_j = m_cache.volumes_data[j].get_instance_transform();
const Vec3d offset_j = trafo_inst_j.get_offset();
const double rotation_z_j = fix_rotation(trafo_inst_j.get_rotation()).z();
const double diff_rotation_z = rotation_z_j - rotation_z_i;
const Transform3d new_matrix_inst_j = Geometry::translation_transform(offset_j) * Geometry::rotation_transform(diff_rotation_z * Vec3d::UnitZ()) *
Geometry::translation_transform(-offset_i) * trafo_inst_i.get_matrix();
volume_j.set_instance_transformation(Geometry::Transformation(new_matrix_inst_j));
done.insert(j);
}
}
//#ifndef NDEBUG
// verify_instances_rotation_synchronized(*m_model, *m_volumes);
//#endif /* NDEBUG */
}
#elif USE_ALGORITHM == TEST_3
#define APPLY_FIX_ROTATION 1
#define APPLY_FIX_ROTATION_2 2 && APPLY_FIX_ROTATION
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
#if APPLY_FIX_ROTATION
auto fix_rotation = [](const Vec3d& rotation) {
const bool x = std::abs(std::abs(rotation.x()) - (double)PI) < EPSILON;
const bool y = std::abs(std::abs(rotation.y()) - (double)PI) < EPSILON;
const bool z = std::abs(std::abs(rotation.z()) - (double)PI) < EPSILON;
Vec3d ret = rotation;
if ((x && y) || (x && z) || (y && z)) {
ret += (double)PI * Vec3d::Ones();
if (ret.x() >= 2.0f * (double)PI) ret.x() -= 2.0f * (double)PI;
if (ret.y() >= 2.0f * (double)PI) ret.y() -= 2.0f * (double)PI;
if (ret.z() >= 2.0f * (double)PI) ret.z() -= 2.0f * (double)PI;
}
return ret;
};
#if APPLY_FIX_ROTATION_2
auto fix_rotation_2 = [](const Vec3d& rotation) {
Vec3d ret = rotation;
if (0.5 * (double)PI <= rotation.y() && rotation.y() <= 1.5 * (double)PI)
ret.y() = 2.0 * (double)PI - ret.y();
return ret;
};
#endif // APPLY_FIX_ROTATION_2
#endif // APPLY_FIX_ROTATION
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
const GLVolume& volume_i = *(*m_volumes)[i];
if (volume_i.is_wipe_tower)
continue;
const Geometry::Transformation& cached_trafo_inst_i = m_cache.volumes_data[i].get_instance_transform();
const Geometry::Transformation& trafo_inst_i = volume_i.get_instance_transformation();
Geometry::Transformation trafo_i = Geometry::Transformation(trafo_inst_i.get_matrix() * cached_trafo_inst_i.get_matrix().inverse());
Matrix3d rotation_comp_i;
Matrix3d scale_comp_i;
trafo_i.get_matrix().computeRotationScaling(&rotation_comp_i, &scale_comp_i);
#if APPLY_FIX_ROTATION
#if APPLY_FIX_ROTATION_2
const Vec3d rotation_i = fix_rotation_2(fix_rotation(Geometry::extract_rotation(Transform3d(rotation_comp_i))));
#else
const Vec3d rotation_i = fix_rotation(Geometry::extract_rotation(Transform3d(rotation_comp_i)));
#endif // APPLY_FIX_ROTATION_2
#else
const Vec3d rotation_i = Geometry::extract_rotation(Transform3d(rotation_comp_i));
#endif // APPLY_FIX_ROTATION
std::cout << "rotation_i: " << to_string(rotation_i);
const Vec3d rotation_no_z_i(rotation_i.x(), rotation_i.y(), 0.0);
trafo_i = Geometry::Transformation(Geometry::rotation_transform(rotation_no_z_i) * Transform3d(scale_comp_i));
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume& volume_j = *(*m_volumes)[j];
if (volume_j.object_idx() != volume_i.object_idx() || volume_j.instance_idx() == volume_i.instance_idx())
continue;
const Geometry::Transformation& cached_trafo_inst_j = m_cache.volumes_data[j].get_instance_transform();
#if APPLY_FIX_ROTATION
const Vec3d rotation_cached_trafo_inst_j = fix_rotation(cached_trafo_inst_j.get_rotation());
#else
const Vec3d rotation_cached_trafo_inst_j = cached_trafo_inst_j.get_rotation();
#endif // APPLY_FIX_ROTATION
std::cout << " - rotation_cached_trafo_inst_j: " << to_string(rotation_cached_trafo_inst_j) << "\n";
const Transform3d rotation_z_cached_trafo_inst_j = Geometry::rotation_transform({ 0.0, 0.0, rotation_cached_trafo_inst_j.z() });
const Transform3d new_matrix_inst_j = cached_trafo_inst_j.get_offset_matrix() * rotation_z_cached_trafo_inst_j * trafo_i.get_matrix() *
rotation_z_cached_trafo_inst_j.inverse() * cached_trafo_inst_j.get_matrix_no_offset();
volume_j.set_instance_transformation(Geometry::Transformation(new_matrix_inst_j));
done.insert(j);
}
}
//#ifndef NDEBUG
// verify_instances_rotation_synchronized(*m_model, *m_volumes);
//#endif /* NDEBUG */
}
#else
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type) void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{ {
std::set<unsigned int> done; // prevent processing volumes twice std::set<unsigned int> done; // prevent processing volumes twice
@ -2904,17 +3123,11 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
const int object_idx = volume_i->object_idx(); const int object_idx = volume_i->object_idx();
const int instance_idx = volume_i->instance_idx(); const int instance_idx = volume_i->instance_idx();
#if ENABLE_WORLD_COORDINATE
const Geometry::Transformation& curr_inst_trafo_i = volume_i->get_instance_transformation(); const Geometry::Transformation& curr_inst_trafo_i = volume_i->get_instance_transformation();
const Vec3d curr_inst_rotation_i = curr_inst_trafo_i.get_rotation(); const Vec3d curr_inst_rotation_i = curr_inst_trafo_i.get_rotation();
const Vec3d& curr_inst_scaling_factor_i = curr_inst_trafo_i.get_scaling_factor(); const Vec3d& curr_inst_scaling_factor_i = curr_inst_trafo_i.get_scaling_factor();
const Vec3d& curr_inst_mirror_i = curr_inst_trafo_i.get_mirror(); const Vec3d& curr_inst_mirror_i = curr_inst_trafo_i.get_mirror();
const Vec3d old_inst_rotation_i = m_cache.volumes_data[i].get_instance_transform().get_rotation(); const Vec3d old_inst_rotation_i = m_cache.volumes_data[i].get_instance_transform().get_rotation();
#else
const Vec3d& rotation = volume_i->get_instance_rotation();
const Vec3d& scaling_factor = volume_i->get_instance_scaling_factor();
const Vec3d& mirror = volume_i->get_instance_mirror();
#endif // ENABLE_WORLD_COORDINATE
// Process unselected instances. // Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) { for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
@ -2928,44 +3141,28 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
if (volume_j->object_idx() != object_idx || volume_j->instance_idx() == instance_idx) if (volume_j->object_idx() != object_idx || volume_j->instance_idx() == instance_idx)
continue; continue;
#if ENABLE_WORLD_COORDINATE
const Vec3d old_inst_rotation_j = m_cache.volumes_data[j].get_instance_transform().get_rotation(); const Vec3d old_inst_rotation_j = m_cache.volumes_data[j].get_instance_transform().get_rotation();
assert(is_rotation_xy_synchronized(old_inst_rotation_i, old_inst_rotation_j)); assert(is_rotation_xy_synchronized(old_inst_rotation_i, old_inst_rotation_j));
const Geometry::Transformation& curr_inst_trafo_j = volume_j->get_instance_transformation(); const Geometry::Transformation& curr_inst_trafo_j = volume_j->get_instance_transformation();
const Vec3d curr_inst_rotation_j = curr_inst_trafo_j.get_rotation(); const Vec3d curr_inst_rotation_j = curr_inst_trafo_j.get_rotation();
Vec3d new_inst_offset_j = curr_inst_trafo_j.get_offset(); Vec3d new_inst_offset_j = curr_inst_trafo_j.get_offset();
Vec3d new_inst_rotation_j = curr_inst_rotation_j; Vec3d new_inst_rotation_j = curr_inst_rotation_j;
#else
assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()));
#endif // ENABLE_WORLD_COORDINATE
switch (sync_rotation_type) { switch (sync_rotation_type) {
case SyncRotationType::NONE: { case SyncRotationType::NONE: {
// z only rotation -> synch instance z // z only rotation -> synch instance z
// The X,Y rotations should be synchronized from start to end of the rotation. // The X,Y rotations should be synchronized from start to end of the rotation.
#if ENABLE_WORLD_COORDINATE
assert(is_rotation_xy_synchronized(curr_inst_rotation_i, curr_inst_rotation_j)); assert(is_rotation_xy_synchronized(curr_inst_rotation_i, curr_inst_rotation_j));
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA) if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
new_inst_offset_j.z() = curr_inst_trafo_i.get_offset().z(); new_inst_offset_j.z() = curr_inst_trafo_i.get_offset().z();
#else
assert(is_rotation_xy_synchronized(rotation, volume_j->get_instance_rotation()));
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
volume_j->set_instance_offset(Z, volume_i->get_instance_offset().z());
#endif // ENABLE_WORLD_COORDINATE
break; break;
} }
case SyncRotationType::GENERAL: { case SyncRotationType::GENERAL: {
// generic rotation -> update instance z with the delta of the rotation. // generic rotation -> update instance z with the delta of the rotation.
#if ENABLE_WORLD_COORDINATE
const double z_diff = Geometry::rotation_diff_z(old_inst_rotation_i, old_inst_rotation_j); const double z_diff = Geometry::rotation_diff_z(old_inst_rotation_i, old_inst_rotation_j);
new_inst_rotation_j = curr_inst_rotation_i + z_diff * Vec3d::UnitZ(); new_inst_rotation_j = curr_inst_rotation_i + z_diff * Vec3d::UnitZ();
#else
const double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation());
volume_j->set_instance_rotation({ rotation.x(), rotation.y(), rotation.z() + z_diff });
#endif // ENABLE_WORLD_COORDINATE
break; break;
} }
#if ENABLE_WORLD_COORDINATE
case SyncRotationType::FULL: { case SyncRotationType::FULL: {
// generic rotation -> update instance z with the delta of the rotation. // generic rotation -> update instance z with the delta of the rotation.
const Eigen::AngleAxisd angle_axis(Geometry::rotation_xyz_diff(curr_inst_rotation_i, old_inst_rotation_j)); const Eigen::AngleAxisd angle_axis(Geometry::rotation_xyz_diff(curr_inst_rotation_i, old_inst_rotation_j));
@ -2976,16 +3173,10 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
new_inst_rotation_j = curr_inst_rotation_i + z_diff * Vec3d::UnitZ(); new_inst_rotation_j = curr_inst_rotation_i + z_diff * Vec3d::UnitZ();
break; break;
} }
#endif // ENABLE_WORLD_COORDINATE
} }
#if ENABLE_WORLD_COORDINATE
volume_j->set_instance_transformation(Geometry::assemble_transform(new_inst_offset_j, new_inst_rotation_j, volume_j->set_instance_transformation(Geometry::assemble_transform(new_inst_offset_j, new_inst_rotation_j,
curr_inst_scaling_factor_i, curr_inst_mirror_i)); curr_inst_scaling_factor_i, curr_inst_mirror_i));
#else
volume_j->set_instance_scaling_factor(scaling_factor);
volume_j->set_instance_mirror(mirror);
#endif // ENABLE_WORLD_COORDINATE
done.insert(j); done.insert(j);
} }
@ -2995,6 +3186,70 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
verify_instances_rotation_synchronized(*m_model, *m_volumes); verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* NDEBUG */ #endif /* NDEBUG */
} }
#endif // USE_ALGORITHM
#else
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
const GLVolume* volume_i = (*m_volumes)[i];
if (volume_i->is_wipe_tower)
continue;
const int object_idx = volume_i->object_idx();
const int instance_idx = volume_i->instance_idx();
const Vec3d& rotation = volume_i->get_instance_rotation();
const Vec3d& scaling_factor = volume_i->get_instance_scaling_factor();
const Vec3d& mirror = volume_i->get_instance_mirror();
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* volume_j = (*m_volumes)[j];
if (volume_j->object_idx() != object_idx || volume_j->instance_idx() == instance_idx)
continue;
assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()));
switch (sync_rotation_type) {
case SyncRotationType::NONE: {
// z only rotation -> synch instance z
// The X,Y rotations should be synchronized from start to end of the rotation.
assert(is_rotation_xy_synchronized(rotation, volume_j->get_instance_rotation()));
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
volume_j->set_instance_offset(Z, volume_i->get_instance_offset().z());
break;
}
case SyncRotationType::GENERAL: {
// generic rotation -> update instance z with the delta of the rotation.
const double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation());
volume_j->set_instance_rotation({ rotation.x(), rotation.y(), rotation.z() + z_diff });
break;
}
}
volume_j->set_instance_scaling_factor(scaling_factor);
volume_j->set_instance_mirror(mirror);
done.insert(j);
}
}
#ifndef NDEBUG
verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* NDEBUG */
}
#endif // ENABLE_WORLD_COORDINATE
void Selection::synchronize_unselected_volumes() void Selection::synchronize_unselected_volumes()
{ {