support_material_synchronize_layers implementation

This commit is contained in:
bubnikv 2016-11-30 16:06:12 +01:00
parent 556204fddc
commit 38cb2842ac
2 changed files with 38 additions and 26 deletions

View File

@ -45,6 +45,7 @@ sub generate {
# We now know the upper and lower boundaries for our support material object
# (@$contact_z and @$top_z), so we can generate intermediate layers.
my $support_z = $self->support_layers_z(
$object,
[ sort keys %$contact ],
[ sort keys %$top ],
max(map $_->height, @{$object->layers})
@ -384,7 +385,7 @@ sub object_top {
}
sub support_layers_z {
my ($self, $contact_z, $top_z, $max_object_layer_height) = @_;
my ($self, $object, $contact_z, $top_z, $max_object_layer_height) = @_;
# quick table to check whether a given Z is a top surface
my %top = map { $_ => 1 } @$top_z;
@ -397,13 +398,18 @@ sub support_layers_z {
my $contact_distance = $self->contact_distance($support_material_height, $nozzle_diameter);
# initialize known, fixed, support layers
my @z = sort { $a <=> $b }
@$contact_z,
# TODO: why we have this?
# Vojtech: To detect the bottom interface layers by finding a Z value in the $top_z.
@$top_z,
# Top surfaces of the bottom interface layers.
(map $_ + $contact_distance, @$top_z);
my @z = @$contact_z;
my $synchronize = $self->object_config->support_material_synchronize_layers;
if (! $synchronize) {
push @z,
# TODO: why we have this?
# Vojtech: To detect the bottom interface layers by finding a Z value in the $top_z.
@$top_z;
push @z,
# Top surfaces of the bottom interface layers.
(map $_ + $contact_distance, @$top_z);
}
@z = sort { $a <=> $b } @z;
# enforce first layer height
my $first_layer_height = $self->object_config->get_value('first_layer_height');
@ -423,23 +429,29 @@ sub support_layers_z {
1..($self->object_config->raft_layers - 2);
}
# create other layers (skip raft layers as they're already done and use thicker layers)
for (my $i = $#z; $i >= $self->object_config->raft_layers; $i--) {
my $target_height = $support_material_height;
if ($i > 0 && $top{ $z[$i-1] }) {
# Bridge flow?
#FIXME We want to enforce not only the bridge flow height, but also the interface gap!
# This will introduce an additional layer if the gap is set to an extreme value!
$target_height = $nozzle_diameter;
}
# enforce first layer height
#FIXME better to split the layers regularly, than to bite a constant height one at a time,
# and then be left with a very thin layer at the end.
if (($i == 0 && $z[$i] > $target_height + $first_layer_height)
|| ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
splice @z, $i, 0, ($z[$i] - $target_height);
$i++;
if ($synchronize) {
@z = splice @z, $self->object_config->raft_layers;
# if ($self->object_config->raft_layers > scalar(@z));
push @z, map $_->print_z, @{$object->layers};
} else {
# create other layers (skip raft layers as they're already done and use thicker layers)
for (my $i = $#z; $i >= $self->object_config->raft_layers; $i--) {
my $target_height = $support_material_height;
if ($i > 0 && $top{ $z[$i-1] }) {
# Bridge flow?
#FIXME We want to enforce not only the bridge flow height, but also the interface gap!
# This will introduce an additional layer if the gap is set to an extreme value!
$target_height = $nozzle_diameter;
}
# enforce first layer height
#FIXME better to split the layers regularly, than to bite a constant height one at a time,
# and then be left with a very thin layer at the end.
if (($i == 0 && $z[$i] > $target_height + $first_layer_height)
|| ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
splice @z, $i, 0, ($z[$i] - $target_height);
$i++;
}
}
}

View File

@ -28,7 +28,7 @@ use Slic3r::Test;
interface_flow => $flow,
first_layer_flow => $flow,
);
my $support_z = $support->support_layers_z(\@contact_z, \@top_z, $config->layer_height);
my $support_z = $support->support_layers_z($print->print->objects->[0], \@contact_z, \@top_z, $config->layer_height);
my $expected_top_spacing = $support->contact_distance($config->layer_height, $config->nozzle_diameter->[0]);
is $support_z->[0], $config->first_layer_height,