Fixes for interconnection issues.

This commit is contained in:
tamasmeszaros 2019-03-07 17:17:47 +01:00
parent 0d59433178
commit 3bce99bd23
2 changed files with 113 additions and 54 deletions

View File

@ -76,6 +76,7 @@ const double SupportConfig::max_dual_pillar_height_mm = 35.0;
const double SupportConfig::optimizer_rel_score_diff = 1e-6;
const unsigned SupportConfig::optimizer_max_iterations = 500;
const unsigned SupportConfig::pillar_cascade_neighbors = 2;
const unsigned SupportConfig::max_bridges_on_pillar = 3;
using Coordf = double;
using Portion = std::tuple<double, double>;
@ -399,6 +400,12 @@ struct Pillar {
bool starts_from_head = true; // Could start from a junction as well
long start_junction_id = -1;
// How many bridges are connected to this pillar
unsigned bridges = 0;
// How many pillars are cascaded with this one
unsigned links = 0;
Pillar(const Vec3d& jp, const Vec3d& endp,
double radius = 1, size_t st = 45):
r(radius), steps(st), endpt(endp), starts_from_head(false)
@ -670,11 +677,19 @@ public:
return m_pillars.back();
}
template<class...Args> Pillar& add_pillar(const Vec3d& startp,
const Vec3d& endp,
double r)
void increment_bridges(const Pillar& pillar) {
if(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size())
m_pillars[size_t(pillar.id)].bridges++;
}
void increment_links(const Pillar& pillar) {
if(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size())
m_pillars[size_t(pillar.id)].links++;
}
template<class...Args> Pillar& add_pillar(Args&&...args)
{
m_pillars.emplace_back(startp, endp, r);
m_pillars.emplace_back(std::forward<Args>(args)...);
Pillar& pillar = m_pillars.back();
pillar.id = long(m_pillars.size() - 1);
pillar.starts_from_head = false;
@ -1138,8 +1153,8 @@ class SLASupportTree::Algorithm {
Vec3d supper = pillar.startpoint();
Vec3d slower = nextpillar.startpoint();
Vec3d eupper = pillar.endpt;
Vec3d elower = nextpillar.endpt;
Vec3d eupper = pillar.endpoint();
Vec3d elower = nextpillar.endpoint();
double zmin = m_result.ground_level + m_cfg.base_height_mm;
eupper(Z) = std::max(eupper(Z), zmin);
@ -1165,7 +1180,8 @@ class SLASupportTree::Algorithm {
startz = slower(Z) - zstep < supper(Z) ? slower(Z) - zstep : slower(Z);
endz = eupper(Z) + zstep > elower(Z) ? eupper(Z) + zstep : eupper(Z);
if(slower(Z) - eupper(Z) < std::abs(zstep)) { // no space for even one cross
if(slower(Z) - eupper(Z) < std::abs(zstep)) {
// no space for even one cross
// Get max available space
startz = std::min(supper(Z), slower(Z) - zstep);
@ -1189,7 +1205,8 @@ class SLASupportTree::Algorithm {
// results in a cross connection between the pillars.
Vec3d sj = supper, ej = slower; sj(Z) = startz; ej(Z) = sj(Z) + zstep;
while(ej(Z) >= endz) {
// TODO: This is a workaround to not have a faulty last bridge
while(ej(Z) >= eupper(Z) /*endz*/) {
if(bridge_mesh_intersect(sj,
dirv(sj, ej),
pillar.r) >= bridge_distance)
@ -1222,6 +1239,8 @@ class SLASupportTree::Algorithm {
// For connecting a head to a nearby pillar.
bool connect_to_nearpillar(const Head& head, const Pillar& nearpillar) {
if(nearpillar.bridges > m_cfg.max_bridges_on_pillar) return false;
Vec3d headjp = head.junction_point();
Vec3d nearjp_u = nearpillar.startpoint();
Vec3d nearjp_l = nearpillar.endpoint();
@ -1285,6 +1304,7 @@ class SLASupportTree::Algorithm {
}
m_result.add_bridge(bridgestart, bridgeend, r);
m_result.increment_bridges(nearpillar);
return true;
}
@ -1309,13 +1329,14 @@ class SLASupportTree::Algorithm {
auto ne = qres.front();
nearest_id = ne.second;
assert(nearest_id >= 0);
if(nearest_id >= 0) {
auto nearpillarID = unsigned(nearest_id);
const Pillar& nearpillar = m_result.pillars()[nearpillarID];
if(!connect_to_nearpillar(head, nearpillar)) {
nearest_id = -1; // continue searching
spindex.remove(ne); // without the current pillar
if(nearpillarID < m_result.pillars().size()) {
const Pillar& nearpillar = m_result.pillars()[nearpillarID];
if(!connect_to_nearpillar(head, nearpillar)) {
nearest_id = -1; // continue searching
spindex.remove(ne); // without the current pillar
}
}
}
}
@ -1556,7 +1577,8 @@ public:
return d2d < 2 * m_cfg.base_radius_mm &&
d3d < m_cfg.max_bridge_length_mm;
};
m_pillar_clusters = cluster(ground_head_indices, pointfn, predicate, 3);
m_pillar_clusters = cluster(ground_head_indices, pointfn, predicate,
m_cfg.max_bridges_on_pillar);
}
// Step: Routing the ground connected pinheads, and interconnecting
@ -1850,12 +1872,12 @@ public:
//A connection between two pillars only counts if the height ratio is
// bigger than 20%
double min_height_ratio = 0.2;
double min_height_ratio = 0.5;
std::set<unsigned long> pairs;
m_pillar_index.foreach(
[this, d, &pairs, neighbors, min_height_ratio, H1, H2]
[this, d, &pairs, neighbors, min_height_ratio]
(const SpatElement& el)
{
Vec3d qp = el.first;
@ -1872,7 +1894,6 @@ public:
});
const Pillar& pillar = m_result.pillars()[el.second];
unsigned ncount = 0;
for(auto& re : qres) {
if(re.second == el.second) continue;
@ -1886,52 +1907,89 @@ public:
// If the interconnection length between the two pillars is
// less than 20% of the longer pillar's height, don't count
if(neighborpillar.height / pillar.height > min_height_ratio)
++ncount;
m_result.increment_links(pillar);
if(pillar.height / neighborpillar.height > min_height_ratio)
m_result.increment_links(neighborpillar);
}
// 3 connections are enough for one pillar
if(ncount == neighbors) break;
if(pillar.links == neighbors) break;
}
});
size_t pillarcount = m_result.pillars().size();
for(size_t pid = 0; pid < pillarcount; pid++) {
const Pillar& pillar = m_result.pillars()[pid];
unsigned needpillars = 0;
if(ncount < 1 && pillar.height > H1) {
// No neighbors could not be found and the pillar is too long.
BOOST_LOG_TRIVIAL(warning) << "Pillar is too long and has no "
"neighbors. Head ID: "
<< pillar.start_junction_id;
needpillars = 1;
} else if(ncount < 2 && pillar.height > H2) {
if(pillar.bridges > m_cfg.max_bridges_on_pillar) needpillars = 3;
else if(pillar.links < 2 && pillar.height > H2) {
// Not enough neighbors to support this pillar
BOOST_LOG_TRIVIAL(warning) << "Pillar is too long and has too "
"few neighbors. Head ID: "
<< pillar.start_junction_id;
needpillars = 2 - ncount;
needpillars = 2 - pillar.links;
}
else if(pillar.links < 1 && pillar.height > H1) {
// No neighbors could be found and the pillar is too long.
needpillars = 1;
}
// WIP:
// note: sideheads ARE tested to reach the ground!
// Search for new pillar locations
bool found = false;
double alpha = 0; // goes to 2Pi
double r = 2 * m_cfg.base_radius_mm;
Vec3d pillarsp = pillar.startpoint();
Vec3d sp(pillarsp(X), pillarsp(Y), pillarsp(Z) - r);
std::vector<bool> tv(needpillars, false);
std::vector<Vec3d> spts(needpillars);
// if(needpillars > 0) {
// if(pillar.starts_from_head) {
// // search for a sidehead for this head. We will route that
// // to the ground.
// const Head& head = m_result.head(unsigned(pillar.start_junction_id));
// for(auto cl : m_pillar_clusters) {
// auto it = std::find(cl.begin(), cl.end(), head.id);
// if(it != cl.end()) {
// cl.erase(it);
// for(size_t j = 0; j < cl.size() && j < needpillars; j++) {
// unsigned hid = cl[j];
while(!found && alpha < 2*PI) {
// m_result.add_pillar(hid, endpoint, )
// .add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
// }
// }
// }
// }
// }
for(unsigned n = 0; n < needpillars; n++) {
double a = alpha + n * PI/3;
Vec3d s = sp;
s(X) += std::cos(a) * r;
s(Y) += std::sin(a) * r;
spts[n] = s;
auto hr = bridge_mesh_intersect(s, {0, 0, -1}, pillar.r);
tv[n] = std::isinf(hr.distance());
}
});
found = std::all_of(tv.begin(), tv.end(), [](bool v){return v;});
// 20 angles will be tried...
alpha += 0.1 * PI;
}
std::vector<std::reference_wrapper<const Pillar>> newpills;
newpills.reserve(needpillars);
if(found) for(unsigned n = 0; n < needpillars; n++) {
Vec3d s = spts[n]; double gnd = m_result.ground_level;
Pillar p(s, Vec3d(s(X), s(Y), gnd), pillar.r);
p.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
if(interconnect(pillar, p)) {
Pillar& pp = m_result.add_pillar(p);
m_result.add_junction(s, pillar.r);
double t = bridge_mesh_intersect(pillarsp,
dirv(pillarsp, s),
pillar.r);
if(distance(pillarsp, s) < t)
m_result.add_bridge(pillarsp, s, pillar.r);
if(pillar.endpoint()(Z) > m_result.ground_level)
m_result.add_junction(pillar.endpoint(), pillar.r);
newpills.emplace_back(pp);
}
}
if(!newpills.empty())
for(auto it = newpills.begin(), nx = std::next(it);
nx != newpills.end(); ++it, ++nx) interconnect(*it, *nx);
}
}
// Step: process the support points where there is not enough space for a

View File

@ -78,13 +78,13 @@ struct SupportConfig {
// and the model object's bounding box bottom.
double object_elevation_mm = 10;
// The max Z angle for a normal at which it will get completely ignored.
static const double normal_cutoff_angle;
// /////////////////////////////////////////////////////////////////////////
// Compile time configuration values (candidates for runtime)
// /////////////////////////////////////////////////////////////////////////
// The max Z angle for a normal at which it will get completely ignored.
static const double normal_cutoff_angle;
// The shortest distance of any support structure from the model surface
static const double safety_distance_mm;
@ -93,6 +93,7 @@ struct SupportConfig {
static const double optimizer_rel_score_diff;
static const unsigned optimizer_max_iterations;
static const unsigned pillar_cascade_neighbors;
static const unsigned max_bridges_on_pillar;
};
struct PoolConfig;