Improve code

This commit is contained in:
tamasmeszaros 2022-12-05 16:17:15 +01:00
parent 5e34bbcbe5
commit 3d81800d15

View file

@ -110,31 +110,34 @@ inline StopCriteria get_criteria(const SupportTreeConfig &cfg)
// A simple sphere with a center and a radius
struct Ball { Vec3d p; double R; };
struct Beam { // Defines a set of rays displaced along a cone's surface
static constexpr size_t SAMPLES = 8;
template<size_t Samples = 8>
struct Beam_ { // Defines a set of rays displaced along a cone's surface
static constexpr size_t SAMPLES = Samples;
Vec3d src;
Vec3d dir;
Vec3d src;
Vec3d dir;
double r1;
double r2; // radius of the beam 1 unit further from src in dir direction
Beam(const Vec3d &s, const Vec3d &d, double R1, double R2):
src{s}, dir{d}, r1{R1}, r2{R2} {};
Beam_(const Vec3d &s, const Vec3d &d, double R1, double R2)
: src{s}, dir{d}, r1{R1}, r2{R2} {};
Beam(const Ball &src_ball, const Ball &dst_ball):
src{src_ball.p}, dir{dirv(src_ball.p, dst_ball.p)}, r1{src_ball.R}
Beam_(const Ball &src_ball, const Ball &dst_ball)
: src{src_ball.p}, dir{dirv(src_ball.p, dst_ball.p)}, r1{src_ball.R}
{
r2 = src_ball.R +
(dst_ball.R - src_ball.R) / distance(src_ball.p, dst_ball.p);
r2 = src_ball.R
+ (dst_ball.R - src_ball.R) / distance(src_ball.p, dst_ball.p);
}
Beam(const Vec3d &s, const Vec3d &d, double R)
Beam_(const Vec3d &s, const Vec3d &d, double R)
: src{s}, dir{d}, r1{R}, r2{R}
{}
};
template<class Ex>
Hit beam_mesh_hit(Ex ex, const AABBMesh &mesh, const Beam &beam, double sd)
using Beam = Beam_<8>;
template<class Ex, size_t S = 8>
Hit beam_mesh_hit(Ex ex, const AABBMesh &mesh, const Beam_<S> &beam, double sd)
{
Vec3d src = beam.src;
Vec3d dst = src + beam.dir;
@ -143,12 +146,12 @@ Hit beam_mesh_hit(Ex ex, const AABBMesh &mesh, const Beam &beam, double sd)
Vec3d D = (dst - src);
Vec3d dir = D.normalized();
PointRing<Beam::SAMPLES> ring{dir};
PointRing<S> ring{dir};
using Hit = AABBMesh::hit_result;
// Hit results
std::array<Hit, Beam::SAMPLES> hits;
std::array<Hit, S> hits;
execution::for_each(
ex, size_t(0), hits.size(),
@ -172,7 +175,7 @@ Hit beam_mesh_hit(Ex ex, const AABBMesh &mesh, const Beam &beam, double sd)
}
} else
hit = hr;
}, std::min(execution::max_concurrency(ex), Beam::SAMPLES));
}, std::min(execution::max_concurrency(ex), S));
return min_hit(hits.begin(), hits.end());
}
@ -480,6 +483,79 @@ constexpr bool IsWideningFn = std::is_invocable_r_v</*retval*/ double,
Vec3d /*dir*/,
double /*length*/>;
template<class WFn> struct BeamSamples { static constexpr size_t Value = 8; };
template<class WFn> constexpr size_t BeamSamplesV = BeamSamples<remove_cvref_t<WFn>>::Value;
enum class GroundRouteCheck { Full, PillarOnly };
template<class Ex, class WideningFn,
class = std::enable_if_t<IsWideningFn<WideningFn>> >
Vec3d check_ground_route(
Ex policy,
const SupportableMesh &sm,
const Junction &source,
const Vec3d &dir,
double bridge_len,
WideningFn &&wideningfn,
GroundRouteCheck type = GroundRouteCheck::Full
)
{
static const constexpr auto Samples = BeamSamplesV<WideningFn>;
Vec3d ret;
const auto sd = sm.cfg.safety_distance(source.r);
const auto gndlvl = ground_level(sm);
Vec3d bridge_end = source.pos + bridge_len * dir;
double down_l = bridge_end.z() - gndlvl;
double bridge_r = wideningfn(Ball{source.pos, source.r}, dir, bridge_len);
double brhit_dist = 0.;
if (bridge_len > EPSILON && type == GroundRouteCheck::Full) {
// beam_mesh_hit with a zero lenght bridge is invalid
Beam_<Samples> bridgebeam{Ball{source.pos, source.r},
Ball{bridge_end, bridge_r}};
auto brhit = beam_mesh_hit(policy, sm.emesh, bridgebeam, sd);
brhit_dist = brhit.distance();
} else {
brhit_dist = bridge_len;
}
if (brhit_dist < bridge_len) {
ret = (source.pos + brhit_dist * dir);
} else {
// check if pillar can be placed below
auto gp = Vec3d{bridge_end.x(), bridge_end.y(), gndlvl};
double end_radius = wideningfn(
Ball{bridge_end, bridge_r}, DOWN, bridge_end.z() - gndlvl);
Beam_<Samples> gndbeam {{bridge_end, bridge_r}, {gp, end_radius}};
auto gndhit = beam_mesh_hit(policy, sm.emesh, gndbeam, sd);
double gnd_hit_d = std::min(gndhit.distance(), down_l + EPSILON);
if (std::isinf(gndhit.distance()) && sm.cfg.object_elevation_mm < EPSILON) {
// Dealing with zero elevation mode, to not route pillars
// into the gap between the optional pad and the model
double gap = std::sqrt(sm.emesh.squared_distance(gp));
double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
double min_gap = sm.cfg.pillar_base_safety_distance_mm + base_r;
if (gap < min_gap) {
gnd_hit_d = down_l - min_gap + gap;
}
}
ret = Vec3d{bridge_end.x(), bridge_end.y(), bridge_end.z() - gnd_hit_d};
}
return ret;
}
template<class Ex, class WideningFn,
class = std::enable_if_t<IsWideningFn<WideningFn>> >
GroundConnection deepsearch_ground_connection(
@ -489,7 +565,6 @@ GroundConnection deepsearch_ground_connection(
WideningFn &&wideningfn,
const Vec3d &init_dir = DOWN)
{
auto sd = sm.cfg.safety_distance(source.r);
const auto gndlvl = ground_level(sm);
auto criteria = get_criteria(sm.cfg);
@ -512,56 +587,15 @@ GroundConnection deepsearch_ground_connection(
// traced from source, throught this bridge and an attached pillar. If there
// is a collision with the mesh, the Z height is returned. Otherwise the
// z level of ground is returned.
size_t icnt = 0;
auto z_fn = [&](const opt::Input<3> &input) {
++icnt;
double ret = NaNd;
// solver suggests polar, azimuth and bridge length values:
auto &[plr, azm, bridge_len] = input;
Vec3d n = spheric_to_dir(plr, azm);
Vec3d bridge_end = source.pos + bridge_len * n;
double down_l = bridge_end.z() - gndlvl;
double bridge_r = wideningfn(Ball{source.pos, source.r}, n, bridge_len);
double brhit_dist = 0.;
Vec3d hitpt = check_ground_route(policy, sm, source, n, bridge_len, wideningfn);
if (bridge_len > EPSILON) {
// beam_mesh_hit with a zero lenght bridge is invalid
Beam bridgebeam{Ball{source.pos, source.r}, Ball{bridge_end, bridge_r}};
auto brhit = beam_mesh_hit(policy, sm.emesh, bridgebeam, sd);
brhit_dist = brhit.distance();
}
if (brhit_dist < bridge_len) {
ret = (source.pos + brhit_dist * n).z();
} else {
// check if pillar can be placed below
auto gp = Vec3d{bridge_end.x(), bridge_end.y(), gndlvl};
double end_radius = wideningfn(Ball{bridge_end, bridge_r}, DOWN, bridge_end.z() - gndlvl);
Beam gndbeam {{bridge_end, bridge_r}, {gp, end_radius}};
auto gndhit = beam_mesh_hit(policy, sm.emesh, gndbeam, sd);
double gnd_hit_d = std::min(gndhit.distance(), down_l + EPSILON);
if (std::isinf(gndhit.distance()) && sm.cfg.object_elevation_mm < EPSILON) {
// Dealing with zero elevation mode, to not route pillars
// into the gap between the optional pad and the model
double gap = std::sqrt(sm.emesh.squared_distance(gp));
double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
double min_gap = sm.cfg.pillar_base_safety_distance_mm + base_r;
if (gap < min_gap) {
gnd_hit_d = down_l - min_gap + gap;
}
}
ret = bridge_end.z() - gnd_hit_d;
}
return ret;
return hitpt.z();
};
auto [plr_init, azm_init] = dir_to_spheric(init_dir);
@ -584,29 +618,30 @@ GroundConnection deepsearch_ground_connection(
bound_constraints
);
std::cout << "Iterations: " << icnt << std::endl;
GroundConnection conn;
// Extract and apply the result
auto [plr, azm, bridge_l] = oresult.optimum;
Vec3d n = spheric_to_dir(plr, azm);
// Now that the optimizer gave a possible route to ground with a bridge
// direction and lenght. This lenght can be shortened further by
// brute-force queries of free route straigt down for a possible pillar.
// NOTE: This requirement could be added to the optimization, but it would
// not find quickly enough an accurate solution.
double l = 0.;
// Now the optimizer gave a possible route to ground with a bridge direction
// and length. This length can be shortened further by brute-force queries
// of free route straigt down for a possible pillar.
// NOTE: This requirement could be incorporated into the optimization as a
// constraint, but it would not find quickly enough an accurate solution.
double l = 0., l_max = bridge_l;
double zlvl = std::numeric_limits<double>::infinity();
while(zlvl > gndlvl && l < sm.cfg.max_bridge_length_mm) {
zlvl = z_fn({plr, azm, l});
while(zlvl > gndlvl && l <= l_max) {
zlvl = check_ground_route(policy, sm, source, n, l, wideningfn,
GroundRouteCheck::PillarOnly).z();
if (zlvl <= gndlvl)
bridge_l = l;
l += source.r;
}
Vec3d n = spheric_to_dir(plr, azm);
Vec3d bridge_end = source.pos + bridge_l * n;
Vec3d gp{bridge_end.x(), bridge_end.y(), gndlvl};
@ -626,467 +661,6 @@ GroundConnection deepsearch_ground_connection(
return conn;
}
//template<class Ex, class WideningFn,
// class = std::enable_if_t<IsWideningFn<WideningFn>> >
//GroundConnection deepsearch_ground_connection(
// Ex policy,
// const SupportableMesh &sm,
// const Junction &source,
// WideningFn &&wideningfn,
// const Vec3d &init_dir = DOWN)
//{
// const auto sd = sm.cfg.safety_distance(source.r);
// const auto gndlvl = ground_level(sm);
// auto criteria = get_criteria(sm.cfg);
// criteria.max_iterations(2000);
// criteria.abs_score_diff(NaNd);
// criteria.rel_score_diff(NaNd);
// auto criteria_loc = criteria;
// criteria_loc.max_iterations(100);
// criteria_loc.abs_score_diff(EPSILON);
// criteria_loc.rel_score_diff(0.05);
// // Cobyla (local method) supports inequality constraints which will be
// // needed here.
// Optimizer<opt::NLoptAUGLAG<opt::AlgNLoptMLSL>> solver(criteria);
// solver.set_loc_criteria(criteria_loc);
// solver.seed(0);
// constexpr double Cap = 1e6;
// Optimizer<opt::AlgNLoptMLSL> solver_initial(criteria.stop_score(Cap).max_iterations(5000));
// solver_initial.set_loc_criteria(criteria_loc.stop_score(Cap));
// solver_initial.seed(0);
// size_t icnt = 0;
// auto l_fn = [&](const opt::Input<3> &input) {
// ++icnt;
// double ret = NaNd;
// // solver suggests polar, azimuth and bridge length values:
// auto &[plr, azm, bridge_len] = input;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_len * n;
// double down_l = bridge_end.z() - gndlvl;
// double bridge_r = wideningfn(Ball{source.pos, source.r}, n, bridge_len);
// double brhit_dist = 0.;
// if (bridge_len > EPSILON) {
// // beam_mesh_hit with a zero lenght bridge is invalid
// Beam bridgebeam{Ball{source.pos, source.r}, Ball{bridge_end, bridge_r}};
// auto brhit = beam_mesh_hit(policy, sm.emesh, bridgebeam, sd);
// brhit_dist = brhit.distance();
// }
// if (brhit_dist < bridge_len) {
// ret = brhit_dist;
// } else {
// // check if pillar can be placed below
// auto gp = Vec3d{bridge_end.x(), bridge_end.y(), gndlvl};
// double end_radius = wideningfn(Ball{bridge_end, bridge_r}, DOWN, bridge_end.z() - gndlvl);
// Beam gndbeam {{bridge_end, bridge_r}, {gp, end_radius}};
// auto gndhit = beam_mesh_hit(policy, sm.emesh, gndbeam, sd);
// double gnd_hit_d = gndhit.distance();// std::min(gndhit.distance(), down_l + EPSILON);
// if (std::isinf(gnd_hit_d) && sm.cfg.object_elevation_mm < EPSILON) {
// // Dealing with zero elevation mode, to not route pillars
// // into the gap between the optional pad and the model
// double gap = std::sqrt(sm.emesh.squared_distance(gp));
// double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
// double min_gap = sm.cfg.pillar_base_safety_distance_mm + base_r;
// if (gap < min_gap) {
// gnd_hit_d = down_l - min_gap + gap;
// }
// }
// ret = bridge_len + gnd_hit_d;
// }
// if (std::isinf(ret)) {
// ret = Cap + EPSILON;
// }
// return ret;
// };
// auto h_fn = [&source, gndlvl](const opt::Input<3> &input) {
// // solver suggests polar, azimuth and bridge length values:
// auto &[plr, azm, bridge_l] = input;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_l * n;
// double down_l = bridge_end.z() - gndlvl;
// double full_l = bridge_l + down_l;
// return full_l;
// };
// auto ineq_fn = [&](const opt::Input<3> &input) {
// double h = h_fn(input);
// double l = l_fn(input);
// double r = h - l;
// return r; // <= 0
// };
// auto ineq_fn_gnd = [&](const opt::Input<3> &input) {
// auto &[plr, azm, bridge_l] = input;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_l * n;
// return gndlvl - bridge_end.z(); // <= 0
// };
// auto [plr_init, azm_init] = dir_to_spheric(init_dir);
// // Saturate the polar angle to max tilt defined in config
// plr_init = std::max(plr_init, PI - sm.cfg.bridge_slope);
// auto bound_constraints =
// bounds({ {PI - sm.cfg.bridge_slope, PI}, // bounds for polar angle
// {-PI, PI}, // bounds for azimuth
// {0., sm.cfg.max_bridge_length_mm} }); // bounds bridge length
// auto oresult_init = solver_initial.to_max().optimize(
// l_fn,
// initvals({plr_init, azm_init, 0.}),
// bound_constraints/*,
// {},
// std::make_tuple(ineq_fn_gnd)*/
// );
// auto oresult = solver.to_min().optimize(
// h_fn,
// oresult_init.optimum,
// bound_constraints,
// {},
// std::make_tuple(ineq_fn, ineq_fn_gnd)
// );
// std::cout << "Iterations: " << icnt << std::endl;
// GroundConnection conn;
// // Extract and apply the result
// auto &[plr, azm, bridge_l] = oresult.optimum;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_l * n;
// Vec3d gp{bridge_end.x(), bridge_end.y(), gndlvl};
// double bridge_r = wideningfn(Ball{source.pos, source.r}, n, bridge_l);
// double down_l = bridge_end.z() - gndlvl;
// double end_radius = wideningfn(Ball{bridge_end, bridge_r}, DOWN, down_l);
// double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
// conn.path.emplace_back(source);
// if (bridge_l > EPSILON)
// conn.path.emplace_back(Junction{bridge_end, bridge_r});
// if (ineq_fn(oresult.optimum) <= 0. && ineq_fn_gnd(oresult.optimum) <= 0.)
// conn.pillar_base =
// Pedestal{gp, sm.cfg.base_height_mm, base_r, end_radius};
// return conn;
//}
//template<class Ex, class WideningFn,
// class = std::enable_if_t<IsWideningFn<WideningFn>> >
//GroundConnection deepsearch_ground_connection(
// Ex policy,
// const SupportableMesh &sm,
// const Junction &source,
// WideningFn &&wideningfn,
// const Vec3d &init_dir = DOWN)
//{
// const auto sd = sm.cfg.safety_distance(source.r);
// const auto gndlvl = ground_level(sm);
// auto criteria_heavy = get_criteria(sm.cfg);
// criteria_heavy.max_iterations(10000);
// criteria_heavy.abs_score_diff(NaNd);
// criteria_heavy.rel_score_diff(NaNd);
// // Cobyla (local method) supports inequality constraints which will be
// // needed here.
// Optimizer<opt::AlgNLoptCobyla> solver_heavy(criteria_heavy);
// solver_heavy.seed(0);
// // Score is the total lenght of the route. Feasible routes will have
// // infinite length (rays not colliding with model), thus the stop score
// // should be a reasonably big number.
// constexpr double StopScore = 1e6;
// auto criteria_easy = get_criteria(sm.cfg);
// criteria_easy.max_iterations(1000);
// criteria_easy.abs_score_diff(NaNd);
// criteria_easy.rel_score_diff(NaNd);
// criteria_easy.stop_score(StopScore);
// Optimizer<opt::AlgNLoptMLSL> solver_easy(criteria_easy);
// solver_easy.set_loc_criteria(criteria_easy.max_iterations(100).abs_score_diff(EPSILON).rel_score_diff(0.01));
// solver_easy.seed(0);
// size_t icnt = 0;
// auto optfn = [&](const opt::Input<3> &input) {
// ++icnt;
// double ret = NaNd;
// // solver suggests polar, azimuth and bridge length values:
// auto &[plr, azm, bridge_len] = input;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_len * n;
// double full_len = bridge_len + bridge_end.z() - gndlvl;
// double bridge_r = wideningfn(Ball{source.pos, source.r}, n, bridge_len);
// double brhit_dist = 0.;
// if (bridge_len > EPSILON) {
// // beam_mesh_hit with a zero lenght bridge is invalid
// Beam bridgebeam{Ball{source.pos, source.r}, Ball{bridge_end, bridge_r}};
// auto brhit = beam_mesh_hit(policy, sm.emesh, bridgebeam, sd);
// brhit_dist = brhit.distance();
// }
// if (brhit_dist < bridge_len) {
// ret = brhit_dist;
// } else {
// // check if pillar can be placed below
// auto gp = Vec3d{bridge_end.x(), bridge_end.y(), gndlvl};
// double end_radius = wideningfn(Ball{bridge_end, bridge_r}, DOWN, bridge_end.z() - gndlvl);
// Beam gndbeam {{bridge_end, bridge_r}, {gp, end_radius}};
// auto gndhit = beam_mesh_hit(policy, sm.emesh, gndbeam, sd);
// if (std::isinf(gndhit.distance())) {
// // Ground route is free with this bridge
// if (sm.cfg.object_elevation_mm < EPSILON) {
// // Dealing with zero elevation mode, to not route pillars
// // into the gap between the optional pad and the model
// double gap = std::sqrt(sm.emesh.squared_distance(gp));
// double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
// double max_gap = sm.cfg.pillar_base_safety_distance_mm + base_r;
// if (gap < max_gap)
// ret = full_len - max_gap + gap;
// else // success
// ret = StopScore + EPSILON;
// } else {
// // No zero elevation, return success
// ret = StopScore + EPSILON;
// }
// } else {
// // Ground route is not free
// ret = bridge_len + gndhit.distance();
// }
// }
// return ret;
// };
// auto l_fn = [&](const opt::Input<3> &input) {
// ++icnt;
// double ret = NaNd;
// // solver suggests polar, azimuth and bridge length values:
// auto &[plr, azm, bridge_len] = input;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_len * n;
// double down_l = bridge_end.z() - gndlvl;
// double bridge_r = wideningfn(Ball{source.pos, source.r}, n, bridge_len);
// double brhit_dist = 0.;
// if (bridge_len > EPSILON) {
// // beam_mesh_hit with a zero lenght bridge is invalid
// Beam bridgebeam{Ball{source.pos, source.r}, Ball{bridge_end, bridge_r}};
// auto brhit = beam_mesh_hit(policy, sm.emesh, bridgebeam, sd);
// brhit_dist = brhit.distance();
// }
// if (brhit_dist < bridge_len) {
// ret = brhit_dist;
// } else {
// // check if pillar can be placed below
// auto gp = Vec3d{bridge_end.x(), bridge_end.y(), gndlvl};
// double end_radius = wideningfn(Ball{bridge_end, bridge_r}, DOWN, bridge_end.z() - gndlvl);
// Beam gndbeam {{bridge_end, bridge_r}, {gp, end_radius}};
// auto gndhit = beam_mesh_hit(policy, sm.emesh, gndbeam, sd);
// double gnd_hit_d = std::min(gndhit.distance(), down_l + EPSILON);
// if (std::isinf(gndhit.distance()) && sm.cfg.object_elevation_mm < EPSILON) {
// // Dealing with zero elevation mode, to not route pillars
// // into the gap between the optional pad and the model
// double gap = std::sqrt(sm.emesh.squared_distance(gp));
// double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
// double min_gap = sm.cfg.pillar_base_safety_distance_mm + base_r;
// gnd_hit_d = gnd_hit_d - min_gap + gap;
// }
// ret = bridge_len + gnd_hit_d;
// }
// return ret;
// };
// auto h_fn = [&source, gndlvl](const opt::Input<3> &input) {
// // solver suggests polar, azimuth and bridge length values:
// auto &[plr, azm, bridge_l] = input;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_l * n;
// double down_l = bridge_end.z() - gndlvl;
// double full_l = bridge_l + down_l;
// return full_l;
// };
// auto ineq_fn = [&](const opt::Input<3> &input) {
// double h = h_fn(input);
// double l = l_fn(input);
// double r = h - l;
// return r;
// };
// auto [plr_init, azm_init] = dir_to_spheric(init_dir);
// // Saturate the polar angle to max tilt defined in config
// plr_init = std::max(plr_init, PI - sm.cfg.bridge_slope);
// auto bound_constraints =
// bounds({ {PI - sm.cfg.bridge_slope, PI}, // bounds for polar angle
// {-PI, PI}, // bounds for azimuth
// {0., sm.cfg.max_bridge_length_mm} }); // bounds bridge length
// auto oresult_init = solver_easy.to_max().optimize(
// optfn,
// initvals({plr_init, azm_init, 0.}), // start with a zero bridge
// bound_constraints
// );
// auto l_fn_len = [&](const opt::Input<1> &input) {
// ++icnt;
// double ret = NaNd;
// // solver suggests polar, azimuth and bridge length values:
// auto &bridge_len = input[0];
// auto &[plr, azm, _] = oresult_init.optimum;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_len * n;
// double down_l = bridge_end.z() - gndlvl;
// double bridge_r = wideningfn(Ball{source.pos, source.r}, n, bridge_len);
// double brhit_dist = 0.;
// if (bridge_len > EPSILON) {
// // beam_mesh_hit with a zero lenght bridge is invalid
// Beam bridgebeam{Ball{source.pos, source.r}, Ball{bridge_end, bridge_r}};
// auto brhit = beam_mesh_hit(policy, sm.emesh, bridgebeam, sd);
// brhit_dist = brhit.distance();
// }
// if (brhit_dist < bridge_len) {
// ret = brhit_dist;
// } else {
// // check if pillar can be placed below
// auto gp = Vec3d{bridge_end.x(), bridge_end.y(), gndlvl};
// double end_radius = wideningfn(Ball{bridge_end, bridge_r}, DOWN, bridge_end.z() - gndlvl);
// Beam gndbeam {{bridge_end, bridge_r}, {gp, end_radius}};
// auto gndhit = beam_mesh_hit(policy, sm.emesh, gndbeam, sd);
// double gnd_hit_d = std::min(gndhit.distance(), down_l + EPSILON);
// if (std::isinf(gndhit.distance()) && sm.cfg.object_elevation_mm < EPSILON) {
// // Dealing with zero elevation mode, to not route pillars
// // into the gap between the optional pad and the model
// double gap = std::sqrt(sm.emesh.squared_distance(gp));
// double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
// double min_gap = sm.cfg.pillar_base_safety_distance_mm + base_r;
// gnd_hit_d = gnd_hit_d - min_gap + gap;
// }
// ret = bridge_len + gnd_hit_d;
// }
// return ret;
// };
// auto h_fn_len = [&source, gndlvl, &oresult_init](const opt::Input<1> &input) {
// // solver suggests polar, azimuth and bridge length values:
// auto &bridge_l = input[0];
// auto &[plr, azm, _] = oresult_init.optimum;
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_l * n;
// double down_l = bridge_end.z() - gndlvl;
// double full_l = bridge_l + down_l;
// return full_l;
// };
// auto ineq_fn_len = [&](const opt::Input<1> &input) {
// double h = h_fn_len(input);
// double l = l_fn_len(input);
// double r = h - l;
// return r;
// };
// auto oresult = solver_heavy.to_min().optimize(
// h_fn_len,
// opt::Input<1>({oresult_init.optimum[2]}),
// {bound_constraints[2]},
// {},
// std::make_tuple(ineq_fn_len)
// );
// std::cout << "Iterations: " << icnt << std::endl;
// GroundConnection conn;
// // Extract and apply the result
//// auto &[plr, azm, bridge_l] = oresult.optimum;
// double plr = oresult_init.optimum[0];
// double azm = oresult_init.optimum[1];
// double bridge_l = oresult.optimum[0];
// Vec3d n = spheric_to_dir(plr, azm);
// Vec3d bridge_end = source.pos + bridge_l * n;
// Vec3d gp{bridge_end.x(), bridge_end.y(), gndlvl};
// double bridge_r = wideningfn(Ball{source.pos, source.r}, n, bridge_l);
// double down_l = bridge_end.z() - gndlvl;
// double end_radius = wideningfn(Ball{bridge_end, bridge_r}, DOWN, down_l);
// double base_r = std::max(sm.cfg.base_radius_mm, end_radius);
// conn.path.emplace_back(source);
// if (bridge_l > EPSILON)
// conn.path.emplace_back(Junction{bridge_end, bridge_r});
// if (ineq_fn_len(oresult.optimum) <= 0 && bridge_end.z() >= gndlvl)
// conn.pillar_base =
// Pedestal{gp, sm.cfg.base_height_mm, base_r, end_radius};
// return conn;
//}
template<class Ex>
GroundConnection deepsearch_ground_connection(Ex policy,
const SupportableMesh &sm,
@ -1123,6 +697,10 @@ struct DefaultWideningModel {
};
};
template<> struct BeamSamples<DefaultWideningModel> {
static constexpr size_t Value = 16;
};
template<class Ex>
GroundConnection deepsearch_ground_connection(Ex policy,
const SupportableMesh &sm,