raft layers, partial objects memory, params acceleration

This commit is contained in:
PavelMikus 2023-01-23 16:45:06 +01:00 committed by Pavel Mikuš
parent f2deefd1de
commit 41f1b83ae4
3 changed files with 82 additions and 31 deletions

View File

@ -428,8 +428,9 @@ void PrintObject::generate_support_spots()
m_print->set_status(75, L("Searching support spots"));
if (!this->shared_regions()->generated_support_points.has_value()) {
PrintTryCancel cancel_func = m_print->make_try_cancel();
SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values};
SupportSpotsGenerator::SupportPoints supp_points = SupportSpotsGenerator::full_search(this, cancel_func, params);
SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values,
float(this->print()->m_config.perimeter_acceleration.getFloat())};
auto [supp_points, partial_objects] = SupportSpotsGenerator::full_search(this, cancel_func, params);
this->m_shared_regions->generated_support_points = {this->trafo_centered(), supp_points};
m_print->throw_if_canceled();
}
@ -468,7 +469,8 @@ void PrintObject::estimate_curled_extrusions()
// Estimate curling of support material and add it to the malformaition lines of each layer
float support_flow_width = support_material_flow(this, this->config().layer_height).width();
SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values};
SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values,
float(this->print()->config().perimeter_acceleration.getFloat())};
SupportSpotsGenerator::estimate_supports_malformations(this->support_layers(), support_flow_width, params);
SupportSpotsGenerator::estimate_malformations(this->layers(), params);
m_print->throw_if_canceled();

View File

@ -579,12 +579,13 @@ public:
};
// return new object part and actual area covered by extrusions
std::tuple<ObjectPart, float> build_object_part_from_slice(const LayerSlice &slice, const Layer *layer)
std::tuple<ObjectPart, float> build_object_part_from_slice(const LayerSlice &slice, const Layer *layer, const Params& params)
{
ObjectPart new_object_part;
float area_covered_by_extrusions = 0;
auto add_extrusions_to_object = [&new_object_part, &area_covered_by_extrusions](const ExtrusionEntity *e, const LayerRegion *region) {
auto add_extrusions_to_object = [&new_object_part, &area_covered_by_extrusions, &params](const ExtrusionEntity *e,
const LayerRegion *region) {
float flow_width = get_flow_width(region, e->role());
const Layer *l = region->layer();
float slice_z = l->slice_z;
@ -596,7 +597,7 @@ std::tuple<ObjectPart, float> build_object_part_from_slice(const LayerSlice &sli
new_object_part.volume += volume;
new_object_part.volume_centroid_accumulator += to_3d(Vec2f((line.a + line.b) / 2.0f), slice_z) * volume;
if (l->bottom_z() < EPSILON) { // layer attached on bed
if (l->id() == params.raft_layers_count) { // layer attached on bed/raft
new_object_part.connected_to_bed = true;
float sticking_area = line.len * flow_width;
new_object_part.sticking_area += sticking_area;
@ -681,11 +682,12 @@ public:
}
};
SupportPoints check_stability(const PrintObject *po, const PrintTryCancel& cancel_func, const Params &params)
std::tuple<SupportPoints, PartialObjects> check_stability(const PrintObject *po, const PrintTryCancel &cancel_func, const Params &params)
{
SupportPoints supp_points{};
SupportGridFilter supports_presence_grid(po, params.min_distance_between_support_points);
ActiveObjectParts active_object_parts{};
PartialObjects partial_objects{};
LD prev_layer_ext_perim_lines;
std::unordered_map<size_t, size_t> prev_slice_idx_to_object_part_mapping;
@ -693,6 +695,14 @@ SupportPoints check_stability(const PrintObject *po, const PrintTryCancel& cance
std::unordered_map<size_t, SliceConnection> prev_slice_idx_to_weakest_connection;
std::unordered_map<size_t, SliceConnection> next_slice_idx_to_weakest_connection;
auto remember_partial_object = [&active_object_parts, &partial_objects](size_t object_part_id) {
auto object_part = active_object_parts.access(object_part_id);
if (object_part.volume > EPSILON) {
partial_objects.emplace_back(object_part.volume_centroid_accumulator / object_part.volume, object_part.volume,
object_part.connected_to_bed);
}
};
for (size_t layer_idx = 0; layer_idx < po->layer_count(); ++layer_idx) {
cancel_func();
const Layer *layer = po->get_layer(layer_idx);
@ -701,7 +711,7 @@ SupportPoints check_stability(const PrintObject *po, const PrintTryCancel& cance
for (size_t slice_idx = 0; slice_idx < layer->lslices_ex.size(); ++slice_idx) {
const LayerSlice &slice = layer->lslices_ex.at(slice_idx);
auto [new_part, covered_area] = build_object_part_from_slice(slice, layer);
auto [new_part, covered_area] = build_object_part_from_slice(slice, layer, params);
SliceConnection connection_to_below = estimate_slice_connection(slice_idx, layer);
#ifdef DETAILED_DEBUG_LOGS
@ -730,7 +740,10 @@ SupportPoints check_stability(const PrintObject *po, const PrintTryCancel& cance
final_part_id = *parts_ids.begin();
for (size_t part_id : parts_ids) {
if (final_part_id != part_id) { active_object_parts.merge(part_id, final_part_id); }
if (final_part_id != part_id) {
remember_partial_object(part_id);
active_object_parts.merge(part_id, final_part_id);
}
}
}
auto estimate_conn_strength = [bottom_z](const SliceConnection &conn) {
@ -881,11 +894,16 @@ SupportPoints check_stability(const PrintObject *po, const PrintTryCancel& cance
} // slice iterations
prev_layer_ext_perim_lines = LD(current_layer_ext_perims_lines);
} // layer iterations
return supp_points;
for (const auto& active_obj_pair : prev_slice_idx_to_object_part_mapping) {
remember_partial_object(active_obj_pair.second);
}
return {supp_points, partial_objects};
}
#ifdef DEBUG_FILES
void debug_export(SupportPoints support_points, std::string file_name)
void debug_export(const SupportPoints& support_points,const PartialObjects& objects, std::string file_name)
{
Slic3r::CNumericLocalesSetter locales_setter;
{
@ -910,19 +928,29 @@ void debug_export(SupportPoints support_points, std::string file_name)
support_points[i].position(2), color[0], color[1], color[2]);
}
for (size_t i = 0; i < objects.size(); ++i) {
Vec3f color{1.0f, 0.0f, 1.0f};
if (objects[i].connected_to_bed) {
color = {1.0f, 0.0f, 0.0f};
}
fprintf(fp, "v %f %f %f %f %f %f\n", objects[i].centroid(0), objects[i].centroid(1), objects[i].centroid(2), color[0],
color[1], color[2]);
}
fclose(fp);
}
}
#endif
SupportPoints full_search(const PrintObject *po, const PrintTryCancel& cancel_func, const Params &params)
std::tuple<SupportPoints, PartialObjects> full_search(const PrintObject *po, const PrintTryCancel& cancel_func, const Params &params)
{
SupportPoints supp_points = check_stability(po, cancel_func, params);
auto results = check_stability(po, cancel_func, params);
#ifdef DEBUG_FILES
debug_export(supp_points, "issues");
auto [supp_points, objects] = results;
debug_export(supp_points, objects, "issues");
#endif
return supp_points;
return results;
}
void estimate_supports_malformations(SupportLayerPtrs &layers, float flow_width, const Params &params)

View File

@ -5,31 +5,38 @@
#include "Line.hpp"
#include "PrintBase.hpp"
#include <boost/log/trivial.hpp>
#include <cstddef>
#include <vector>
namespace Slic3r {
namespace SupportSpotsGenerator {
struct Params {
Params(const std::vector<std::string> &filament_types) {
struct Params
{
Params(const std::vector<std::string> &filament_types, float max_acceleration, size_t raft_layers_count)
: max_acceleration(max_acceleration), raft_layers_count(raft_layers_count)
{
if (filament_types.size() > 1) {
BOOST_LOG_TRIVIAL(warning)
<< "SupportSpotsGenerator does not currently handle different materials properly, only first will be used";
}
if (filament_types.empty() || filament_types[0].empty()) {
BOOST_LOG_TRIVIAL(error)
<< "SupportSpotsGenerator error: empty filament_type";
BOOST_LOG_TRIVIAL(error) << "SupportSpotsGenerator error: empty filament_type";
filament_type = std::string("PLA");
} else {
filament_type = filament_types[0];
BOOST_LOG_TRIVIAL(debug)
<< "SupportSpotsGenerator: applying filament type: " << filament_type;
BOOST_LOG_TRIVIAL(debug) << "SupportSpotsGenerator: applying filament type: " << filament_type;
}
}
// the algorithm should use the following units for all computations: distance [mm], mass [g], time [s], force [g*mm/s^2]
const float bridge_distance = 12.0f; // mm
const float max_acceleration; // mm/s^2 ; max acceleration of object (bed) in XY (NOTE: The max hit is received by the object in the
// jerk phase, so the usual machine limits are too low)
const size_t raft_layers_count;
std::string filament_type;
const std::pair<float,float> malformation_distance_factors = std::pair<float, float> { 0.4, 1.2 };
const float max_curled_height_factor = 10.0f;
@ -37,9 +44,7 @@ struct Params {
const float support_points_interface_radius = 1.5f; // mm
const float min_distance_to_allow_local_supports = 1.0f; //mm
std::string filament_type;
const float gravity_constant = 9806.65f; // mm/s^2; gravity acceleration on Earth's surface, algorithm assumes that printer is in upwards position.
const float max_acceleration = 9 * 1000.0f; // mm/s^2 ; max acceleration of object (bed) in XY (NOTE: The max hit is received by the object in the jerk phase, so the usual machine limits are too low)
const double filament_density = 1.25e-3f; // g/mm^3 ; Common filaments are very lightweight, so precise number is not that important
const double material_yield_strength = 33.0f * 1e6f; // (g*mm/s^2)/mm^2; 33 MPa is yield strength of ABS, which has the lowest yield strength from common materials.
const float standard_extruder_conflict_force = 20.0f * gravity_constant; // force that can occasionally push the model due to various factors (filament leaks, small curling, ... );
@ -47,6 +52,10 @@ struct Params {
// MPa * 1e^6 = (g*mm/s^2)/mm^2 = g/(mm*s^2); yield strength of the bed surface
double get_bed_adhesion_yield_strength() const {
if (raft_layers_count > 0) {
return get_support_spots_adhesion_strength();
}
if (filament_type == "PLA") {
return 0.018 * 1e6;
} else if (filament_type == "PET" || filament_type == "PETG") {
@ -67,7 +76,7 @@ struct Params {
enum class SupportPointCause {
LongBridge, // point generated on bridge extrusion longer than the allowed length
FloatingBridgeAnchor, // point generated on unsupported bridge endpoint
FloatingExtrusion, // point generated on extrusion that does not hold on its own - huge overhangs
FloatingExtrusion, // point generated on extrusion that does not hold on its own
SeparationFromBed, // point generated for object parts that are connected to the bed, but the area is too small and there is a risk of separation (brim may help)
UnstableFloatingPart, // point generated for object parts not connected to the bed, holded only by the other support points (brim will not help here)
WeakObjectPart // point generated when some part of the object is too weak to hold the upper part and may break (imagine hourglass)
@ -118,8 +127,20 @@ struct Malformations {
std::vector<Lines> layers; //for each layer
};
// std::vector<size_t> quick_search(const PrintObject *po, const Params &params);
SupportPoints full_search(const PrintObject *po, const PrintTryCancel& cancel_func, const Params &params);
struct PartialObject
{
PartialObject(Vec3f centroid, float volume, bool connected_to_bed)
: centroid(centroid), volume(volume), connected_to_bed(connected_to_bed)
{}
Vec3f centroid;
float volume;
bool connected_to_bed;
};
using PartialObjects = std::vector<PartialObject>;
std::tuple<SupportPoints, PartialObjects> full_search(const PrintObject *po, const PrintTryCancel& cancel_func, const Params &params);
void estimate_supports_malformations(std::vector<SupportLayer*> &layers, float supports_flow_width, const Params &params);
void estimate_malformations(std::vector<Layer*> &layers, const Params &params);