Added test projects for libslic3r and fff_print.
Added test_geometry.cpp from upstream slic3r, thanks @lordofhyphens Added circle_taubin_newton() for circle center calculation, thanks @lordofhyphens
This commit is contained in:
parent
a7c843d213
commit
42a858b999
@ -16,6 +16,7 @@
|
||||
|
||||
#include <boost/algorithm/string/classification.hpp>
|
||||
#include <boost/algorithm/string/split.hpp>
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
#include "SVG.hpp"
|
||||
@ -335,6 +336,93 @@ double rad2deg_dir(double angle)
|
||||
return rad2deg(angle);
|
||||
}
|
||||
|
||||
Point circle_taubin_newton(const Points::const_iterator& input_begin, const Points::const_iterator& input_end, size_t cycles)
|
||||
{
|
||||
Vec2ds tmp;
|
||||
tmp.reserve(std::distance(input_begin, input_end));
|
||||
std::transform(input_begin, input_end, std::back_inserter(tmp), [] (const Point& in) { return unscale(in); } );
|
||||
Vec2d center = circle_taubin_newton(tmp.cbegin(), tmp.end(), cycles);
|
||||
return Point::new_scale(center.x(), center.y());
|
||||
}
|
||||
|
||||
/// Adapted from work in "Circular and Linear Regression: Fitting circles and lines by least squares", pg 126
|
||||
/// Returns a point corresponding to the center of a circle for which all of the points from input_begin to input_end
|
||||
/// lie on.
|
||||
Vec2d circle_taubin_newton(const Vec2ds::const_iterator& input_begin, const Vec2ds::const_iterator& input_end, size_t cycles)
|
||||
{
|
||||
// calculate the centroid of the data set
|
||||
const Vec2d sum = std::accumulate(input_begin, input_end, Vec2d(0,0));
|
||||
const size_t n = std::distance(input_begin, input_end);
|
||||
const double n_flt = static_cast<double>(n);
|
||||
const Vec2d centroid { sum / n_flt };
|
||||
|
||||
// Compute the normalized moments of the data set.
|
||||
double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0;
|
||||
for (auto it = input_begin; it < input_end; ++it) {
|
||||
// center/normalize the data.
|
||||
double Xi {it->x() - centroid.x()};
|
||||
double Yi {it->y() - centroid.y()};
|
||||
double Zi {Xi*Xi + Yi*Yi};
|
||||
Mxy += (Xi*Yi);
|
||||
Mxx += (Xi*Xi);
|
||||
Myy += (Yi*Yi);
|
||||
Mxz += (Xi*Zi);
|
||||
Myz += (Yi*Zi);
|
||||
Mzz += (Zi*Zi);
|
||||
}
|
||||
|
||||
// divide by number of points to get the moments
|
||||
Mxx /= n_flt;
|
||||
Myy /= n_flt;
|
||||
Mxy /= n_flt;
|
||||
Mxz /= n_flt;
|
||||
Myz /= n_flt;
|
||||
Mzz /= n_flt;
|
||||
|
||||
// Compute the coefficients of the characteristic polynomial for the circle
|
||||
// eq 5.60
|
||||
const double Mz {Mxx + Myy}; // xx + yy = z
|
||||
const double Cov_xy {Mxx*Myy - Mxy*Mxy}; // this shows up a couple times so cache it here.
|
||||
const double C3 {4.0*Mz};
|
||||
const double C2 {-3.0*(Mz*Mz) - Mzz};
|
||||
const double C1 {Mz*(Mzz - (Mz*Mz)) + 4.0*Mz*Cov_xy - (Mxz*Mxz) - (Myz*Myz)};
|
||||
const double C0 {(Mxz*Mxz)*Myy + (Myz*Myz)*Mxx - 2.0*Mxz*Myz*Mxy - Cov_xy*(Mzz - (Mz*Mz))};
|
||||
|
||||
const double C22 = {C2 + C2};
|
||||
const double C33 = {C3 + C3 + C3};
|
||||
|
||||
// solve the characteristic polynomial with Newton's method.
|
||||
double xnew = 0.0;
|
||||
double ynew = 1e20;
|
||||
|
||||
for (size_t i = 0; i < cycles; ++i) {
|
||||
const double yold {ynew};
|
||||
ynew = C0 + xnew * (C1 + xnew*(C2 + xnew * C3));
|
||||
if (std::abs(ynew) > std::abs(yold)) {
|
||||
BOOST_LOG_TRIVIAL(error) << "Geometry: Fit is going in the wrong direction.\n";
|
||||
return Vec2d(std::nan(""), std::nan(""));
|
||||
}
|
||||
const double Dy {C1 + xnew*(C22 + xnew*C33)};
|
||||
|
||||
const double xold {xnew};
|
||||
xnew = xold - (ynew / Dy);
|
||||
|
||||
if (std::abs((xnew-xold) / xnew) < 1e-12) i = cycles; // converged, we're done here
|
||||
|
||||
if (xnew < 0) {
|
||||
// reset, we went negative
|
||||
xnew = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// compute the determinant and the circle's parameters now that we've solved.
|
||||
double DET = xnew*xnew - xnew*Mz + Cov_xy;
|
||||
|
||||
Vec2d center(Mxz * (Myy - xnew) - Myz * Mxy, Myz * (Mxx - xnew) - Mxz*Mxy);
|
||||
center /= (DET * 2.);
|
||||
return center + centroid;
|
||||
}
|
||||
|
||||
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
|
||||
{
|
||||
Polygons pp;
|
||||
|
@ -162,6 +162,15 @@ template<typename T> T angle_to_0_2PI(T angle)
|
||||
|
||||
return angle;
|
||||
}
|
||||
|
||||
/// Find the center of the circle corresponding to the vector of Points as an arc.
|
||||
Point circle_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
|
||||
inline Point circle_taubin_newton(const Points& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
||||
|
||||
/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
|
||||
Vec2d circle_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
|
||||
inline Vec2d circle_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
||||
|
||||
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
|
||||
|
||||
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
|
||||
|
@ -86,10 +86,7 @@ bool Line::intersection(const Line &l2, Point *intersection) const
|
||||
const Line &l1 = *this;
|
||||
const Vec2d v1 = (l1.b - l1.a).cast<double>();
|
||||
const Vec2d v2 = (l2.b - l2.a).cast<double>();
|
||||
const Vec2d v12 = (l1.a - l2.a).cast<double>();
|
||||
double denom = cross2(v1, v2);
|
||||
double nume_a = cross2(v2, v12);
|
||||
double nume_b = cross2(v1, v12);
|
||||
if (fabs(denom) < EPSILON)
|
||||
#if 0
|
||||
// Lines are collinear. Return true if they are coincident (overlappign).
|
||||
@ -97,6 +94,9 @@ bool Line::intersection(const Line &l2, Point *intersection) const
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
const Vec2d v12 = (l1.a - l2.a).cast<double>();
|
||||
double nume_a = cross2(v2, v12);
|
||||
double nume_b = cross2(v1, v12);
|
||||
double t1 = nume_a / denom;
|
||||
double t2 = nume_b / denom;
|
||||
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
|
||||
|
@ -38,6 +38,7 @@ typedef std::vector<Point*> PointPtrs;
|
||||
typedef std::vector<const Point*> PointConstPtrs;
|
||||
typedef std::vector<Vec3crd> Points3;
|
||||
typedef std::vector<Vec2d> Pointfs;
|
||||
typedef std::vector<Vec2d> Vec2ds;
|
||||
typedef std::vector<Vec3d> Pointf3s;
|
||||
|
||||
typedef Eigen::Matrix<float, 2, 2, Eigen::DontAlign> Matrix2f;
|
||||
@ -87,12 +88,13 @@ class Point : public Vec2crd
|
||||
public:
|
||||
typedef coord_t coord_type;
|
||||
|
||||
Point() : Vec2crd() { (*this)(0) = 0; (*this)(1) = 0; }
|
||||
Point(coord_t x, coord_t y) { (*this)(0) = x; (*this)(1) = y; }
|
||||
Point(int64_t x, int64_t y) { (*this)(0) = coord_t(x); (*this)(1) = coord_t(y); } // for Clipper
|
||||
Point(double x, double y) { (*this)(0) = coord_t(lrint(x)); (*this)(1) = coord_t(lrint(y)); }
|
||||
Point() : Vec2crd(0, 0) {}
|
||||
Point(coord_t x, coord_t y) : Vec2crd(x, y) {}
|
||||
Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {} // for Clipper
|
||||
Point(double x, double y) : Vec2crd(coord_t(lrint(x)), coord_t(lrint(y))) {}
|
||||
Point(const Point &rhs) { *this = rhs; }
|
||||
// This constructor allows you to construct Point from Eigen expressions
|
||||
explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(lrint(rhs.x())), coord_t(lrint(rhs.y()))) {}
|
||||
// This constructor allows you to construct Point from Eigen expressions
|
||||
template<typename OtherDerived>
|
||||
Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
|
||||
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
|
||||
@ -126,6 +128,18 @@ public:
|
||||
Point projection_onto(const Line &line) const;
|
||||
};
|
||||
|
||||
inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON))
|
||||
{
|
||||
Point d = (p2 - p1).cwiseAbs();
|
||||
return d.x() < epsilon && d.y() < epsilon;
|
||||
}
|
||||
|
||||
inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
|
||||
{
|
||||
Vec2d d = (p2 - p1).cwiseAbs();
|
||||
return d.x() < epsilon && d.y() < epsilon;
|
||||
}
|
||||
|
||||
namespace int128 {
|
||||
// Exact orientation predicate,
|
||||
// returns +1: CCW, 0: collinear, -1: CW.
|
||||
|
@ -175,16 +175,16 @@ Point Polygon::centroid() const
|
||||
Points Polygon::concave_points(double angle) const
|
||||
{
|
||||
Points points;
|
||||
angle = 2*PI - angle;
|
||||
angle = 2. * PI - angle + EPSILON;
|
||||
|
||||
// check whether first point forms a concave angle
|
||||
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) <= angle)
|
||||
points.push_back(this->points.front());
|
||||
|
||||
// check whether points 1..(n-1) form concave angles
|
||||
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
|
||||
if (p->ccw_angle(*(p-1), *(p+1)) <= angle) points.push_back(*p);
|
||||
}
|
||||
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++ p)
|
||||
if (p->ccw_angle(*(p-1), *(p+1)) <= angle)
|
||||
points.push_back(*p);
|
||||
|
||||
// check whether last point forms a concave angle
|
||||
if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) <= angle)
|
||||
@ -198,7 +198,7 @@ Points Polygon::concave_points(double angle) const
|
||||
Points Polygon::convex_points(double angle) const
|
||||
{
|
||||
Points points;
|
||||
angle = 2*PI - angle;
|
||||
angle = 2*PI - angle - EPSILON;
|
||||
|
||||
// check whether first point forms a convex angle
|
||||
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) >= angle)
|
||||
|
@ -21,6 +21,7 @@ endif()
|
||||
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
|
||||
|
||||
add_subdirectory(libnest2d)
|
||||
add_subdirectory(libslic3r)
|
||||
add_subdirectory(timeutils)
|
||||
add_subdirectory(fff_print)
|
||||
add_subdirectory(sla_print)
|
||||
|
||||
|
7
tests/fff_print/CMakeLists.txt
Normal file
7
tests/fff_print/CMakeLists.txt
Normal file
@ -0,0 +1,7 @@
|
||||
get_filename_component(_TEST_NAME ${CMAKE_CURRENT_LIST_DIR} NAME)
|
||||
add_executable(${_TEST_NAME}_tests ${_TEST_NAME}_tests.cpp)
|
||||
target_link_libraries(${_TEST_NAME}_tests test_common libslic3r)
|
||||
set_property(TARGET ${_TEST_NAME}_tests PROPERTY FOLDER "tests")
|
||||
|
||||
# catch_discover_tests(${_TEST_NAME}_tests TEST_PREFIX "${_TEST_NAME}: ")
|
||||
add_test(${_TEST_NAME}_tests ${_TEST_NAME}_tests "--durations yes")
|
15
tests/fff_print/fff_print_tests.cpp
Normal file
15
tests/fff_print/fff_print_tests.cpp
Normal file
@ -0,0 +1,15 @@
|
||||
#define CATCH_CONFIG_MAIN
|
||||
#include <catch2/catch.hpp>
|
||||
|
||||
#include "libslic3r/libslic3r.h"
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_CASE("sort_remove_duplicates", "[utils]") {
|
||||
std::vector<int> data_src = { 3, 0, 2, 1, 15, 3, 5, 6, 3, 1, 0 };
|
||||
std::vector<int> data_dst = { 0, 1, 2, 3, 5, 6, 15 };
|
||||
Slic3r::sort_remove_duplicates(data_src);
|
||||
REQUIRE(data_src == data_dst);
|
||||
}
|
||||
|
||||
}
|
10
tests/libslic3r/CMakeLists.txt
Normal file
10
tests/libslic3r/CMakeLists.txt
Normal file
@ -0,0 +1,10 @@
|
||||
get_filename_component(_TEST_NAME ${CMAKE_CURRENT_LIST_DIR} NAME)
|
||||
add_executable(${_TEST_NAME}_tests
|
||||
${_TEST_NAME}_tests.cpp
|
||||
test_geometry.cpp
|
||||
)
|
||||
target_link_libraries(${_TEST_NAME}_tests test_common libslic3r)
|
||||
set_property(TARGET ${_TEST_NAME}_tests PROPERTY FOLDER "tests")
|
||||
|
||||
# catch_discover_tests(${_TEST_NAME}_tests TEST_PREFIX "${_TEST_NAME}: ")
|
||||
add_test(${_TEST_NAME}_tests ${_TEST_NAME}_tests "--durations yes")
|
15
tests/libslic3r/libslic3r_tests.cpp
Normal file
15
tests/libslic3r/libslic3r_tests.cpp
Normal file
@ -0,0 +1,15 @@
|
||||
#define CATCH_CONFIG_MAIN
|
||||
#include <catch2/catch.hpp>
|
||||
|
||||
#include "libslic3r/libslic3r.h"
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_CASE("sort_remove_duplicates", "[utils]") {
|
||||
std::vector<int> data_src = { 3, 0, 2, 1, 15, 3, 5, 6, 3, 1, 0 };
|
||||
std::vector<int> data_dst = { 0, 1, 2, 3, 5, 6, 15 };
|
||||
Slic3r::sort_remove_duplicates(data_src);
|
||||
REQUIRE(data_src == data_dst);
|
||||
}
|
||||
|
||||
}
|
375
tests/libslic3r/test_geometry.cpp
Normal file
375
tests/libslic3r/test_geometry.cpp
Normal file
@ -0,0 +1,375 @@
|
||||
#include <catch2/catch.hpp>
|
||||
|
||||
#include "libslic3r/Point.hpp"
|
||||
#include "libslic3r/BoundingBox.hpp"
|
||||
#include "libslic3r/Polygon.hpp"
|
||||
#include "libslic3r/Polyline.hpp"
|
||||
#include "libslic3r/Line.hpp"
|
||||
#include "libslic3r/Geometry.hpp"
|
||||
#include "libslic3r/ClipperUtils.hpp"
|
||||
#include "libslic3r/ShortestPath.hpp"
|
||||
|
||||
using namespace Slic3r;
|
||||
|
||||
TEST_CASE("Polygon::contains works properly", ""){
|
||||
// this test was failing on Windows (GH #1950)
|
||||
auto polygon = Slic3r::Polygon(std::vector<Point>({
|
||||
Point(207802834,-57084522),
|
||||
Point(196528149,-37556190),
|
||||
Point(173626821,-25420928),
|
||||
Point(171285751,-21366123),
|
||||
Point(118673592,-21366123),
|
||||
Point(116332562,-25420928),
|
||||
Point(93431208,-37556191),
|
||||
Point(82156517,-57084523),
|
||||
Point(129714478,-84542120),
|
||||
Point(160244873,-84542120)
|
||||
}));
|
||||
auto point = Point(95706562, -57294774);
|
||||
REQUIRE(polygon.contains(point));
|
||||
}
|
||||
|
||||
SCENARIO("Intersections of line segments"){
|
||||
GIVEN("Integer coordinates"){
|
||||
auto line1 = Line(Point(5,15),Point(30,15));
|
||||
auto line2 = Line(Point(10,20), Point(10,10));
|
||||
THEN("The intersection is valid"){
|
||||
Point point;
|
||||
line1.intersection(line2,&point);
|
||||
REQUIRE(Point(10,15) == point);
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("Scaled coordinates"){
|
||||
auto line1 = Line(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
|
||||
auto line2 = Line(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
|
||||
THEN("There is still an intersection"){
|
||||
Point point;
|
||||
REQUIRE(line1.intersection(line2,&point));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Tests for unused methods still written in perl
|
||||
{
|
||||
my $polygon = Slic3r::Polygon->new(
|
||||
[45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800],
|
||||
[43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600],
|
||||
[75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500],
|
||||
[107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300],
|
||||
[82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500],
|
||||
[285273900, 461246400], [254081000, 515273900],
|
||||
);
|
||||
|
||||
# this points belongs to $polyline
|
||||
# note: it's actually a vertex, while we should better check an intermediate point
|
||||
my $point = Slic3r::Point->new(104577600, 327748400);
|
||||
|
||||
local $Slic3r::Geometry::epsilon = 1E-5;
|
||||
is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp,
|
||||
[ [107014700, 340000000], [104577600, 327748400] ],
|
||||
'polygon_segment_having_point';
|
||||
}
|
||||
{
|
||||
auto point = Point(736310778.185108, 5017423926.8924);
|
||||
auto line = Line(Point((long int) 627484000, (long int) 3695776000), Point((long int) 750000000, (long int)3720147000));
|
||||
//is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment';
|
||||
}
|
||||
|
||||
// Possible to delete
|
||||
{
|
||||
//my $p1 = [10, 10];
|
||||
//my $p2 = [10, 20];
|
||||
//my $p3 = [10, 30];
|
||||
//my $p4 = [20, 20];
|
||||
//my $p5 = [0, 20];
|
||||
|
||||
THEN("Points in a line give the correct angles"){
|
||||
//is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points';
|
||||
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
|
||||
}
|
||||
THEN("Left turns give the correct angle"){
|
||||
//is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points';
|
||||
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points';
|
||||
}
|
||||
THEN("Right turns give the correct angle"){
|
||||
//is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points';
|
||||
//is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points';
|
||||
}
|
||||
//my $p1 = [30, 30];
|
||||
//my $p2 = [20, 20];
|
||||
//my $p3 = [10, 10];
|
||||
//my $p4 = [30, 10];
|
||||
|
||||
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
|
||||
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points';
|
||||
//is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points';
|
||||
}
|
||||
|
||||
SCENARIO("polygon_is_convex works"){
|
||||
GIVEN("A square of dimension 10"){
|
||||
//my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ];
|
||||
THEN("It is not convex clockwise"){
|
||||
//is polygon_is_convex($cw_square), 0, 'cw square is not convex';
|
||||
}
|
||||
THEN("It is convex counter-clockwise"){
|
||||
//is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex';
|
||||
}
|
||||
|
||||
}
|
||||
GIVEN("A concave polygon"){
|
||||
//my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ];
|
||||
THEN("It is concave"){
|
||||
//is polygon_is_convex($convex1), 0, 'concave polygon';
|
||||
}
|
||||
}
|
||||
}*/
|
||||
|
||||
|
||||
TEST_CASE("Creating a polyline generates the obvious lines"){
|
||||
auto polyline = Slic3r::Polyline();
|
||||
polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)});
|
||||
REQUIRE(polyline.lines().at(0).a == Point(0,0));
|
||||
REQUIRE(polyline.lines().at(0).b == Point(10,0));
|
||||
REQUIRE(polyline.lines().at(1).a == Point(10,0));
|
||||
REQUIRE(polyline.lines().at(1).b == Point(20,0));
|
||||
}
|
||||
|
||||
TEST_CASE("Splitting a Polygon generates a polyline correctly"){
|
||||
auto polygon = Slic3r::Polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)}));
|
||||
auto split = polygon.split_at_index(1);
|
||||
REQUIRE(split.points[0]==Point(10,0));
|
||||
REQUIRE(split.points[1]==Point(5,5));
|
||||
REQUIRE(split.points[2]==Point(0,0));
|
||||
REQUIRE(split.points[3]==Point(10,0));
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Bounding boxes are scaled appropriately"){
|
||||
auto bb = BoundingBox(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)}));
|
||||
bb.scale(2);
|
||||
REQUIRE(bb.min == Point(0,2));
|
||||
REQUIRE(bb.max == Point(40,4));
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Offseting a line generates a polygon correctly"){
|
||||
Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
|
||||
Slic3r::Polygon area = offset(tmp,5).at(0);
|
||||
REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
|
||||
}
|
||||
|
||||
SCENARIO("Circle Fit, TaubinFit with Newton's method") {
|
||||
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
|
||||
Vec2d expected_center(-6, 0);
|
||||
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
|
||||
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
|
||||
|
||||
WHEN("Circle fit is called on the entire array") {
|
||||
Vec2d result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample);
|
||||
THEN("A center point of -6,0 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
WHEN("Circle fit is called on the first four points") {
|
||||
Vec2d result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
||||
THEN("A center point of -6,0 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
WHEN("Circle fit is called on the middle four points") {
|
||||
Vec2d result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
||||
THEN("A center point of -6,0 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
}
|
||||
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
|
||||
Vec2d expected_center(-3, 9);
|
||||
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
|
||||
Vec2d(0, 6.0),
|
||||
Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
|
||||
|
||||
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
|
||||
|
||||
|
||||
WHEN("Circle fit is called on the entire array") {
|
||||
Vec2d result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample);
|
||||
THEN("A center point of 3,9 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
WHEN("Circle fit is called on the first four points") {
|
||||
Vec2d result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
||||
THEN("A center point of 3,9 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
WHEN("Circle fit is called on the middle four points") {
|
||||
Vec2d result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
||||
THEN("A center point of 3,9 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
}
|
||||
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
|
||||
Point expected_center { Point::new_scale(-3, 9)};
|
||||
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
|
||||
Point::new_scale(0, 6.0),
|
||||
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
|
||||
|
||||
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
|
||||
|
||||
|
||||
WHEN("Circle fit is called on the entire array") {
|
||||
Point result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample);
|
||||
THEN("A center point of scaled 3,9 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
WHEN("Circle fit is called on the first four points") {
|
||||
Point result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
||||
THEN("A center point of scaled 3,9 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
WHEN("Circle fit is called on the middle four points") {
|
||||
Point result_center(0,0);
|
||||
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
||||
THEN("A center point of scaled 3,9 is returned.") {
|
||||
REQUIRE(is_approx(result_center, expected_center));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Chained path working correctly"){
|
||||
// if chained_path() works correctly, these points should be joined with no diagonal paths
|
||||
// (thus 26 units long)
|
||||
std::vector<Point> points = {Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0)};
|
||||
std::vector<Points::size_type> indices = chain_points(points);
|
||||
for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
|
||||
double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
|
||||
REQUIRE(std::abs(dist-26) <= EPSILON);
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO("Line distances"){
|
||||
GIVEN("A line"){
|
||||
auto line = Line(Point(0, 0), Point(20, 0));
|
||||
THEN("Points on the line segment have 0 distance"){
|
||||
REQUIRE(line.distance_to(Point(0, 0)) == 0);
|
||||
REQUIRE(line.distance_to(Point(20, 0)) == 0);
|
||||
REQUIRE(line.distance_to(Point(10, 0)) == 0);
|
||||
|
||||
}
|
||||
THEN("Points off the line have the appropriate distance"){
|
||||
REQUIRE(line.distance_to(Point(10, 10)) == 10);
|
||||
REQUIRE(line.distance_to(Point(50, 0)) == 30);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO("Polygon convex/concave detection"){
|
||||
GIVEN(("A Square with dimension 100")){
|
||||
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
||||
Point(100,100),
|
||||
Point(200,100),
|
||||
Point(200,200),
|
||||
Point(100,200)}));
|
||||
THEN("It has 4 convex points counterclockwise"){
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
||||
}
|
||||
THEN("It has 4 concave points clockwise"){
|
||||
square.make_clockwise();
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 4);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 0);
|
||||
}
|
||||
}
|
||||
GIVEN("A Square with an extra colinearvertex"){
|
||||
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
||||
Point(150,100),
|
||||
Point(200,100),
|
||||
Point(200,200),
|
||||
Point(100,200),
|
||||
Point(100,100)}));
|
||||
THEN("It has 4 convex points counterclockwise"){
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
||||
}
|
||||
}
|
||||
GIVEN("A Square with an extra collinear vertex in different order"){
|
||||
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
||||
Point(200,200),
|
||||
Point(100,200),
|
||||
Point(100,100),
|
||||
Point(150,100),
|
||||
Point(200,100)}));
|
||||
THEN("It has 4 convex points counterclockwise"){
|
||||
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("A triangle"){
|
||||
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
||||
Point(16000170,26257364),
|
||||
Point(714223,461012),
|
||||
Point(31286371,461008)
|
||||
}));
|
||||
THEN("it has three convex vertices"){
|
||||
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("A triangle with an extra collinear point"){
|
||||
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
||||
Point(16000170,26257364),
|
||||
Point(714223,461012),
|
||||
Point(20000000,461012),
|
||||
Point(31286371,461012)
|
||||
}));
|
||||
THEN("it has three convex vertices"){
|
||||
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
||||
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
||||
}
|
||||
}
|
||||
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
|
||||
// Two concave vertices of this polygon have angle = PI*4/3, so this test fails
|
||||
// if epsilon is not used.
|
||||
auto polygon = Slic3r::Polygon(std::vector<Point>({
|
||||
Point(60246458,14802768),Point(64477191,12360001),
|
||||
Point(63727343,11060995),Point(64086449,10853608),
|
||||
Point(66393722,14850069),Point(66034704,15057334),
|
||||
Point(65284646,13758387),Point(61053864,16200839),
|
||||
Point(69200258,30310849),Point(62172547,42483120),
|
||||
Point(61137680,41850279),Point(67799985,30310848),
|
||||
Point(51399866,1905506),Point(38092663,1905506),
|
||||
Point(38092663,692699),Point(52100125,692699)
|
||||
}));
|
||||
THEN("the correct number of points are detected"){
|
||||
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
|
||||
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Triangle Simplification does not result in less than 3 points"){
|
||||
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
||||
Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
|
||||
}));
|
||||
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user