Fixed conflicts after merge with master

This commit is contained in:
enricoturri1966 2022-12-07 15:44:27 +01:00
commit 43c195e227
96 changed files with 540 additions and 7492 deletions

View file

@ -1,11 +0,0 @@
#version 110
uniform vec4 top_color;
uniform vec4 bottom_color;
varying vec2 tex_coord;
void main()
{
gl_FragColor = mix(bottom_color, top_color, tex_coord.y);
}

View file

@ -1,9 +0,0 @@
#version 110
varying vec2 tex_coord;
void main()
{
gl_Position = gl_Vertex;
tex_coord = gl_MultiTexCoord0.xy;
}

View file

@ -1,8 +0,0 @@
#version 110
uniform vec4 uniform_color;
void main()
{
gl_FragColor = uniform_color;
}

View file

@ -1,6 +0,0 @@
#version 110
void main()
{
gl_Position = ftransform();
}

View file

@ -1,10 +0,0 @@
#version 110
uniform sampler2D uniform_texture;
varying vec2 tex_coord;
void main()
{
gl_FragColor = texture2D(uniform_texture, tex_coord);
}

View file

@ -1,9 +0,0 @@
#version 110
varying vec2 tex_coord;
void main()
{
gl_Position = ftransform();
tex_coord = gl_MultiTexCoord0.xy;
}

View file

@ -1,79 +0,0 @@
#version 110
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
const float EPSILON = 0.0001;
struct PrintVolumeDetection
{
// 0 = rectangle, 1 = circle, 2 = custom, 3 = invalid
int type;
// type = 0 (rectangle):
// x = min.x, y = min.y, z = max.x, w = max.y
// type = 1 (circle):
// x = center.x, y = center.y, z = radius
vec4 xy_data;
// x = min z, y = max z
vec2 z_data;
};
struct SlopeDetection
{
bool actived;
float normal_z;
mat3 volume_world_normal_matrix;
};
uniform vec4 uniform_color;
uniform SlopeDetection slope;
#ifdef ENABLE_ENVIRONMENT_MAP
uniform sampler2D environment_tex;
uniform bool use_environment_tex;
#endif // ENABLE_ENVIRONMENT_MAP
varying vec3 clipping_planes_dots;
// x = diffuse, y = specular;
varying vec2 intensity;
uniform PrintVolumeDetection print_volume;
varying vec4 world_pos;
varying float world_normal_z;
varying vec3 eye_normal;
void main()
{
if (any(lessThan(clipping_planes_dots, ZERO)))
discard;
vec3 color = uniform_color.rgb;
float alpha = uniform_color.a;
if (slope.actived && world_normal_z < slope.normal_z - EPSILON) {
color = vec3(0.7, 0.7, 1.0);
alpha = 1.0;
}
// if the fragment is outside the print volume -> use darker color
vec3 pv_check_min = ZERO;
vec3 pv_check_max = ZERO;
if (print_volume.type == 0) {
// rectangle
pv_check_min = world_pos.xyz - vec3(print_volume.xy_data.x, print_volume.xy_data.y, print_volume.z_data.x);
pv_check_max = world_pos.xyz - vec3(print_volume.xy_data.z, print_volume.xy_data.w, print_volume.z_data.y);
}
else if (print_volume.type == 1) {
// circle
float delta_radius = print_volume.xy_data.z - distance(world_pos.xy, print_volume.xy_data.xy);
pv_check_min = vec3(delta_radius, 0.0, world_pos.z - print_volume.z_data.x);
pv_check_max = vec3(0.0, 0.0, world_pos.z - print_volume.z_data.y);
}
color = (any(lessThan(pv_check_min, ZERO)) || any(greaterThan(pv_check_max, ZERO))) ? mix(color, ZERO, 0.3333) : color;
#ifdef ENABLE_ENVIRONMENT_MAP
if (use_environment_tex)
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity.x, alpha);
else
#endif
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
}

View file

@ -1,71 +0,0 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SHININESS 5.0
#define INTENSITY_AMBIENT 0.3
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
struct SlopeDetection
{
bool actived;
float normal_z;
mat3 volume_world_normal_matrix;
};
uniform mat4 volume_world_matrix;
uniform SlopeDetection slope;
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
uniform vec2 z_range;
// Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane;
// x = diffuse, y = specular;
varying vec2 intensity;
varying vec3 clipping_planes_dots;
varying vec4 world_pos;
varying float world_normal_z;
varying vec3 eye_normal;
void main()
{
// First transform the normal into camera space and normalize the result.
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// Point in homogenous coordinates.
world_pos = volume_world_matrix * gl_Vertex;
// z component of normal vector in world coordinate used for slope shading
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
gl_Position = ftransform();
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
}

View file

@ -1,12 +0,0 @@
#version 110
uniform vec4 uniform_color;
uniform float emission_factor;
// x = tainted, y = specular;
varying vec2 intensity;
void main()
{
gl_FragColor = vec4(vec3(intensity.y) + uniform_color.rgb * (intensity.x + emission_factor), uniform_color.a);
}

View file

@ -1,38 +0,0 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
// x = tainted, y = specular;
varying vec2 intensity;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 normal = normalize(gl_NormalMatrix * gl_Normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_Position = ftransform();
}

View file

@ -1,12 +0,0 @@
#version 110
uniform vec4 uniform_color;
uniform float emission_factor;
// x = tainted, y = specular;
varying vec2 intensity;
void main()
{
gl_FragColor = vec4(vec3(intensity.y) + uniform_color.rgb * (intensity.x + emission_factor), uniform_color.a);
}

View file

@ -1,46 +0,0 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
// vertex attributes
attribute vec3 v_position;
attribute vec3 v_normal;
// instance attributes
attribute vec3 i_offset;
attribute vec2 i_scales;
// x = tainted, y = specular;
varying vec2 intensity;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(gl_NormalMatrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
vec3 eye_position = (gl_ModelViewMatrix * world_position).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_Position = gl_ProjectionMatrix * vec4(eye_position, 1.0);
}

View file

@ -1,6 +0,0 @@
#version 110
void main()
{
gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

View file

@ -1,11 +0,0 @@
#version 110
uniform float offset;
void main()
{
// Add small epsilon to z to solve z-fighting between painted triangles and contour lines.
vec4 clip_position = gl_ModelViewProjectionMatrix * gl_Vertex;
clip_position.z -= offset * abs(clip_position.w);
gl_Position = clip_position;
}

View file

@ -1,60 +0,0 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
const float EPSILON = 0.0001;
uniform vec4 uniform_color;
varying vec3 clipping_planes_dots;
varying vec4 model_pos;
uniform bool volume_mirrored;
void main()
{
if (any(lessThan(clipping_planes_dots, ZERO)))
discard;
vec3 color = uniform_color.rgb;
float alpha = uniform_color.a;
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
#ifdef FLIP_TRIANGLE_NORMALS
triangle_normal = -triangle_normal;
#endif
if (volume_mirrored)
triangle_normal = -triangle_normal;
// First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
// x = diffuse, y = specular;
vec2 intensity = vec2(0.0, 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
}

View file

@ -1,23 +0,0 @@
#version 110
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
uniform mat4 volume_world_matrix;
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
uniform vec2 z_range;
// Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane;
varying vec3 clipping_planes_dots;
varying vec4 model_pos;
void main()
{
model_pos = gl_Vertex;
// Point in homogenous coordinates.
vec4 world_pos = volume_world_matrix * gl_Vertex;
gl_Position = ftransform();
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
}

View file

@ -1,36 +0,0 @@
#version 110
const vec3 back_color_dark = vec3(0.235, 0.235, 0.235);
const vec3 back_color_light = vec3(0.365, 0.365, 0.365);
uniform sampler2D texture;
uniform bool transparent_background;
uniform bool svg_source;
varying vec2 tex_coord;
vec4 svg_color()
{
// takes foreground from texture
vec4 fore_color = texture2D(texture, tex_coord);
// calculates radial gradient
vec3 back_color = vec3(mix(back_color_light, back_color_dark, smoothstep(0.0, 0.5, length(abs(tex_coord.xy) - vec2(0.5)))));
// blends foreground with background
return vec4(mix(back_color, fore_color.rgb, fore_color.a), transparent_background ? fore_color.a : 1.0);
}
vec4 non_svg_color()
{
// takes foreground from texture
vec4 color = texture2D(texture, tex_coord);
return vec4(color.rgb, transparent_background ? color.a * 0.25 : color.a);
}
void main()
{
vec4 color = svg_source ? svg_color() : non_svg_color();
color.a = transparent_background ? color.a * 0.5 : color.a;
gl_FragColor = color;
}

View file

@ -1,9 +0,0 @@
#version 110
varying vec2 tex_coord;
void main()
{
gl_Position = ftransform();
tex_coord = gl_MultiTexCoord0.xy;
}

View file

@ -1,18 +0,0 @@
#version 110
const vec4 BLACK = vec4(vec3(0.1), 1.0);
const vec4 WHITE = vec4(vec3(1.0), 1.0);
const float emission_factor = 0.25;
// x = tainted, y = specular;
varying vec2 intensity;
varying vec3 world_position;
uniform vec3 world_center;
void main()
{
vec3 delta = world_position - world_center;
vec4 color = delta.x * delta.y * delta.z > 0.0 ? BLACK : WHITE;
gl_FragColor = vec4(vec3(intensity.y) + color.rgb * (intensity.x + emission_factor), 1.0);
}

View file

@ -1,40 +0,0 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
// x = tainted, y = specular;
varying vec2 intensity;
varying vec3 world_position;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 normal = normalize(gl_NormalMatrix * gl_Normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
world_position = gl_Vertex.xyz;
gl_Position = ftransform();
}

View file

@ -1,28 +0,0 @@
#version 110
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
// x = ambient, y = top diffuse, z = front diffuse, w = global
uniform vec4 light_intensity;
uniform vec4 uniform_color;
varying vec3 eye_normal;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. Take the abs value to light the lines no matter in which direction the normal points.
float NdotL = abs(dot(normal, LIGHT_TOP_DIR));
float intensity = light_intensity.x + NdotL * light_intensity.y;
// Perform the same lighting calculation for the 2nd light source.
NdotL = abs(dot(normal, LIGHT_FRONT_DIR));
intensity += NdotL * light_intensity.z;
gl_FragColor = vec4(uniform_color.rgb * light_intensity.w * intensity, uniform_color.a);
}

View file

@ -1,9 +0,0 @@
#version 110
varying vec3 eye_normal;
void main()
{
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
eye_normal = gl_NormalMatrix * gl_Normal;
}

View file

@ -1,41 +0,0 @@
#version 110
#define M_PI 3.1415926535897932384626433832795
// 2D texture (1D texture split by the rows) of color along the object Z axis.
uniform sampler2D z_texture;
// Scaling from the Z texture rows coordinate to the normalized texture row coordinate.
uniform float z_to_texture_row;
uniform float z_texture_row_to_normalized;
uniform float z_cursor;
uniform float z_cursor_band_width;
// x = tainted, y = specular;
varying vec2 intensity;
varying float object_z;
void main()
{
float object_z_row = z_to_texture_row * object_z;
// Index of the row in the texture.
float z_texture_row = floor(object_z_row);
// Normalized coordinate from 0. to 1.
float z_texture_col = object_z_row - z_texture_row;
float z_blend = 0.25 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) * 1.8 / z_cursor_band_width))) + 0.25;
// Calculate level of detail from the object Z coordinate.
// This makes the slowly sloping surfaces to be shown with high detail (with stripes),
// and the vertical surfaces to be shown with low detail (no stripes)
float z_in_cells = object_z_row * 190.;
// Gradient of Z projected on the screen.
float dx_vtc = dFdx(z_in_cells);
float dy_vtc = dFdy(z_in_cells);
float lod = clamp(0.5 * log2(max(dx_vtc * dx_vtc, dy_vtc * dy_vtc)), 0., 1.);
// Sample the Z texture. Texture coordinates are normalized to <0, 1>.
vec4 color = vec4(0.25, 0.25, 0.25, 1.0);
if (z_texture_row >= 0.0)
color = mix(texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5 )), -10000.),
texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row * 2. + 1.)), 10000.), lod);
// Mix the final color.
gl_FragColor = vec4(vec3(intensity.y), 1.0) + intensity.x * mix(color, vec4(1.0, 1.0, 0.0, 1.0), z_blend);
}

View file

@ -1,52 +0,0 @@
#version 110
#define INTENSITY_CORRECTION 0.6
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SHININESS 5.0
#define INTENSITY_AMBIENT 0.3
uniform mat4 volume_world_matrix;
uniform float object_max_z;
// x = tainted, y = specular;
varying vec2 intensity;
varying float object_z;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 normal = normalize(gl_NormalMatrix * gl_Normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular)
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// Scaled to widths of the Z texture.
if (object_max_z > 0.0)
// when rendering the overlay
object_z = object_max_z * gl_MultiTexCoord0.y;
else
// when rendering the volumes
object_z = (volume_world_matrix * gl_Vertex).z;
gl_Position = ftransform();
}