Completely rewritten the slicing algorithm

It should work with any model now. There are still problems with some
bridges.
This commit is contained in:
Alessandro Ranellucci 2011-10-09 19:47:21 +02:00
parent ad27f25c71
commit 459577f9a2
8 changed files with 137 additions and 246 deletions

View File

@ -17,7 +17,7 @@ our @EXPORT_OK = qw(
clip_segment_complex_polygon longest_segment angle3points
);
use Slic3r::Geometry::DouglasPeucker ();
use Slic3r::Geometry::DouglasPeucker qw(Douglas_Peucker);
use XXX;
use constant PI => 4 * atan2(1, 1);

View File

@ -121,10 +121,17 @@ sub remove_surface {
@{ $self->surfaces } = grep $_ ne $surface, @{ $self->surfaces };
}
# build polylines of lines which do not already belong to a surface
sub make_polylines {
# build polylines from lines
sub make_surfaces {
my $self = shift;
# this algorithm can be further simplified:
# first remove all facetedges that are not connected to any other edge
# or that are connected to more than one edge: those are the edges
# tangent to our plane, that we don't care about;
# then we would have all points connecting two and only two lines,
# so a simple head-to-tail algorithm would work
my @lines = ();
push @lines, map $_->p, @{$self->lines};
@ -134,7 +141,7 @@ sub make_polylines {
# red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
#);
my $get_point_id = sub { sprintf "%d,%d", @{$_[0]} };
my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} };
my (%pointmap) = ();
foreach my $line (@lines) {
@ -193,166 +200,16 @@ sub make_polylines {
# polylines => [ @polylines ],
#);
return [ map Slic3r::Polyline::Closed->cast($_), @polylines ];
}
#@polylines = map Slic3r::Polyline::Closed->cast($_), @polylines;
sub make_surfaces {
my $self = shift;
my ($polylines) = @_;
#use Slic3r::SVG;
#Slic3r::SVG::output_polygons($main::print, "polylines.svg", [ map $_->p, @$polylines ]);
# count how many other polylines enclose each polyline
# even = contour; odd = hole
my %enclosing_polylines = ();
my %enclosing_polylines_count = ();
my $max_depth = 0;
foreach my $polyline (@$polylines) {
# a polyline encloses another one if any point of it is enclosed
# in the other
my $point = $polyline->points->[0];
my $ordered_id = $polyline->id;
# find polylines contaning $point, and thus $polyline
$enclosing_polylines{$polyline} =
[ grep $_->id ne $ordered_id && $_->encloses_point($point), @$polylines ];
$enclosing_polylines_count{$polyline} = scalar @{ $enclosing_polylines{$polyline} };
$max_depth = $enclosing_polylines_count{$polyline}
if $enclosing_polylines_count{$polyline} > $max_depth;
}
# make a cache for contours and surfaces
my %surfaces = (); # contour => surface
# start looking at most inner polylines
for (; $max_depth > -1; $max_depth--) {
foreach my $polyline (@$polylines) {
next unless $enclosing_polylines_count{$polyline} == $max_depth;
my $surface;
if ($enclosing_polylines_count{$polyline} % 2 == 0) {
# this is a contour
$polyline->make_counter_clockwise;
$surface = Slic3r::Surface->new(contour => $polyline);
} else {
# this is a hole
$polyline->make_clockwise;
# find the enclosing polyline having immediately close depth
my ($contour) = grep $enclosing_polylines_count{$_} == ($max_depth-1),
@{ $enclosing_polylines{$polyline} };
if ($surfaces{$contour}) {
$surface = $surfaces{$contour};
$surface->add_hole($polyline);
} else {
$surface = Slic3r::Surface->new(
contour => $contour,
holes => [$polyline],
);
$surfaces{$contour} = $surface;
}
}
# check whether we already have this surface
next if grep $_->id eq $surface->id, @{ $self->surfaces };
$surface->surface_type('internal');
push @{ $self->surfaces }, $surface;
Slic3r::debugf "New surface: %s (%d holes: %s)\n",
$surface->id, scalar @{$surface->holes},
join(', ', map $_->id, @{$surface->holes}) || 'none'
if $Slic3r::debug;
}
}
}
sub merge_contiguous_surfaces {
my $self = shift;
if ($Slic3r::debug) {
Slic3r::debugf "Initial surfaces (%d):\n", scalar @{ $self->surfaces };
Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id,
($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces };
#Slic3r::SVG::output_polygons(undef, "polygons-before.svg", [ map $_->contour->p, @{$self->surfaces} ]);
}
my %resulting_surfaces = ();
# only merge surfaces with same type
foreach my $type (qw(bottom top internal)) {
{
my $clipper = Math::Clipper->new;
my @surfaces = grep $_->surface_type eq $type, @{$self->surfaces}
or next;
$clipper->add_subject_polygons([ @polylines ]);
my $expolygons = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO);
#Slic3r::SVG::output_polygons($main::print, "polygons-$type-before.svg", [ map $_->contour->p, @surfaces ]);
$clipper->add_subject_polygons([ map $_->contour->p, @surfaces ]);
my $result = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO);
$clipper->clear;
my @extra_holes = map @{$_->{holes}}, @$result;
$result = [ map $_->{outer}, @$result ];
#Slic3r::SVG::output_polygons($main::print, "polygons-$type-union.svg", $result);
# subtract bottom or top surfaces from internal
if ($type eq 'internal') {
$clipper->add_subject_polygons($result);
$clipper->add_clip_polygons([ map $_->{outer}, @{$resulting_surfaces{$_}} ])
for qw(bottom top);
$result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
$clipper->clear;
}
# apply holes
$clipper->add_subject_polygons($result);
$result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
$clipper->clear;
$clipper->add_subject_polygons($result);
$clipper->add_clip_polygons([ @extra_holes ]) if @extra_holes;
$clipper->add_clip_polygons([ map $_->p, map @{$_->holes}, @surfaces ]);
my $result2 = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
$resulting_surfaces{$type} = $result2;
}
# remove overlapping surfaces
# (remove anything that is not internal from areas covered by internal surfaces)
# this may happen because of rounding of Z coordinates: the model could have
# features smaller than our layer height, so we'd get more things on a single
# layer
if (0) { # not proven to be necessary until now
my $clipper = Math::Clipper->new;
foreach my $type (qw(bottom top)) {
$clipper->clear;
$clipper->add_subject_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{$type}} ]);
$clipper->add_clip_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{internal}} ]);
$resulting_surfaces{$type} = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
}
}
# save surfaces
@{ $self->surfaces } = ();
foreach my $type (keys %resulting_surfaces) {
foreach my $p (@{ $resulting_surfaces{$type} }) {
push @{ $self->surfaces }, Slic3r::Surface->new(
surface_type => $type,
contour => Slic3r::Polyline::Closed->cast($p->{outer}),
holes => [
map Slic3r::Polyline::Closed->cast($_), @{$p->{holes}}
],
);
}
}
if ($Slic3r::debug) {
Slic3r::debugf "Final surfaces (%d):\n", scalar @{ $self->surfaces };
Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id,
($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces };
Slic3r::debugf " %d surface(s) detected from %d polylines\n",
scalar(@$expolygons), scalar(@polylines);
push @{$self->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'), @$expolygons;
}
}
@ -360,6 +217,7 @@ sub remove_small_surfaces {
my $self = shift;
my @good_surfaces = ();
my $surface_count = scalar @{$self->surfaces};
foreach my $surface (@{$self->surfaces}) {
next if !$surface->contour->is_printable;
@{$surface->holes} = grep $_->is_printable, @{$surface->holes};
@ -367,12 +225,16 @@ sub remove_small_surfaces {
}
@{$self->surfaces} = @good_surfaces;
Slic3r::debugf "removed %d small surfaces at layer %d\n",
($surface_count - @good_surfaces), $self->id
if @good_surfaces != $surface_count;
}
sub remove_small_perimeters {
my $self = shift;
my @good_perimeters = grep $_->is_printable, @{$self->perimeters};
Slic3r::debugf "removed %d unprintable perimeters\n", (@{$self->perimeters} - @good_perimeters)
Slic3r::debugf "removed %d unprintable perimeters at layer %d\n",
(@{$self->perimeters} - @good_perimeters), $self->id
if @good_perimeters != @{$self->perimeters};
@{$self->perimeters} = @good_perimeters;
@ -400,9 +262,9 @@ sub process_bridges {
{
my @current_polyline = ();
EDGE: foreach my $edge (Slic3r::Geometry::polygon_lines($surface_p)) {
for (@supporting_surfaces) {
for my $supporting_surface (@supporting_surfaces) {
local $Slic3r::Geometry::epsilon = 1E+7;
if (Slic3r::Geometry::polygon_has_subsegment($_->contour->p, $edge)) {
if (Slic3r::Geometry::polygon_has_subsegment($supporting_surface->contour->p, $edge)) {
push @current_polyline, $edge;
next EDGE;
}

View File

@ -4,13 +4,13 @@ use Moo;
has 'x' => (
is => 'ro',
required => 1,
coerce => sub { sprintf '%.0f', $_[0] },
#coerce => sub { sprintf '%.0f', $_[0] },
);
has 'y' => (
is => 'ro',
required => 1,
coerce => sub { sprintf '%.0f', $_[0] },
#coerce => sub { sprintf '%.0f', $_[0] },
);
sub cast {

View File

@ -3,6 +3,7 @@ use Moo;
use Math::Clipper qw();
use Sub::Quote;
use XXX;
# arrayref of ordered points
has 'points' => (
@ -61,9 +62,14 @@ sub merge_continuous_lines {
sub cleanup {
my $self = shift;
my $tolerance = shift || (1 / $Slic3r::resolution);
@{$self->points} = map Slic3r::Point->cast($_),
my $tolerance = shift || 10;
my $points = $self->p;
push @$points, $points->[0] if $self->isa('Slic3r::Polyline::Closed');
my @clean_points = map Slic3r::Point->cast($_),
Slic3r::Geometry::Douglas_Peucker($self->p, $tolerance);
pop @clean_points if $self->isa('Slic3r::Polyline::Closed');
@{$self->points} = @clean_points;
}
sub reverse_points {

View File

@ -34,16 +34,17 @@ sub new_from_stl {
print "\n==> PROCESSING SLICES:\n";
foreach my $layer (@{ $print->layers }) {
printf "\nProcessing layer %d:\n", $layer->id;
printf "Making surfaces for layer %d:\n", $layer->id;
# build polylines of lines which do not already belong to a surface
my $polylines = $layer->make_polylines;
# layer currently has many lines representing intersections of
# model facets with the layer plane. there may also be lines
# that we need to ignore (for example, when two non-horizontal
# facets share a common edge on our plane, we get a single line;
# however that line has no meaning for our layer as it's enclosed
# inside a closed polyline)
# build surfaces of polylines (distinguishing contours from holes)
$layer->make_surfaces($polylines);
# merge surfaces having a common line
$layer->merge_contiguous_surfaces;
# build surfaces from sparse lines
$layer->make_surfaces;
}
return $print;
@ -74,6 +75,82 @@ sub layer {
return $self->layers->[$layer_id];
}
sub detect_surfaces_type {
my $self = shift;
my $clipper = Math::Clipper->new;
# prepare a reusable subroutine to make surface differences
my $surface_difference = sub {
my ($subject_surfaces, $clip_surfaces, $result_type) = @_;
$clipper->clear;
$clipper->add_subject_polygons([ map $_->p, @$subject_surfaces ]);
$clipper->add_clip_polygons([ map { ref $_ eq 'ARRAY' ? $_ : $_->p } @$clip_surfaces ]);
my $expolygons = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
return grep $_->contour->is_printable,
map Slic3r::Surface->cast_from_expolygon($_, surface_type => $result_type),
@$expolygons;
};
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layer = $self->layers->[$i];
my $upper_layer = $self->layers->[$i+1];
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
my (@bottom, @top, @internal) = ();
# find top surfaces (difference between current surfaces
# of current layer and upper one)
if ($upper_layer) {
# offset upper layer surfaces by extrusion_width * perimeters
my $upper_surfaces = offset(
[ map $_->p, @{$upper_layer->surfaces} ],
($Slic3r::flow_width / $Slic3r::resolution * $Slic3r::perimeter_offsets),
$Slic3r::resolution * 100,
JT_MITER, 2,
);
@top = $surface_difference->($layer->surfaces, $upper_surfaces, 'top');
} else {
# if no upper layer, all surfaces of this one are solid
@top = @{$layer->surfaces};
$_->surface_type('top') for @top;
}
# find bottom surfaces (difference between current surfaces
# of current layer and lower one)
if ($lower_layer) {
@bottom = $surface_difference->($layer->surfaces, $lower_layer->surfaces, 'bottom');
#Slic3r::SVG::output(undef, "layer_" . $layer->id . "_diff.svg",
# green_polygons => [ map $_->p, @{$layer->surfaces} ],
# red_polygons => [ map $_->p, @{$lower_layer->surfaces} ],
#);
} else {
# if no lower layer, all surfaces of this one are solid
@bottom = @{$layer->surfaces};
$_->surface_type('bottom') for @bottom;
}
# find internal surfaces (difference between top/bottom surfaces and others)
@internal = $surface_difference->($layer->surfaces, [@top, @bottom], 'internal');
# save surfaces to layer
$layer->surfaces([ @bottom, @top, @internal ]);
#use Slic3r::SVG;
#Slic3r::SVG::output(undef, "layer_" . $layer->id . ".svg",
# white_polygons => [ map $_->p, @internal ],
# green_polygons => [ map $_->p, @bottom ],
# red_polygons => [ map $_->p, @top ],
#);
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
$layer->id, scalar(@bottom), scalar(@top), scalar(@internal);
}
}
sub discover_horizontal_shells {
my $self = shift;
@ -97,7 +174,7 @@ sub discover_horizontal_shells {
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
foreach my $surf_coll (@{$self->layers->[$n]->fill_surfaces}) {
my $neighbor_polygons = [ map $_->p, grep $_->surface_type eq 'internal', @{$surf_coll->surfaces} ];
my $neighbor_polygons = [ map $_->p, grep $_->surface_type =~ /internal/, @{$surf_coll->surfaces} ];
# find intersection between @surfaces and current layer's surfaces
$clipper->add_subject_polygons([ map $_->p, @surfaces ]);

View File

@ -80,11 +80,6 @@ sub parse_file {
foreach my $vertex (@vertices) {
$vertex->[$_] = ($Slic3r::scale * $vertex->[$_] / $Slic3r::resolution) + $shift[$_]
for X,Y,Z;
# round Z coordinates to the nearest multiple of layer height
# XY will be rounded automatically to integers with coercion
$vertex->[Z] = int($vertex->[Z] * $Slic3r::resolution / $Slic3r::layer_height)
* $Slic3r::layer_height / $Slic3r::resolution;
}
foreach my $copy (@copies) {
@ -113,10 +108,14 @@ sub _facet {
}
Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z;
if ($min_z == $max_z) {
Slic3r::debugf "Facet is horizontal; ignoring\n";
return;
}
# calculate the layer extents
my $min_layer = int($min_z * $Slic3r::resolution / $Slic3r::layer_height);
my $max_layer = int(0.99999 + ($max_z * $Slic3r::resolution / $Slic3r::layer_height));
my $max_layer = int($max_z * $Slic3r::resolution / $Slic3r::layer_height);
Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer;
# reorder vertices so that the first one is the one with lowest Z
@ -127,62 +126,6 @@ sub _facet {
@vertices = (splice(@vertices, $z_order[0]), splice(@vertices, 0, $z_order[0]));
}
# is the facet horizontal?
# (note that we can have $min_z == $max_z && $min_layer != $max_layer
# if $min_z % $layer_height != 0)
if ($min_z == $max_z) {
my $layer = $print->layer($min_layer);
# if all vertices are aligned, then facet is not horizontal but vertical
# with a height less than layer height: that's why it was squashed on a
# single layer
##local $Slic3r::Geometry::parallel_degrees_limit = 1;
##if (three_points_aligned(@vertices)) {
if (0 && abs($normal->[Z]) == 0) {
Slic3r::debugf "Facet is vertical with a height less than layer height\n";
my ($p1, $p2, $p3) = @vertices;
$layer->add_line(Slic3r::Line::FacetEdge->cast(
$_,
edge_type => 'bottom',
)) for ([$p1, $p2], [$p2, $p3], [$p1, $p3], [$p2, $p1], [$p3, $p2], [$p3, $p1]);
return;
}
Slic3r::debugf "Facet is horizontal\n";
my $surface = $layer->add_surface(@vertices);
# to determine whether the surface is a top or bottom let's recompute
# the normal using the right-hand rule
# (this relies on the STL to be well-formed)
# recompute the normal using the right-hand rule
my $vertices_p = [@vertices];
integerize_coordinate_sets($vertices_p);
my $clockwise = !is_counter_clockwise($vertices_p);
# defensive programming and/or input check
if (abs($normal->[Z]) == 1) {
# while the vertices may belong to the same layer, it doesn't mean the facet
# was horizontal in the original model; so this check makes sense only
# if the original normal is exactly 1 or -1
if (($normal->[Z] > 0 && $clockwise) || ($normal->[Z] < 0 && !$clockwise)) {
YYY $normal;
die sprintf "STL normal (%.0f) and right-hand rule computation (%s) differ!\n",
$normal->[Z], $clockwise ? 'clockwise' : 'counter-clockwise';
}
}
if ($layer->id == 0 && !$clockwise) {
YYY $normal;
die "Right-hand rule gives bad result for facets on base layer!\n";
}
$surface->surface_type($clockwise ? 'bottom' : 'top');
return;
}
for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) {
my $layer = $print->layer($layer_id);
$layer->add_line($_) for $self->intersect_facet(\@vertices, $layer->z);

View File

@ -39,14 +39,15 @@ sub output {
my $svg = svg($print);
foreach my $type (qw(polygons polylines white_polygons red_polygons red_polylines)) {
foreach my $type (qw(polygons polylines white_polygons green_polygons red_polygons red_polylines)) {
if ($things{$type}) {
my $method = $type =~ /polygons/ ? 'polygon' : 'polyline';
my ($colour) = $type =~ /^(red|green)_/;
my $g = $svg->group(
style => {
'stroke-width' => 2,
'stroke' => $type =~ /red_/ ? 'red' : 'black',
'fill' => ($type !~ /polygons/ ? 'none' : ($type =~ /red_/ ? 'red' : 'grey')),
'stroke' => $colour || 'black',
'fill' => ($type !~ /polygons/ ? 'none' : ($colour || 'grey')),
},
);
foreach my $polygon (@{$things{$type}}) {
@ -57,7 +58,6 @@ sub output {
);
$g->$method(
%$path,
'marker-end' => "url(#endArrow)",
);
}
}

View File

@ -16,10 +16,13 @@ sub go {
my $t0 = [gettimeofday];
# skein the STL into layers
# each layer has surfaces with holes; surfaces are distinguished
# in top/bottom/internal
# each layer has surfaces with holes
my $print = Slic3r::Print->new_from_stl($self->input_file);
# this will detect the type of each surface (top/bottom/internal)
# by splitting them if necessary
$print->detect_surfaces_type;
# this will remove unprintable surfaces
# (those that are too tight for extrusion)
$print->remove_small_surfaces;