Initial version of smart auto placement intended to replace autocenter.

This commit is contained in:
tamasmeszaros 2019-01-22 17:50:33 +01:00
parent a85db038be
commit 4628ba5767
14 changed files with 793 additions and 122 deletions

View File

@ -70,7 +70,10 @@ if(TBB_FOUND)
# The Intel TBB library will use the std::exception_ptr feature of C++11.
target_compile_definitions(libnest2d INTERFACE -DTBB_USE_CAPTURED_EXCEPTION=0)
target_link_libraries(libnest2d INTERFACE tbb)
find_package(Threads REQUIRED)
target_link_libraries(libnest2d INTERFACE ${TBB_LIBRARIES} ${CMAKE_DL_LIBS}
Threads::Threads
)
else()
find_package(OpenMP QUIET)
@ -88,7 +91,7 @@ endif()
add_subdirectory(${SRC_DIR}/libnest2d/backends/${LIBNEST2D_GEOMETRIES})
add_subdirectory(${SRC_DIR}/libnest2d/optimizers/${LIBNEST2D_OPTIMIZER})
#target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
target_include_directories(libnest2d INTERFACE ${SRC_DIR})
if(NOT LIBNEST2D_HEADER_ONLY)

View File

@ -62,9 +62,9 @@ if(NOT Boost_INCLUDE_DIRS_FOUND)
endif()
target_include_directories(ClipperBackend INTERFACE ${Boost_INCLUDE_DIRS} )
#target_sources(ClipperBackend INTERFACE
# ${CMAKE_CURRENT_SOURCE_DIR}/geometries.hpp
# ${SRC_DIR}/libnest2d/utils/boost_alg.hpp )
target_sources(ClipperBackend INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/geometries.hpp
${SRC_DIR}/libnest2d/utils/boost_alg.hpp )
target_compile_definitions(ClipperBackend INTERFACE LIBNEST2D_BACKEND_CLIPPER)

View File

@ -251,6 +251,460 @@ inline NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
return {rsh, top_nfp};
}
template<class RawShape>
NfpResult<RawShape> nfpSimpleSimple(const RawShape& cstationary,
const RawShape& cother)
{
// Algorithms are from the original algorithm proposed in paper:
// https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf
// /////////////////////////////////////////////////////////////////////////
// Algorithm 1: Obtaining the minkowski sum
// /////////////////////////////////////////////////////////////////////////
// I guess this is not a full minkowski sum of the two input polygons by
// definition. This yields a subset that is compatible with the next 2
// algorithms.
using Result = NfpResult<RawShape>;
using Vertex = TPoint<RawShape>;
using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
namespace sl = shapelike;
using std::signbit;
using std::sort;
using std::vector;
using std::ref;
using std::reference_wrapper;
// TODO The original algorithms expects the stationary polygon in
// counter clockwise and the orbiter in clockwise order.
// So for preventing any further complication, I will make the input
// the way it should be, than make my way around the orientations.
// Reverse the stationary contour to counter clockwise
auto stcont = sl::contour(cstationary);
{
std::reverse(sl::begin(stcont), sl::end(stcont));
stcont.pop_back();
auto it = std::min_element(sl::begin(stcont), sl::end(stcont),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(sl::begin(stcont), it, sl::end(stcont));
sl::addVertex(stcont, sl::front(stcont));
}
RawShape stationary;
sl::contour(stationary) = stcont;
// Reverse the orbiter contour to counter clockwise
auto orbcont = sl::contour(cother);
{
std::reverse(orbcont.begin(), orbcont.end());
// Step 1: Make the orbiter reverse oriented
orbcont.pop_back();
auto it = std::min_element(orbcont.begin(), orbcont.end(),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(orbcont.begin(), it, orbcont.end());
orbcont.emplace_back(orbcont.front());
for(auto &v : orbcont) v = -v;
}
// Copy the orbiter (contour only), we will have to work on it
RawShape orbiter;
sl::contour(orbiter) = orbcont;
// An edge with additional data for marking it
struct MarkedEdge {
Edge e; Radians turn_angle = 0; bool is_turning_point = false;
MarkedEdge() = default;
MarkedEdge(const Edge& ed, Radians ta, bool tp):
e(ed), turn_angle(ta), is_turning_point(tp) {}
// debug
std::string label;
};
// Container for marked edges
using EdgeList = vector<MarkedEdge>;
EdgeList A, B;
// This is how an edge list is created from the polygons
auto fillEdgeList = [](EdgeList& L, const RawShape& ppoly, int dir) {
auto& poly = sl::contour(ppoly);
L.reserve(sl::contourVertexCount(poly));
if(dir > 0) {
auto it = poly.begin();
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != poly.end()) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
} else {
auto it = sl::rbegin(poly);
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != sl::rend(poly)) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
}
auto getTurnAngle = [](const Edge& e1, const Edge& e2) {
auto phi = e1.angleToXaxis();
auto phi_prev = e2.angleToXaxis();
auto turn_angle = phi-phi_prev;
if(turn_angle > Pi) turn_angle -= TwoPi;
if(turn_angle < -Pi) turn_angle += TwoPi;
return turn_angle;
};
auto eit = L.begin();
auto enext = std::next(eit);
eit->turn_angle = getTurnAngle(L.front().e, L.back().e);
while(enext != L.end()) {
enext->turn_angle = getTurnAngle( enext->e, eit->e);
eit->is_turning_point =
signbit(enext->turn_angle) != signbit(eit->turn_angle);
++eit; ++enext;
}
L.back().is_turning_point = signbit(L.back().turn_angle) !=
signbit(L.front().turn_angle);
};
// Step 2: Fill the edgelists
fillEdgeList(A, stationary, 1);
fillEdgeList(B, orbiter, 1);
int i = 1;
for(MarkedEdge& me : A) {
std::cout << "a" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "a"; me.label += std::to_string(i);
i++;
}
i = 1;
for(MarkedEdge& me : B) {
std::cout << "b" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "b"; me.label += std::to_string(i);
i++;
}
// A reference to a marked edge that also knows its container
struct MarkedEdgeRef {
reference_wrapper<MarkedEdge> eref;
reference_wrapper<vector<MarkedEdgeRef>> container;
Coord dir = 1; // Direction modifier
inline Radians angleX() const { return eref.get().e.angleToXaxis(); }
inline const Edge& edge() const { return eref.get().e; }
inline Edge& edge() { return eref.get().e; }
inline bool isTurningPoint() const {
return eref.get().is_turning_point;
}
inline bool isFrom(const vector<MarkedEdgeRef>& cont ) {
return &(container.get()) == &cont;
}
inline bool eq(const MarkedEdgeRef& mr) {
return &(eref.get()) == &(mr.eref.get());
}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec):
eref(er), container(ec), dir(1) {}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec,
Coord d):
eref(er), container(ec), dir(d) {}
};
using EdgeRefList = vector<MarkedEdgeRef>;
// Comparing two marked edges
auto sortfn = [](const MarkedEdgeRef& e1, const MarkedEdgeRef& e2) {
return e1.angleX() < e2.angleX();
};
EdgeRefList Aref, Bref; // We create containers for the references
Aref.reserve(A.size()); Bref.reserve(B.size());
// Fill reference container for the stationary polygon
std::for_each(A.begin(), A.end(), [&Aref](MarkedEdge& me) {
Aref.emplace_back( ref(me), ref(Aref) );
});
// Fill reference container for the orbiting polygon
std::for_each(B.begin(), B.end(), [&Bref](MarkedEdge& me) {
Bref.emplace_back( ref(me), ref(Bref) );
});
auto mink = [sortfn] // the Mink(Q, R, direction) sub-procedure
(const EdgeRefList& Q, const EdgeRefList& R, bool positive)
{
// Step 1 "merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)"
// Sort the containers of edge references and merge them.
// Q could be sorted only once and be reused here but we would still
// need to merge it with sorted(R).
EdgeRefList merged;
EdgeRefList S, seq;
merged.reserve(Q.size() + R.size());
merged.insert(merged.end(), R.begin(), R.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
merged.insert(merged.end(), Q.begin(), Q.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
// Step 2 "set i = 1, k = 1, direction = 1, s1 = q1"
// we don't use i, instead, q is an iterator into Q. k would be an index
// into the merged sequence but we use "it" as an iterator for that
// here we obtain references for the containers for later comparisons
const auto& Rcont = R.begin()->container.get();
const auto& Qcont = Q.begin()->container.get();
// Set the initial direction
Coord dir = 1;
// roughly i = 1 (so q = Q.begin()) and s1 = q1 so S[0] = q;
if(positive) {
auto q = Q.begin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.end();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.begin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
} else {
auto q = Q.rbegin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.rend();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
S.back().dir = -1;
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.rbegin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
}
// Step 4:
// "Let starting edge r1 be in position si in sequence"
// whaaat? I guess this means the following:
auto it = S.begin();
while(!it->eq(*R.begin())) ++it;
// "Set j = 1, next = 2, direction = 1, seq1 = si"
// we don't use j, seq is expanded dynamically.
dir = 1;
auto next = std::next(R.begin()); seq.emplace_back(*it);
// Step 5:
// "If all si edges have been allocated to seqj" should mean that
// we loop until seq has equal size with S
auto send = it; //it == S.begin() ? it : std::prev(it);
while(it != S.end()) {
++it; if(it == S.end()) it = S.begin();
if(it == send) break;
if(it->isFrom(Qcont)) {
seq.emplace_back(*it); // "If si is from Q, j = j + 1, seqj = si"
// "If si is a turning point in Q,
// direction = - direction, next = next + direction"
if(it->isTurningPoint()) {
dir = -dir;
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
if(it->eq(*next) /*&& dir == next->dir*/) { // "If si = direction.rnext"
// "j = j + 1, seqj = si, next = next + direction"
seq.emplace_back(*it);
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
return seq;
};
std::vector<EdgeRefList> seqlist;
seqlist.reserve(Bref.size());
EdgeRefList Bslope = Bref; // copy Bref, we will make a slope diagram
// make the slope diagram of B
std::sort(Bslope.begin(), Bslope.end(), sortfn);
auto slopeit = Bslope.begin(); // search for the first turning point
while(!slopeit->isTurningPoint() && slopeit != Bslope.end()) slopeit++;
if(slopeit == Bslope.end()) {
// no turning point means convex polygon.
seqlist.emplace_back(mink(Aref, Bref, true));
} else {
int dir = 1;
auto firstturn = Bref.begin();
while(!firstturn->eq(*slopeit)) ++firstturn;
assert(firstturn != Bref.end());
EdgeRefList bgroup; bgroup.reserve(Bref.size());
bgroup.emplace_back(*slopeit);
auto b_it = std::next(firstturn);
while(b_it != firstturn) {
if(b_it == Bref.end()) b_it = Bref.begin();
while(!slopeit->eq(*b_it)) {
__nfp::advance(slopeit, Bslope, dir > 0);
}
if(!slopeit->isTurningPoint()) {
bgroup.emplace_back(*slopeit);
} else {
if(!bgroup.empty()) {
if(dir > 0) bgroup.emplace_back(*slopeit);
for(auto& me : bgroup) {
std::cout << me.eref.get().label << ", ";
}
std::cout << std::endl;
seqlist.emplace_back(mink(Aref, bgroup, dir == 1 ? true : false));
bgroup.clear();
if(dir < 0) bgroup.emplace_back(*slopeit);
} else {
bgroup.emplace_back(*slopeit);
}
dir *= -1;
}
++b_it;
}
}
// while(it != Bref.end()) // This is step 3 and step 4 in one loop
// if(it->isTurningPoint()) {
// R = {R.last, it++};
// auto seq = mink(Q, R, orientation);
// // TODO step 6 (should be 5 shouldn't it?): linking edges from A
// // I don't get this step
// seqlist.insert(seqlist.end(), seq.begin(), seq.end());
// orientation = !orientation;
// } else ++it;
// if(seqlist.empty()) seqlist = mink(Q, {Bref.begin(), Bref.end()}, true);
// /////////////////////////////////////////////////////////////////////////
// Algorithm 2: breaking Minkowski sums into track line trips
// /////////////////////////////////////////////////////////////////////////
// /////////////////////////////////////////////////////////////////////////
// Algorithm 3: finding the boundary of the NFP from track line trips
// /////////////////////////////////////////////////////////////////////////
for(auto& seq : seqlist) {
std::cout << "seqlist size: " << seq.size() << std::endl;
for(auto& s : seq) {
std::cout << (s.dir > 0 ? "" : "-") << s.eref.get().label << ", ";
}
std::cout << std::endl;
}
auto& seq = seqlist.front();
RawShape rsh;
Vertex top_nfp;
std::vector<Edge> edgelist; edgelist.reserve(seq.size());
for(auto& s : seq) {
edgelist.emplace_back(s.eref.get().e);
}
__nfp::buildPolygon(edgelist, rsh, top_nfp);
return Result(rsh, top_nfp);
}
// Specializable NFP implementation class. Specialize it if you have a faster
// or better NFP implementation
template<class RawShape, NfpLevel nfptype>

View File

@ -490,9 +490,32 @@ _Item<RawShape>::isInside(const _Circle<TPoint<RawShape>>& circ) const {
return sl::isInside<RawShape>(transformedShape(), circ);
}
template<class RawShape> using _ItemRef = std::reference_wrapper<_Item<RawShape>>;
template<class RawShape> using _ItemGroup = std::vector<_ItemRef<RawShape>>;
template<class I> using _ItemRef = std::reference_wrapper<I>;
template<class I> using _ItemGroup = std::vector<_ItemRef<I>>;
/**
* \brief A list of packed item vectors. Each vector represents a bin.
*/
template<class RawShape>
using _PackGroup = std::vector<std::vector<_ItemRef<RawShape>>>;
/**
* \brief A list of packed (index, item) pair vectors. Each vector represents a
* bin.
*
* The index is points to the position of the item in the original input
* sequence. This way the caller can use the items as a transformation data
* carrier and transform the original objects manually.
*/
template<class RawShape>
using _IndexedPackGroup = std::vector<
std::vector<
std::pair<
unsigned,
_ItemRef<RawShape>
>
>
>;
template<class Iterator>
struct ConstItemRange {
@ -524,8 +547,10 @@ class PlacementStrategyLike {
PlacementStrategy impl_;
public:
using RawShape = typename PlacementStrategy::ShapeType;
/// The item type that the placer works with.
using Item = typename PlacementStrategy::Item;
using Item = _Item<RawShape>;
/// The placer's config type. Should be a simple struct but can be anything.
using Config = typename PlacementStrategy::Config;
@ -544,8 +569,7 @@ public:
*/
using PackResult = typename PlacementStrategy::PackResult;
using ItemRef = _ItemRef<Item>;
using ItemGroup = _ItemGroup<Item>;
using ItemGroup = _ItemGroup<RawShape>;
using DefaultIterator = typename ItemGroup::const_iterator;
/**
@ -619,6 +643,16 @@ public:
return impl_.pack(item, remaining);
}
/**
* This method makes possible to "preload" some items into the placer. It
* will not move these items but will consider them as already packed.
*/
template<class Range = ConstItemRange<DefaultIterator>>
inline void preload(const Range& packeditems = Range())
{
impl_.preload(packeditems);
}
/// Unpack the last element (remove it from the list of packed items).
inline void unpackLast() { impl_.unpackLast(); }
@ -649,11 +683,11 @@ template<class SelectionStrategy>
class SelectionStrategyLike {
SelectionStrategy impl_;
public:
using Item = typename SelectionStrategy::Item;
using RawShape = typename SelectionStrategy::ShapeType;
using Item = _Item<RawShape>;
using PackGroup = _PackGroup<RawShape>;
using Config = typename SelectionStrategy::Config;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
/**
* @brief Provide a different configuration for the selection strategy.
@ -703,60 +737,29 @@ public:
std::forward<PConfig>(config));
}
/**
* \brief Get the number of bins opened by the selection algorithm.
*
* Initially it is zero and after the call to packItems it will return
* the number of bins opened by the packing procedure.
*
* \return The number of bins opened.
*/
inline size_t binCount() const { return impl_.binCount(); }
/**
* @brief Get the items for a particular bin.
* @param binIndex The index of the requested bin.
* @return Returns a list of all items packed into the requested bin.
*/
inline ItemGroup itemsForBin(size_t binIndex) {
return impl_.itemsForBin(binIndex);
inline const PackGroup& getResult() const {
return impl_.getResult();
}
/// Same as itemsForBin but for a const context.
inline const ItemGroup itemsForBin(size_t binIndex) const {
return impl_.itemsForBin(binIndex);
}
/**
* @brief Loading a group of already packed bins. It is best to use a result
* from a previous packing. The algorithm will consider this input as if the
* objects are already packed and not move them. If any of these items are
* outside the bin, it is up to the placer algorithm what will happen.
* Packing additional items can fail for the bottom-left and nfp placers.
* @param pckgrp A packgroup which is a vector of item vectors. Each item
* vector corresponds to a packed bin.
*/
inline void preload(const PackGroup& pckgrp) { impl_.preload(pckgrp); }
void clear() { impl_.clear(); }
};
/**
* \brief A list of packed item vectors. Each vector represents a bin.
*/
template<class RawShape>
using _PackGroup = std::vector<
std::vector<
std::reference_wrapper<_Item<RawShape>>
>
>;
/**
* \brief A list of packed (index, item) pair vectors. Each vector represents a
* bin.
*
* The index is points to the position of the item in the original input
* sequence. This way the caller can use the items as a transformation data
* carrier and transform the original objects manually.
*/
template<class RawShape>
using _IndexedPackGroup = std::vector<
std::vector<
std::pair<
unsigned,
std::reference_wrapper<_Item<RawShape>>
>
>
>;
/**
* The Arranger is the front-end class for the libnest2d library. It takes the
* input items and outputs the items with the proper transformations to be
@ -868,17 +871,29 @@ public:
}
/// Set a predicate to tell when to abort nesting.
inline Nester& stopCondition(StopCondition fn) {
inline Nester& stopCondition(StopCondition fn)
{
selector_.stopCondition(fn); return *this;
}
inline PackGroup lastResult() {
PackGroup ret;
for(size_t i = 0; i < selector_.binCount(); i++) {
auto items = selector_.itemsForBin(i);
ret.push_back(items);
inline const PackGroup& lastResult() const
{
return selector_.getResult();
}
inline void preload(const PackGroup& pgrp)
{
selector_.preload(pgrp);
}
inline void preload(const IndexedPackGroup& ipgrp)
{
PackGroup pgrp; pgrp.reserve(ipgrp.size());
for(auto& ig : ipgrp) {
pgrp.emplace_back(); pgrp.back().reserve(ig.size());
for(auto& r : ig) pgrp.back().emplace_back(r.second);
}
return ret;
preload(pgrp);
}
private:
@ -892,7 +907,7 @@ private:
// have to exist for the lifetime of this call.
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _execute(TIterator from, TIterator to, bool = false)
inline const PackGroup& _execute(TIterator from, TIterator to, bool = false)
{
__execute(from, to);
return lastResult();
@ -902,7 +917,7 @@ private:
class IT = remove_cvref_t<typename TIterator::value_type>,
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _execute(TIterator from, TIterator to, int = false)
inline const PackGroup& _execute(TIterator from, TIterator to, int = false)
{
item_cache_ = {from, to};
@ -946,10 +961,12 @@ private:
TSel& selector)
{
IndexedPackGroup pg;
pg.reserve(selector.binCount());
pg.reserve(selector.getResult().size());
for(size_t i = 0; i < selector.binCount(); i++) {
auto items = selector.itemsForBin(i);
const PackGroup& pckgrp = selector.getResult();
for(size_t i = 0; i < pckgrp.size(); i++) {
auto items = pckgrp[i];
pg.push_back({});
pg[i].reserve(items.size());

View File

@ -48,12 +48,12 @@ else()
target_link_libraries(NloptOptimizer INTERFACE Nlopt::Nlopt)
endif()
#target_sources( NloptOptimizer INTERFACE
#${CMAKE_CURRENT_SOURCE_DIR}/simplex.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/subplex.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/genetic.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/nlopt_boilerplate.hpp
#)
target_sources( NloptOptimizer INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/simplex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/subplex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/genetic.hpp
${CMAKE_CURRENT_SOURCE_DIR}/nlopt_boilerplate.hpp
)
target_compile_definitions(NloptOptimizer INTERFACE LIBNEST2D_OPTIMIZER_NLOPT)

View File

@ -130,7 +130,7 @@ namespace placers {
template<class RawShape>
struct NfpPConfig {
using ItemGroup = _ItemGroup<_Item<RawShape>>;
using ItemGroup = _ItemGroup<RawShape>;
enum class Alignment {
CENTER,
@ -138,6 +138,8 @@ struct NfpPConfig {
BOTTOM_RIGHT,
TOP_LEFT,
TOP_RIGHT,
DONT_ALIGN //!> Warning: parts may end up outside the bin with the
//! default object function.
};
/// Which angles to try out for better results.
@ -545,8 +547,8 @@ public:
_NofitPolyPlacer& operator=(const _NofitPolyPlacer&) = default;
#ifndef BP2D_COMPILER_MSVC12 // MSVC2013 does not support default move ctors
_NofitPolyPlacer(_NofitPolyPlacer&&) /*BP2D_NOEXCEPT*/ = default;
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) /*BP2D_NOEXCEPT*/ = default;
_NofitPolyPlacer(_NofitPolyPlacer&&) = default;
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) = default;
#endif
static inline double overfit(const Box& bb, const RawShape& bin) {
@ -905,26 +907,43 @@ private:
// This is the kernel part of the object function that is
// customizable by the library client
auto _objfunc = config_.object_function?
config_.object_function :
[norm, bin, binbb, pbb](const Item& item)
{
auto ibb = item.boundingBox();
auto fullbb = boundingBox(pbb, ibb);
std::function<double(const Item&)> _objfunc;
if(config_.object_function) _objfunc = config_.object_function;
else {
double score = pl::distance(ibb.center(), binbb.center());
score /= norm;
// Inside check has to be strict if no alignment was enabled.
std::function<double(const Box&)> ins_check;
if(config_.alignment == Config::Alignment::DONT_ALIGN)
ins_check = [&binbb, norm](const Box& fullbb) {
double ret = 0;
if(sl::isInside<RawShape>(fullbb, binbb)) ret += norm;
return ret;
};
else
ins_check = [&bin](const Box& fullbb) {
double miss = overfit(fullbb, bin);
miss = miss > 0? miss : 0;
return std::pow(miss, 2);
};
double miss = overfit(fullbb, bin);
miss = miss > 0? miss : 0;
score += std::pow(miss, 2);
_objfunc = [norm, binbb, pbb, ins_check](const Item& item)
{
auto ibb = item.boundingBox();
auto fullbb = boundingBox(pbb, ibb);
return score;
};
double score = pl::distance(ibb.center(),
binbb.center());
score /= norm;
score += ins_check(fullbb);
return score;
};
}
// Our object function for placement
auto rawobjfunc =
[_objfunc, iv, startpos] (Vertex v, Item& itm)
auto rawobjfunc = [_objfunc, iv, startpos]
(Vertex v, Item& itm)
{
auto d = v - iv;
d += startpos;
@ -1101,7 +1120,9 @@ private:
}
inline void finalAlign(_Circle<TPoint<RawShape>> cbin) {
if(items_.empty()) return;
if(items_.empty() ||
config_.alignment == Config::Alignment::DONT_ALIGN) return;
nfp::Shapes<RawShape> m;
m.reserve(items_.size());
for(Item& item : items_) m.emplace_back(item.transformedShape());
@ -1113,7 +1134,9 @@ private:
}
inline void finalAlign(Box bbin) {
if(items_.empty()) return;
if(items_.empty() ||
config_.alignment == Config::Alignment::DONT_ALIGN) return;
nfp::Shapes<RawShape> m;
m.reserve(items_.size());
for(Item& item : items_) m.emplace_back(item.transformedShape());
@ -1147,6 +1170,7 @@ private:
cb = bbin.maxCorner();
break;
}
default: ; // DONT_ALIGN
}
auto d = cb - ci;
@ -1184,6 +1208,7 @@ private:
cb = bbin.maxCorner();
break;
}
default:;
}
auto d = cb - ci;

View File

@ -12,6 +12,7 @@ class PlacerBoilerplate {
mutable bool farea_valid_ = false;
mutable double farea_ = 0.0;
public:
using ShapeType = RawShape;
using Item = _Item<RawShape>;
using Vertex = TPoint<RawShape>;
using Segment = _Segment<Vertex>;
@ -19,7 +20,7 @@ public:
using Coord = TCoord<Vertex>;
using Unit = Coord;
using Config = Cfg;
using ItemGroup = _ItemGroup<Item>;
using ItemGroup = _ItemGroup<RawShape>;
using DefaultIter = typename ItemGroup::const_iterator;
class PackResult {
@ -69,6 +70,12 @@ public:
return r;
}
template<class Range = ConstItemRange<DefaultIter>>
void preload(const Range& packeditems = Range()) {
items_.insert(items_.end(), packeditems.from, packeditems.to);
farea_valid_ = false;
}
void accept(PackResult& r) {
if(r) {
r.item_ptr_->translation(r.move_);
@ -117,6 +124,7 @@ using Base::bin_; \
using Base::items_; \
using Base::config_; \
public: \
using typename Base::ShapeType; \
using typename Base::Item; \
using typename Base::ItemGroup; \
using typename Base::BinType; \

View File

@ -33,7 +33,7 @@ class _DJDHeuristic: public SelectionBoilerplate<RawShape> {
public:
using typename Base::Item;
using typename Base::ItemRef;
using ItemRef = std::reference_wrapper<Item>;
/**
* @brief The Config for DJD heuristic.
@ -126,6 +126,8 @@ public:
store_.clear();
store_.reserve(last-first);
// TODO: support preloading
packed_bins_.clear();
std::copy(first, last, std::back_inserter(store_));

View File

@ -34,6 +34,10 @@ public:
store_.clear();
auto total = last-first;
store_.reserve(total);
// TODO: support preloading
packed_bins_.clear();
packed_bins_.emplace_back();
auto makeProgress = [this, &total](

View File

@ -36,11 +36,19 @@ public:
store_.clear();
store_.reserve(last-first);
packed_bins_.clear();
std::vector<Placer> placers;
placers.reserve(last-first);
// If the packed_items array is not empty we have to create as many
// placers as there are elements in packed bins and preload each item
// into the appropriate placer
for(ItemGroup& ig : packed_bins_) {
placers.emplace_back(bin);
placers.back().configure(pconfig);
placers.back().preload({ig.begin(), ig.end()});
}
std::copy(first, last, std::back_inserter(store_));
auto sortfunc = [](Item& i1, Item& i2) {

View File

@ -9,27 +9,23 @@ namespace libnest2d { namespace selections {
template<class RawShape>
class SelectionBoilerplate {
public:
using ShapeType = RawShape;
using Item = _Item<RawShape>;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
using PackGroup = std::vector<ItemGroup>;
using ItemGroup = _ItemGroup<RawShape>;
using PackGroup = _PackGroup<RawShape>;
size_t binCount() const { return packed_bins_.size(); }
ItemGroup itemsForBin(size_t binIndex) {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
}
inline const ItemGroup itemsForBin(size_t binIndex) const {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
inline const PackGroup& getResult() const {
return packed_bins_;
}
inline void progressIndicator(ProgressFunction fn) { progress_ = fn; }
inline void stopCondition(StopCondition cond) { stopcond_ = cond; }
inline void preload(const PackGroup& pckgrp) { packed_bins_ = pckgrp; }
inline void clear() { packed_bins_.clear(); }
protected:
PackGroup packed_bins_;

View File

@ -358,6 +358,28 @@ public:
m_rtree.clear();
return m_pck.executeIndexed(std::forward<Args>(args)...);
}
inline void preload(const PackGroup& pg) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
m_pconf.object_function = nullptr; // drop the special objectfunction
m_pck.preload(pg);
// Build the rtree for queries to work
for(const ItemGroup& grp : pg)
for(unsigned idx = 0; idx < grp.size(); ++idx) {
Item& itm = grp[idx];
m_rtree.insert({itm.boundingBox(), idx});
}
m_pck.configure(m_pconf);
}
bool is_colliding(const Item& item) {
std::vector<SpatElement> result;
m_rtree.query(bgi::intersects(item.boundingBox()),
std::back_inserter(result));
return result.empty();
}
};
// Arranger specialization for a Box shaped bin.
@ -365,8 +387,8 @@ template<> class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond):
std::function<void(unsigned)> progressind = [](unsigned){},
std::function<bool(void)> stopcond = [](){return false;}):
_ArrBase<Box>(bin, dist, progressind, stopcond)
{
@ -791,5 +813,114 @@ bool arrange(Model &model, // The model with the geometries
return ret && result.size() == 1;
}
void find_new_position(const Model &model,
ModelInstancePtrs toadd,
coord_t min_obj_distance,
const Polyline &bed)
{
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
PackGroup preshapes; preshapes.emplace_back();
ItemGroup shapes;
preshapes.front().reserve(shapemap.size());
std::vector<ModelInstance*> shapes_ptr; shapes_ptr.reserve(toadd.size());
IndexedPackGroup result;
// If there is no hint about the shape, we will try to guess
BedShapeHint bedhint = bedShape(bed);
BoundingBox bbb(bed);
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min(0)),
static_cast<libnest2d::Coord>(bbb.min(1))
},
{
static_cast<libnest2d::Coord>(bbb.max(0)),
static_cast<libnest2d::Coord>(bbb.max(1))
});
for(auto it = shapemap.begin(); it != shapemap.end(); ++it) {
if(std::find(toadd.begin(), toadd.end(), it->first) == toadd.end() &&
it->second.isInside(binbb)) { // just ignore items which are outside
preshapes.front().emplace_back(std::ref(it->second));
}
else {
shapes_ptr.emplace_back(it->first);
shapes.emplace_back(std::ref(it->second));
}
}
switch(bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance);
std::cout << "preload size: " << preshapes.front().size() << std::endl;
if(!preshapes.front().empty()) arrange.preload(preshapes);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::CIRCLE: {
// auto c = bedhint.shape.circ;
// auto cc = to_lnCircle(c);
// AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind, cfn);
// result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::IRREGULAR:
case BedShapeType::WHO_KNOWS: {
// using P = libnest2d::PolygonImpl;
// auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
// P irrbed = sl::create<PolygonImpl>(std::move(ctour));
// AutoArranger<P> arrange(irrbed, min_obj_distance, progressind, cfn);
// // Arrange and return the items with their respective indices within the
// // input sequence.
// result = arrange(shapes.begin(), shapes.end());
break;
}
};
// Now we go through the result which will contain the fixed and the moving
// polygons as well. We will have to search for our item.
const auto STRIDE_PADDING = 1.2;
Coord stride = Coord(STRIDE_PADDING*binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
for(auto& r : group) if(r.first < shapes.size()) {
Item& resultitem = r.second;
unsigned idx = r.first;
auto offset = resultitem.translation();
Radians rot = resultitem.rotation();
ModelInstance *minst = shapes_ptr[idx];
Vec3d foffset(offset.X*SCALING_FACTOR + batch_offset,
offset.Y*SCALING_FACTOR,
minst->get_offset()(Z));
// write the transformation data into the model instance
minst->set_rotation(Z, rot);
minst->set_offset(foffset);
}
batch_offset += stride;
}
}
}
}

View File

@ -73,7 +73,13 @@ bool arrange(Model &model, coord_t min_obj_distance,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcondition);
}
/// This will find a suitable position for a new object instance and leave the
/// old items untouched.
void find_new_position(const Model& model,
ModelInstancePtrs instances_to_add,
coord_t min_obj_distance,
const Slic3r::Polyline& bed);
}
} // arr
} // Slic3r
#endif // MODELARRANGE_HPP

View File

@ -1399,6 +1399,8 @@ std::vector<size_t> Plater::priv::load_files(const std::vector<fs::path>& input_
if (one_by_one) {
auto loaded_idxs = load_model_objects(model.objects);
obj_idxs.insert(obj_idxs.end(), loaded_idxs.begin(), loaded_idxs.end());
std::cout << "New model objects added..." << std::endl;
} else {
// This must be an .stl or .obj file, which may contain a maximum of one volume.
for (const ModelObject* model_object : model.objects) {
@ -1448,11 +1450,12 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &mode
const BoundingBoxf bed_shape = bed_shape_bb();
const Vec3d bed_size = Slic3r::to_3d(bed_shape.size().cast<double>(), 1.0) - 2.0 * Vec3d::Ones();
bool need_arrange = false;
// bool need_arrange = false;
bool scaled_down = false;
std::vector<size_t> obj_idxs;
unsigned int obj_count = model.objects.size();
ModelInstancePtrs new_instances;
for (ModelObject *model_object : model_objects) {
auto *object = model.add_object(*model_object);
std::string object_name = object->name.empty() ? fs::path(object->input_file).filename().string() : object->name;
@ -1460,12 +1463,15 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &mode
if (model_object->instances.empty()) {
// if object has no defined position(s) we need to rearrange everything after loading
need_arrange = true;
// need_arrange = true;
// add a default instance and center object around origin
object->center_around_origin(); // also aligns object to Z = 0
ModelInstance* instance = object->add_instance();
instance->set_offset(Slic3r::to_3d(bed_shape.center().cast<double>(), -object->origin_translation(2)));
object->center_around_origin();
new_instances.emplace_back(object->add_instance());
// // add a default instance and center object around origin
// object->center_around_origin(); // also aligns object to Z = 0
// ModelInstance* instance = object->add_instance();
// instance->set_offset(Slic3r::to_3d(bed_shape.center().cast<double>(), -object->origin_translation(2)));
}
const Vec3d size = object->bounding_box().size();
@ -1492,6 +1498,17 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &mode
// print.add_model_object(object);
}
// FIXME distance should be a config value
auto min_obj_distance = static_cast<coord_t>(6/SCALING_FACTOR);
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
assert(bed_shape_opt);
auto& bedpoints = bed_shape_opt->values;
Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
arr::find_new_position(model, new_instances,
min_obj_distance, bed);
if (scaled_down) {
GUI::show_info(q,
_(L("Your object appears to be too large, so it was automatically scaled down to fit your print bed.")),