Search for suitable rotation when arranging items larger than the bed

This commit is contained in:
tamasmeszaros 2021-06-22 11:23:19 +02:00
parent d3233d66fb
commit 49c6ce76d0
2 changed files with 191 additions and 72 deletions

View File

@ -90,12 +90,29 @@ inline R rectarea(const Pt& w, const std::array<It, 4>& rect)
return rectarea<Pt, Unit, R>(w, *rect[0], *rect[1], *rect[2], *rect[3]);
}
template<class Pt, class Unit = TCompute<Pt>, class R = TCompute<Pt>>
inline R rectarea(const Pt& w, // the axis
const Unit& a,
const Unit& b)
{
R m = R(a) / pl::magnsq<Pt, Unit>(w);
m = m * b;
return m;
};
template<class R, class Pt, class Unit>
inline R rectarea(const RotatedBox<Pt, Unit> &rb)
{
return rectarea<Pt, Unit, R>(rb.axis(), rb.bottom_extent(), rb.right_extent());
};
// This function is only applicable to counter-clockwise oriented convex
// polygons where only two points can be collinear witch each other.
template <class RawShape,
class Unit = TCompute<RawShape>,
class Ratio = TCompute<RawShape>>
RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
class Ratio = TCompute<RawShape>,
class VisitFn>
void rotcalipers(const RawShape& sh, VisitFn &&visitfn)
{
using Point = TPoint<RawShape>;
using Iterator = typename TContour<RawShape>::const_iterator;
@ -106,9 +123,9 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
auto last = std::prev(sl::cend(sh));
// Check conditions and return undefined box if input is not sane.
if(last == first) return {};
if(last == first) return;
if(getX(*first) == getX(*last) && getY(*first) == getY(*last)) --last;
if(last - first < 2) return {};
if(last - first < 2) return;
RawShape shcpy; // empty at this point
{
@ -219,12 +236,14 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
};
Point w(1, 0);
Point w_min = w;
Ratio minarea((Unit(getX(*maxX)) - getX(*minX)) *
(Unit(getY(*maxY)) - getY(*minY)));
std::array<Iterator, 4> rect = {minY, maxX, maxY, minX};
std::array<Iterator, 4> minrect = rect;
{
Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]);
Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]);
if (!visitfn(RotatedBox<Point, Unit>{w, a, b}))
return;
}
// An edge might be examined twice in which case the algorithm terminates.
size_t c = 0, count = last - first + 1;
@ -243,18 +262,35 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
// get the unnormalized direction vector
w = *rect[0] - *prev(rect[0]);
// get the area of the rotated rectangle
Ratio rarea = rectarea<Point, Unit, Ratio>(w, rect);
// Update min area and the direction of the min bounding box;
if(rarea <= minarea) { w_min = w; minarea = rarea; minrect = rect; }
Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]);
Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]);
if (!visitfn(RotatedBox<Point, Unit>{w, a, b}))
break;
}
}
Unit a = dot<Point, Unit>(w_min, *minrect[1] - *minrect[3]);
Unit b = dot<Point, Unit>(-perp(w_min), *minrect[2] - *minrect[0]);
RotatedBox<Point, Unit> bb(w_min, a, b);
// This function is only applicable to counter-clockwise oriented convex
// polygons where only two points can be collinear witch each other.
template <class S,
class Unit = TCompute<S>,
class Ratio = TCompute<S>>
RotatedBox<TPoint<S>, Unit> minAreaBoundingBox(const S& sh)
{
RotatedBox<TPoint<S>, Unit> minbox;
Ratio minarea = std::numeric_limits<Unit>::max();
auto minfn = [&minarea, &minbox](const RotatedBox<TPoint<S>, Unit> &rbox){
Ratio area = rectarea<Ratio>(rbox);
if (area <= minarea) {
minarea = area;
minbox = rbox;
}
return bb;
return true; // continue search
};
rotcalipers<S, Unit, Ratio>(sh, minfn);
return minbox;
}
template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
@ -262,7 +298,75 @@ template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
return minAreaBoundingBox(sh).angleToX();
}
// Function to find a rotation for a shape that makes it fit into a box.
//
// The method is based on finding a pair of rotations from the rotating calipers
// algorithm such that the aspect ratio is changing from being smaller than
// that of the target to being bigger or vice versa. So that the correct
// AR is somewhere between the obtained pair of angles. Then bisecting that
// interval is sufficient to find the correct angle.
//
// The argument eps is the absolute error limit for the searched angle interval.
template<class S, class Unit = TCompute<S>, class Ratio = TCompute<S>>
Radians fitIntoBoxRotation(const S &shape, const _Box<TPoint<S>> &box, Radians eps = 1e-4)
{
constexpr auto get_aspect_r = [](const auto &b) -> double {
return double(b.width()) / b.height();
};
auto aspect_r = get_aspect_r(box);
RotatedBox<TPoint<S>, Unit> prev_rbox;
Radians a_from = 0., a_to = 0.;
auto visitfn = [&](const RotatedBox<TPoint<S>, Unit> &rbox) {
bool lower_prev = get_aspect_r(prev_rbox) < aspect_r;
bool lower_current = get_aspect_r(rbox) < aspect_r;
if (lower_prev != lower_current) {
a_from = prev_rbox.angleToX();
a_to = rbox.angleToX();
return false;
}
return true;
};
rotcalipers<S, Unit, Ratio>(shape, visitfn);
auto rot_shape_bb = [&shape](Radians r) {
auto s = shape;
sl::rotate(s, r);
return sl::boundingBox(s);
};
auto rot_aspect_r = [&rot_shape_bb, &get_aspect_r](Radians r) {
return get_aspect_r(rot_shape_bb(r));
};
// Lets bisect the retrieved interval where the correct aspect ratio is.
double ar_from = rot_aspect_r(a_from);
auto would_fit = [&box](const _Box<TPoint<S>> &b) {
return b.width() < box.width() && b.height() < box.height();
};
Radians middle = (a_from + a_to) / 2.;
_Box<TPoint<S>> box_middle = rot_shape_bb(middle);
while (!would_fit(box_middle) && std::abs(a_to - a_from) > eps)
{
double ar_middle = get_aspect_r(box_middle);
if ((ar_from < aspect_r) != (ar_middle < aspect_r))
a_to = middle;
else
a_from = middle;
ar_from = rot_aspect_r(a_from);
middle = (a_from + a_to) / 2.;
box_middle = rot_shape_bb(middle);
}
return middle;
}
} // namespace libnest2d
#endif // ROTCALIPERS_HPP

View File

@ -472,6 +472,12 @@ template<class S> Radians min_area_boundingbox_rotation(const S &sh)
.angleToX();
}
template<class S>
Radians fit_into_box_rotation(const S &sh, const _Box<TPoint<S>> &box)
{
return fitIntoBoxRotation<S, TCompute<S>, boost::rational<LargeInt>>(sh, box);
}
template<class BinT> // Arrange for arbitrary bin type
void _arrange(
std::vector<Item> & shapes,
@ -509,10 +515,19 @@ void _arrange(
// Use the minimum bounding box rotation as a starting point.
// TODO: This only works for convex hull. If we ever switch to concave
// polygon nesting, a convex hull needs to be calculated.
if (params.allow_rotations)
for (auto &itm : shapes)
if (params.allow_rotations) {
for (auto &itm : shapes) {
itm.rotation(min_area_boundingbox_rotation(itm.rawShape()));
// If the item is too big, try to find a rotation that makes it fit
if constexpr (std::is_same_v<BinT, Box>) {
auto bb = itm.boundingBox();
if (bb.width() >= bin.width() || bb.height() >= bin.height())
itm.rotate(fit_into_box_rotation(itm.transformedShape(), bin));
}
}
}
arranger(inp.begin(), inp.end());
for (Item &itm : inp) itm.inflate(-infl);
}