Merge branch 'lh_pressure_equalizer'

This commit is contained in:
Lukáš Hejl 2022-06-10 11:00:56 +02:00
commit 4b00b78e7f
10 changed files with 380 additions and 340 deletions

View File

@ -104,8 +104,8 @@ add_library(libslic3r STATIC
GCode/FindReplace.hpp
GCode/PostProcessor.cpp
GCode/PostProcessor.hpp
# GCode/PressureEqualizer.cpp
# GCode/PressureEqualizer.hpp
GCode/PressureEqualizer.cpp
GCode/PressureEqualizer.hpp
GCode/PrintExtents.cpp
GCode/PrintExtents.hpp
GCode/SpiralVase.cpp

View File

@ -1108,14 +1108,11 @@ void GCode::_do_export(Print& print, GCodeOutputStream &file, ThumbnailsGenerato
if (print.config().spiral_vase.value)
m_spiral_vase = make_unique<SpiralVase>(print.config());
#ifdef HAS_PRESSURE_EQUALIZER
if (print.config().max_volumetric_extrusion_rate_slope_positive.value > 0 ||
print.config().max_volumetric_extrusion_rate_slope_negative.value > 0)
m_pressure_equalizer = make_unique<PressureEqualizer>(&print.config());
m_pressure_equalizer = make_unique<PressureEqualizer>(print.config());
m_enable_extrusion_role_markers = (bool)m_pressure_equalizer;
#else /* HAS_PRESSURE_EQUALIZER */
m_enable_extrusion_role_markers = false;
#endif /* HAS_PRESSURE_EQUALIZER */
// Write information on the generator.
file.write_format("; %s\n\n", Slic3r::header_slic3r_generated().c_str());
@ -1364,10 +1361,6 @@ void GCode::_do_export(Print& print, GCodeOutputStream &file, ThumbnailsGenerato
// Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser
// and export G-code into file.
this->process_layers(print, tool_ordering, collect_layers_to_print(object), *print_object_instance_sequential_active - object.instances().data(), file);
#ifdef HAS_PRESSURE_EQUALIZER
if (m_pressure_equalizer)
file.write(m_pressure_equalizer->process("", true));
#endif /* HAS_PRESSURE_EQUALIZER */
++ finished_objects;
// Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed.
// Reset it when starting another object from 1st layer.
@ -1424,10 +1417,6 @@ void GCode::_do_export(Print& print, GCodeOutputStream &file, ThumbnailsGenerato
// Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser
// and export G-code into file.
this->process_layers(print, tool_ordering, print_object_instances_ordering, layers_to_print, file);
#ifdef HAS_PRESSURE_EQUALIZER
if (m_pressure_equalizer)
file.write(m_pressure_equalizer->process("", true));
#endif /* HAS_PRESSURE_EQUALIZER */
if (m_wipe_tower)
// Purge the extruder, pull out the active filament.
file.write(m_wipe_tower->finalize(*this));
@ -1540,11 +1529,18 @@ void GCode::process_layers(
{
// The pipeline is variable: The vase mode filter is optional.
size_t layer_to_print_idx = 0;
const auto generator = tbb::make_filter<void, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[this, &print, &tool_ordering, &print_object_instances_ordering, &layers_to_print, &layer_to_print_idx](tbb::flow_control& fc) -> GCode::LayerResult {
if (layer_to_print_idx == layers_to_print.size()) {
fc.stop();
return {};
const auto generator = tbb::make_filter<void, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[this, &print, &tool_ordering, &print_object_instances_ordering, &layers_to_print, &layer_to_print_idx](tbb::flow_control& fc) -> LayerResult {
if (layer_to_print_idx >= layers_to_print.size()) {
if ((!m_pressure_equalizer && layer_to_print_idx == layers_to_print.size()) || (m_pressure_equalizer && layer_to_print_idx == (layers_to_print.size() + 1))) {
fc.stop();
return {};
} else {
// Pressure equalizer need insert empty input. Because it returns one layer back.
// Insert NOP (no operation) layer;
++layer_to_print_idx;
return LayerResult::make_nop_layer_result();
}
} else {
const std::pair<coordf_t, std::vector<LayerToPrint>>& layer = layers_to_print[layer_to_print_idx++];
const LayerTools& layer_tools = tool_ordering.tools_for_layer(layer.first);
@ -1554,17 +1550,27 @@ void GCode::process_layers(
return this->process_layer(print, layer.second, layer_tools, &layer == &layers_to_print.back(), &print_object_instances_ordering, size_t(-1));
}
});
const auto spiral_vase = tbb::make_filter<GCode::LayerResult, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_vase = *this->m_spiral_vase.get()](GCode::LayerResult in) -> GCode::LayerResult {
const auto spiral_vase = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_vase = *this->m_spiral_vase](LayerResult in) -> LayerResult {
if (in.nop_layer_result)
return in;
spiral_vase.enable(in.spiral_vase_enable);
return { spiral_vase.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush };
return { spiral_vase.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush};
});
const auto cooling = tbb::make_filter<GCode::LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer.get()](GCode::LayerResult in) -> std::string {
return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
const auto pressure_equalizer = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&pressure_equalizer = *this->m_pressure_equalizer](LayerResult in) -> LayerResult {
return pressure_equalizer.process_layer(std::move(in));
});
const auto cooling = tbb::make_filter<LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer](LayerResult in) -> std::string {
if (in.nop_layer_result)
return in.gcode;
return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
});
const auto find_replace = tbb::make_filter<std::string, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&self = *this->m_find_replace.get()](std::string s) -> std::string {
[&self = *this->m_find_replace](std::string s) -> std::string {
return self.process_layer(std::move(s));
});
const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order,
@ -1577,14 +1583,22 @@ void GCode::process_layers(
// The pipeline elements are joined using const references, thus no copying is performed.
output_stream.find_replace_supress();
if (m_spiral_vase && m_find_replace)
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & find_replace & output);
if (m_spiral_vase && m_find_replace && m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & spiral_vase & pressure_equalizer & cooling & find_replace & output);
else if (m_spiral_vase && m_find_replace)
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & find_replace & output);
else if (m_spiral_vase && m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & spiral_vase & pressure_equalizer & cooling & output);
else if (m_find_replace && m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & pressure_equalizer & cooling & find_replace & output);
else if (m_spiral_vase)
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & output);
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & output);
else if (m_find_replace)
tbb::parallel_pipeline(12, generator & cooling & find_replace & output);
tbb::parallel_pipeline(12, generator & cooling & find_replace & output);
else if (m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & pressure_equalizer & cooling & output);
else
tbb::parallel_pipeline(12, generator & cooling & output);
tbb::parallel_pipeline(12, generator & cooling & output);
output_stream.find_replace_enable();
}
@ -1600,28 +1614,43 @@ void GCode::process_layers(
{
// The pipeline is variable: The vase mode filter is optional.
size_t layer_to_print_idx = 0;
const auto generator = tbb::make_filter<void, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[this, &print, &tool_ordering, &layers_to_print, &layer_to_print_idx, single_object_idx](tbb::flow_control& fc) -> GCode::LayerResult {
if (layer_to_print_idx == layers_to_print.size()) {
fc.stop();
return {};
const auto generator = tbb::make_filter<void, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[this, &print, &tool_ordering, &layers_to_print, &layer_to_print_idx, single_object_idx](tbb::flow_control& fc) -> LayerResult {
if (layer_to_print_idx >= layers_to_print.size()) {
if ((!m_pressure_equalizer && layer_to_print_idx == layers_to_print.size()) || (m_pressure_equalizer && layer_to_print_idx == (layers_to_print.size() + 1))) {
fc.stop();
return {};
} else {
// Pressure equalizer need insert empty input. Because it returns one layer back.
// Insert NOP (no operation) layer;
++layer_to_print_idx;
return LayerResult::make_nop_layer_result();
}
} else {
LayerToPrint &layer = layers_to_print[layer_to_print_idx ++];
print.throw_if_canceled();
return this->process_layer(print, { std::move(layer) }, tool_ordering.tools_for_layer(layer.print_z()), &layer == &layers_to_print.back(), nullptr, single_object_idx);
}
});
const auto spiral_vase = tbb::make_filter<GCode::LayerResult, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_vase = *this->m_spiral_vase.get()](GCode::LayerResult in)->GCode::LayerResult {
const auto spiral_vase = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_vase = *this->m_spiral_vase](LayerResult in)->LayerResult {
if (in.nop_layer_result)
return in;
spiral_vase.enable(in.spiral_vase_enable);
return { spiral_vase.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush };
});
const auto cooling = tbb::make_filter<GCode::LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer.get()](GCode::LayerResult in)->std::string {
const auto pressure_equalizer = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&pressure_equalizer = *this->m_pressure_equalizer](LayerResult in) -> LayerResult {
return pressure_equalizer.process_layer(std::move(in));
});
const auto cooling = tbb::make_filter<LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer](LayerResult in)->std::string {
if (in.nop_layer_result)
return in.gcode;
return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
});
const auto find_replace = tbb::make_filter<std::string, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&self = *this->m_find_replace.get()](std::string s) -> std::string {
[&self = *this->m_find_replace](std::string s) -> std::string {
return self.process_layer(std::move(s));
});
const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order,
@ -1634,14 +1663,22 @@ void GCode::process_layers(
// The pipeline elements are joined using const references, thus no copying is performed.
output_stream.find_replace_supress();
if (m_spiral_vase && m_find_replace)
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & find_replace & output);
if (m_spiral_vase && m_find_replace && m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & spiral_vase & pressure_equalizer & cooling & find_replace & output);
else if (m_spiral_vase && m_find_replace)
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & find_replace & output);
else if (m_spiral_vase && m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & spiral_vase & pressure_equalizer & cooling & output);
else if (m_find_replace && m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & pressure_equalizer & cooling & find_replace & output);
else if (m_spiral_vase)
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & output);
tbb::parallel_pipeline(12, generator & spiral_vase & cooling & output);
else if (m_find_replace)
tbb::parallel_pipeline(12, generator & cooling & find_replace & output);
tbb::parallel_pipeline(12, generator & cooling & find_replace & output);
else if (m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & pressure_equalizer & cooling & output);
else
tbb::parallel_pipeline(12, generator & cooling & output);
tbb::parallel_pipeline(12, generator & cooling & output);
output_stream.find_replace_enable();
}
@ -2066,7 +2103,7 @@ namespace Skirt {
// In non-sequential mode, process_layer is called per each print_z height with all object and support layers accumulated.
// For multi-material prints, this routine minimizes extruder switches by gathering extruder specific extrusion paths
// and performing the extruder specific extrusions together.
GCode::LayerResult GCode::process_layer(
LayerResult GCode::process_layer(
const Print &print,
// Set of object & print layers of the same PrintObject and with the same print_z.
const std::vector<LayerToPrint> &layers,
@ -2097,7 +2134,7 @@ GCode::LayerResult GCode::process_layer(
}
}
const Layer &layer = (object_layer != nullptr) ? *object_layer : *support_layer;
GCode::LayerResult result { {}, layer.id(), false, last_layer };
LayerResult result { {}, layer.id(), false, last_layer, false};
if (layer_tools.extruders.empty())
// Nothing to extrude.
return result;
@ -2480,13 +2517,11 @@ GCode::LayerResult GCode::process_layer(
// Flush the cooling buffer at each object layer or possibly at the last layer, even if it contains just supports (This should not happen).
object_layer || last_layer);
#ifdef HAS_PRESSURE_EQUALIZER
// Apply pressure equalization if enabled;
// printf("G-code before filter:\n%s\n", gcode.c_str());
if (m_pressure_equalizer)
gcode = m_pressure_equalizer->process(gcode.c_str(), false);
// printf("G-code after filter:\n%s\n", out.c_str());
#endif /* HAS_PRESSURE_EQUALIZER */
file.write(gcode);
#endif

View File

@ -23,9 +23,7 @@
#include <map>
#include <string>
#ifdef HAS_PRESSURE_EQUALIZER
#include "GCode/PressureEqualizer.hpp"
#endif /* HAS_PRESSURE_EQUALIZER */
namespace Slic3r {
@ -116,6 +114,20 @@ public:
static const std::vector<std::string>& get() { return Colors; }
};
struct LayerResult {
std::string gcode;
size_t layer_id;
// Is spiral vase post processing enabled for this layer?
bool spiral_vase_enable { false };
// Should the cooling buffer content be flushed at the end of this layer?
bool cooling_buffer_flush { false };
// Is indicating if this LayerResult should be processed, or it is just inserted artificial LayerResult.
// It is used for the pressure equalizer because it needs to buffer one layer back.
bool nop_layer_result { false };
static LayerResult make_nop_layer_result() { return {"", std::numeric_limits<coord_t>::max(), false, false, true}; }
};
class GCode {
public:
GCode() :
@ -228,14 +240,6 @@ private:
static std::vector<LayerToPrint> collect_layers_to_print(const PrintObject &object);
static std::vector<std::pair<coordf_t, std::vector<LayerToPrint>>> collect_layers_to_print(const Print &print);
struct LayerResult {
std::string gcode;
size_t layer_id;
// Is spiral vase post processing enabled for this layer?
bool spiral_vase_enable { false };
// Should the cooling buffer content be flushed at the end of this layer?
bool cooling_buffer_flush { false };
};
LayerResult process_layer(
const Print &print,
// Set of object & print layers of the same PrintObject and with the same print_z.
@ -406,9 +410,7 @@ private:
std::unique_ptr<CoolingBuffer> m_cooling_buffer;
std::unique_ptr<SpiralVase> m_spiral_vase;
std::unique_ptr<GCodeFindReplace> m_find_replace;
#ifdef HAS_PRESSURE_EQUALIZER
std::unique_ptr<PressureEqualizer> m_pressure_equalizer;
#endif /* HAS_PRESSURE_EQUALIZER */
std::unique_ptr<WipeTowerIntegration> m_wipe_tower;
// Heights (print_z) at which the skirt has already been extruded.
@ -448,6 +450,7 @@ private:
friend class Wipe;
friend class WipeTowerIntegration;
friend class PressureEqualizer;
};
std::vector<const PrintInstance*> sort_object_instances_by_model_order(const Print& print);

View File

@ -5,31 +5,24 @@
#include "../libslic3r.h"
#include "../PrintConfig.hpp"
#include "../LocalesUtils.hpp"
#include "../GCode.hpp"
#include "PressureEqualizer.hpp"
#include "fast_float/fast_float.h"
#include "GCodeWriter.hpp"
namespace Slic3r {
PressureEqualizer::PressureEqualizer(const Slic3r::GCodeConfig *config) :
m_config(config)
{
reset();
}
static const std::string EXTRUSION_ROLE_TAG = ";_EXTRUSION_ROLE:";
static const std::string EXTRUDE_END_TAG = ";_EXTRUDE_END";
static const std::string EXTRUDE_SET_SPEED_TAG = ";_EXTRUDE_SET_SPEED";
static const std::string EXTERNAL_PERIMETER_TAG = ";_EXTERNAL_PERIMETER";
PressureEqualizer::~PressureEqualizer()
PressureEqualizer::PressureEqualizer(const Slic3r::GCodeConfig &config) : m_use_relative_e_distances(config.use_relative_e_distances.value)
{
}
void PressureEqualizer::reset()
{
circular_buffer_pos = 0;
circular_buffer_size = 100;
circular_buffer_items = 0;
circular_buffer.assign(circular_buffer_size, GCodeLine());
// Preallocate some data, so that output_buffer.data() will return an empty string.
output_buffer.assign(32, 0);
output_buffer_length = 0;
output_buffer_length = 0;
m_current_extruder = 0;
// Zero the position of the XYZE axes + the current feed
@ -40,9 +33,8 @@ void PressureEqualizer::reset()
// Calculate filamet crossections for the multiple extruders.
m_filament_crossections.clear();
for (size_t i = 0; i < m_config->filament_diameter.values.size(); ++ i) {
double r = m_config->filament_diameter.values[i];
double a = 0.25f*M_PI*r*r;
for (double r : config.filament_diameter.values) {
double a = 0.25f * M_PI * r * r;
m_filament_crossections.push_back(float(a));
}
@ -50,82 +42,82 @@ void PressureEqualizer::reset()
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 60mm/s XY movement: 0.45*0.2*60*60=5.4*60 = 324 mm^3/min
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 20mm/s XY movement: 0.45*0.2*20*60=1.8*60 = 108 mm^3/min
// Slope of the volumetric rate, changing from 20mm/s to 60mm/s over 2 seconds: (5.4-1.8)*60*60/2=60*60*1.8 = 6480 mm^3/min^2 = 1.8 mm^3/s^2
m_max_volumetric_extrusion_rate_slope_positive = (m_config == NULL) ? 6480.f :
m_config->max_volumetric_extrusion_rate_slope_positive.value * 60.f * 60.f;
m_max_volumetric_extrusion_rate_slope_negative = (m_config == NULL) ? 6480.f :
m_config->max_volumetric_extrusion_rate_slope_negative.value * 60.f * 60.f;
m_max_volumetric_extrusion_rate_slope_positive = float(config.max_volumetric_extrusion_rate_slope_positive.value) * 60.f * 60.f;
m_max_volumetric_extrusion_rate_slope_negative = float(config.max_volumetric_extrusion_rate_slope_negative.value) * 60.f * 60.f;
for (size_t i = 0; i < numExtrusionRoles; ++ i) {
m_max_volumetric_extrusion_rate_slopes[i].negative = m_max_volumetric_extrusion_rate_slope_negative;
m_max_volumetric_extrusion_rate_slopes[i].positive = m_max_volumetric_extrusion_rate_slope_positive;
for (ExtrusionRateSlope &extrusion_rate_slope : m_max_volumetric_extrusion_rate_slopes) {
extrusion_rate_slope.negative = m_max_volumetric_extrusion_rate_slope_negative;
extrusion_rate_slope.positive = m_max_volumetric_extrusion_rate_slope_positive;
}
// Don't regulate the pressure in infill.
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].negative = 0;
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].positive = 0;
// Don't regulate the pressure in gap fill.
m_max_volumetric_extrusion_rate_slopes[erGapFill].negative = 0;
m_max_volumetric_extrusion_rate_slopes[erGapFill].positive = 0;
// Don't regulate the pressure in infill and gap fill.
// TODO: Do we want to regulate pressure in erWipeTower, erCustom and erMixed?
for (const ExtrusionRole er : {erBridgeInfill, erGapFill}) {
m_max_volumetric_extrusion_rate_slopes[er].negative = 0;
m_max_volumetric_extrusion_rate_slopes[er].positive = 0;
}
#ifdef PRESSURE_EQUALIZER_STATISTIC
m_stat.reset();
#endif
#ifdef PRESSURE_EQUALIZER_DEBUG
line_idx = 0;
#endif
}
const char* PressureEqualizer::process(const char *szGCode, bool flush)
void PressureEqualizer::process_layer(const std::string &gcode)
{
// Reset length of the output_buffer.
output_buffer_length = 0;
if (szGCode != 0) {
const char *p = szGCode;
while (*p != 0) {
if (!gcode.empty()) {
const char *gcode_begin = gcode.c_str();
while (*gcode_begin != 0) {
// Find end of the line.
const char *endl = p;
const char *gcode_end = gcode_begin;
// Slic3r always generates end of lines in a Unix style.
for (; *endl != 0 && *endl != '\n'; ++ endl) ;
if (circular_buffer_items == circular_buffer_size)
// Buffer is full. Push out the oldest line.
output_gcode_line(circular_buffer[circular_buffer_pos]);
else
++ circular_buffer_items;
// Process a G-code line, store it into the provided GCodeLine object.
size_t idx_tail = circular_buffer_pos;
circular_buffer_pos = circular_buffer_idx_next(circular_buffer_pos);
if (! process_line(p, endl - p, circular_buffer[idx_tail])) {
// The line has to be forgotten. It contains comment marks, which shall be
// filtered out of the target g-code.
circular_buffer_pos = idx_tail;
-- circular_buffer_items;
for (; *gcode_end != 0 && *gcode_end != '\n'; ++gcode_end);
m_gcode_lines.emplace_back();
if (!this->process_line(gcode_begin, gcode_end, m_gcode_lines.back())) {
// The line has to be forgotten. It contains comment marks, which shall be filtered out of the target g-code.
m_gcode_lines.pop_back();
}
p = endl;
if (*p == '\n')
++ p;
gcode_begin = gcode_end;
if (*gcode_begin == '\n')
++gcode_begin;
}
}
}
if (flush) {
// Flush the remaining valid lines of the circular buffer.
for (size_t idx = circular_buffer_idx_head(); circular_buffer_items > 0; -- circular_buffer_items) {
output_gcode_line(circular_buffer[idx]);
if (++ idx == circular_buffer_size)
idx = 0;
}
// Reset the index pointer.
assert(circular_buffer_items == 0);
circular_buffer_pos = 0;
LayerResult PressureEqualizer::process_layer(LayerResult &&input)
{
const bool is_first_layer = m_layer_results.empty();
const size_t next_layer_first_idx = m_gcode_lines.size();
#if 1
printf("Statistics: \n");
printf("Minimum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_min);
printf("Maximum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_max);
if (m_stat.extrusion_length > 0)
m_stat.volumetric_extrusion_rate_avg /= m_stat.extrusion_length;
printf("Average volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_avg);
m_stat.reset();
#endif
}
if (!input.nop_layer_result) {
this->process_layer(input.gcode);
input.gcode.clear(); // GCode is already processed, so it isn't needed to store it.
m_layer_results.emplace(new LayerResult(input));
}
return output_buffer.data();
if (is_first_layer) // Buffer previous input result and output NOP.
return LayerResult::make_nop_layer_result();
// Export previous layer.
LayerResult *prev_layer_result = m_layer_results.front();
m_layer_results.pop();
output_buffer_length = 0;
for (size_t line_idx = 0; line_idx < next_layer_first_idx; ++line_idx)
output_gcode_line(m_gcode_lines[line_idx]);
m_gcode_lines.erase(m_gcode_lines.begin(), m_gcode_lines.begin() + int(next_layer_first_idx));
if (output_buffer_length > 0)
prev_layer_result->gcode = std::string(output_buffer.data());
assert(!input.nop_layer_result || m_layer_results.empty());
LayerResult out = *prev_layer_result;
delete prev_layer_result;
return out;
}
// Is a white space?
@ -146,35 +138,45 @@ static void eatws(const char *&line)
// If succeeded, the line pointer is advanced.
static inline int parse_int(const char *&line)
{
char *endptr = NULL;
char *endptr = nullptr;
long result = strtol(line, &endptr, 10);
if (endptr == NULL || !is_ws_or_eol(*endptr))
if (endptr == nullptr || !is_ws_or_eol(*endptr))
throw Slic3r::RuntimeError("PressureEqualizer: Error parsing an int");
line = endptr;
return int(result);
};
float string_to_float_decimal_point(const char *line, const size_t str_len, size_t* pos)
{
float out;
size_t p = fast_float::from_chars(line, line + str_len, out).ptr - line;
if (pos)
*pos = p;
return out;
}
// Parse an int starting at the current position of a line.
// If succeeded, the line pointer is advanced.
static inline float parse_float(const char *&line)
static inline float parse_float(const char *&line, const size_t line_length)
{
char *endptr = NULL;
float result = string_to_double_decimal_point(line, &endptr);
if (endptr == NULL || !is_ws_or_eol(*endptr))
size_t endptr = 0;
auto result = string_to_float_decimal_point(line, line_length, &endptr);
if (endptr == 0 || !is_ws_or_eol(*(line + endptr)))
throw Slic3r::RuntimeError("PressureEqualizer: Error parsing a float");
line = endptr;
line = line + endptr;
return result;
};
bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLine &buf)
bool PressureEqualizer::process_line(const char *line, const char *line_end, GCodeLine &buf)
{
static constexpr const char *EXTRUSION_ROLE_TAG = ";_EXTRUSION_ROLE:";
if (strncmp(line, EXTRUSION_ROLE_TAG, strlen(EXTRUSION_ROLE_TAG)) == 0) {
line += strlen(EXTRUSION_ROLE_TAG);
const size_t len = line_end - line;
if (strncmp(line, EXTRUSION_ROLE_TAG.data(), EXTRUSION_ROLE_TAG.length()) == 0) {
line += EXTRUSION_ROLE_TAG.length();
int role = atoi(line);
m_current_extrusion_role = ExtrusionRole(role);
++ line_idx;
#ifdef PRESSURE_EQUALIZER_DEBUG
++line_idx;
#endif
return false;
}
@ -233,8 +235,8 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
if (i == -1)
throw Slic3r::RuntimeError(std::string("GCode::PressureEqualizer: Invalid axis for G0/G1: ") + axis);
buf.pos_provided[i] = true;
new_pos[i] = parse_float(line);
if (i == 3 && m_config->use_relative_e_distances.value)
new_pos[i] = parse_float(line, line_end - line);
if (i == 3 && m_use_relative_e_distances)
new_pos[i] += m_current_pos[i];
changed[i] = new_pos[i] != m_current_pos[i];
eatws(line);
@ -263,15 +265,17 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
buf.volumetric_extrusion_rate = rate;
buf.volumetric_extrusion_rate_start = rate;
buf.volumetric_extrusion_rate_end = rate;
#ifdef PRESSURE_EQUALIZER_STATISTIC
m_stat.update(rate, sqrt(len2));
#endif
#ifdef PRESSURE_EQUALIZER_DEBUG
if (rate < 40.f) {
printf("Extremely low flow rate: %f. Line %d, Length: %f, extrusion: %f Old position: (%f, %f, %f), new position: (%f, %f, %f)\n",
rate,
int(line_idx),
sqrt(len2), sqrt((diff[3]*diff[3])/len2),
m_current_pos[0], m_current_pos[1], m_current_pos[2],
new_pos[0], new_pos[1], new_pos[2]);
printf("Extremely low flow rate: %f. Line %d, Length: %f, extrusion: %f Old position: (%f, %f, %f), new position: (%f, %f, %f)\n",
rate, int(line_idx), sqrt(len2), sqrt((diff[3] * diff[3]) / len2), m_current_pos[0], m_current_pos[1], m_current_pos[2],
new_pos[0], new_pos[1], new_pos[2]);
}
#endif
}
} else if (changed[0] || changed[1] || changed[2]) {
// Moving without extrusion.
@ -292,11 +296,11 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
case 'X':
case 'Y':
case 'Z':
m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line, line_end - line) : 0.f;
set = true;
break;
case 'E':
m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line, line_end - line) : 0.f;
set = true;
break;
default:
@ -339,7 +343,7 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
{
// Activate an extruder head.
int new_extruder = parse_int(line);
if (new_extruder != m_current_extruder) {
if (new_extruder != int(m_current_extruder)) {
m_current_extruder = new_extruder;
m_retracted = true;
buf.type = GCODELINETYPE_TOOL_CHANGE;
@ -354,13 +358,15 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
adjust_volumetric_rate();
++ line_idx;
return true;
#ifdef PRESSURE_EQUALIZER_DEBUG
++line_idx;
#endif
return true;
}
void PressureEqualizer::output_gcode_line(GCodeLine &line)
{
if (! line.modified) {
if (!line.modified) {
push_to_output(line.raw.data(), line.raw_length, true);
return;
}
@ -370,14 +376,11 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
const char *comment = line.raw.data();
while (*comment != ';' && *comment != 0) ++comment;
if (*comment != ';')
comment = NULL;
comment = nullptr;
// Emit the line with lowered extrusion rates.
float l2 = line.dist_xyz2();
float l = sqrt(l2);
size_t nSegments = size_t(ceil(l / m_max_segment_length));
if (nSegments == 1) {
// Just update this segment.
float l = line.dist_xyz();
if (auto nSegments = size_t(ceil(l / m_max_segment_length)); nSegments == 1) { // Just update this segment.
push_line_to_output(line, line.feedrate() * line.volumetric_correction_avg(), comment);
} else {
bool accelerating = line.volumetric_extrusion_rate_start < line.volumetric_extrusion_rate_end;
@ -386,8 +389,8 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
line.pos_end [4] = line.volumetric_extrusion_rate_end * line.pos_end[4] / line.volumetric_extrusion_rate;
float feed_avg = 0.5f * (line.pos_start[4] + line.pos_end[4]);
// Limiting volumetric extrusion rate slope for this segment.
float max_volumetric_extrusion_rate_slope = accelerating ?
line.max_volumetric_extrusion_rate_slope_positive : line.max_volumetric_extrusion_rate_slope_negative;
float max_volumetric_extrusion_rate_slope = accelerating ? line.max_volumetric_extrusion_rate_slope_positive :
line.max_volumetric_extrusion_rate_slope_negative;
// Total time for the segment, corrected for the possibly lowered volumetric feed rate,
// if accelerating / decelerating over the complete segment.
float t_total = line.dist_xyz() / feed_avg;
@ -398,8 +401,8 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
float l_steady = 0.f;
if (t_acc < t_total) {
// One may achieve higher print speeds if part of the segment is not speed limited.
float l_acc = t_acc * feed_avg;
float l_steady = l - l_acc;
l_acc = t_acc * feed_avg;
l_steady = l - l_acc;
if (l_steady < 0.5f * m_max_segment_length) {
l_acc = l;
l_steady = 0.f;
@ -407,10 +410,10 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
nSegments = size_t(ceil(l_acc / m_max_segment_length));
}
float pos_start[5];
float pos_end [5];
float pos_end2 [4];
memcpy(pos_start, line.pos_start, sizeof(float)*5);
memcpy(pos_end , line.pos_end , sizeof(float)*5);
float pos_end[5];
float pos_end2[4];
memcpy(pos_start, line.pos_start, sizeof(float) * 5);
memcpy(pos_end, line.pos_end, sizeof(float) * 5);
if (l_steady > 0.f) {
// There will be a steady feed segment emitted.
if (accelerating) {
@ -429,9 +432,15 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
line.pos_provided[i] = true;
}
push_line_to_output(line, pos_start[4], comment);
comment = NULL;
comment = nullptr;
float new_pos_start_feedrate = pos_start[4];
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
memcpy(pos_start, line.pos_end, sizeof(float)*5);
line.pos_start[4] = new_pos_start_feedrate;
pos_start[4] = new_pos_start_feedrate;
}
}
// Split the segment into pieces.
@ -443,7 +452,7 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
}
// Interpolate the feed rate at the center of the segment.
push_line_to_output(line, pos_start[4] + (pos_end[4] - pos_start[4]) * (float(i) - 0.5f) / float(nSegments), comment);
comment = NULL;
comment = nullptr;
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
}
if (l_steady > 0.f && accelerating) {
@ -452,135 +461,144 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
line.pos_provided[i] = true;
}
push_line_to_output(line, pos_end[4], comment);
} else {
for (int i = 0; i < 4; ++ i) {
line.pos_end[i] = pos_end[i];
line.pos_provided[i] = true;
}
push_line_to_output(line, pos_end[4], comment);
}
}
}
void PressureEqualizer::adjust_volumetric_rate()
{
if (circular_buffer_items < 2)
if (m_gcode_lines.size() < 2)
return;
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
const size_t idx_head = circular_buffer_idx_head();
const size_t idx_tail = circular_buffer_idx_prev(circular_buffer_idx_tail());
size_t idx = idx_tail;
if (idx == idx_head || ! circular_buffer[idx].extruding())
// size_t fist_line_idx = size_t(std::max<int>(0, int(m_gcode_lines.size()) - 100));
size_t fist_line_idx = 0;
const size_t last_line_idx = m_gcode_lines.size() - 1;
size_t line_idx = last_line_idx;
if (line_idx == fist_line_idx || !m_gcode_lines[line_idx].extruding())
// Nothing to do, the last move is not extruding.
return;
float feedrate_per_extrusion_role[numExtrusionRoles];
for (size_t i = 0; i < numExtrusionRoles; ++ i)
feedrate_per_extrusion_role[i] = FLT_MAX;
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_start;
std::array<float, erCount> feedrate_per_extrusion_role{};
feedrate_per_extrusion_role.fill(std::numeric_limits<float>::max());
feedrate_per_extrusion_role[m_gcode_lines[line_idx].extrusion_role] = m_gcode_lines[line_idx].volumetric_extrusion_rate_start;
bool modified = true;
while (modified && idx != idx_head) {
size_t idx_prev = circular_buffer_idx_prev(idx);
for (; ! circular_buffer[idx_prev].extruding() && idx_prev != idx_head; idx_prev = circular_buffer_idx_prev(idx_prev)) ;
if (! circular_buffer[idx_prev].extruding())
break;
while (line_idx != fist_line_idx) {
size_t idx_prev = line_idx - 1;
for (; !m_gcode_lines[idx_prev].extruding() && idx_prev != fist_line_idx; --idx_prev);
if (!m_gcode_lines[idx_prev].extruding())
break;
// Volumetric extrusion rate at the start of the succeding segment.
float rate_succ = circular_buffer[idx].volumetric_extrusion_rate_start;
float rate_succ = m_gcode_lines[line_idx].volumetric_extrusion_rate_start;
// What is the gradient of the extrusion rate between idx_prev and idx?
idx = idx_prev;
GCodeLine &line = circular_buffer[idx];
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative;
if (rate_slope == 0)
// The negative rate is unlimited.
continue;
line_idx = idx_prev;
GCodeLine &line = m_gcode_lines[line_idx];
for (size_t iRole = 1; iRole < erCount; ++ iRole) {
const float &rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative;
if (rate_slope == 0 || feedrate_per_extrusion_role[iRole] == std::numeric_limits<float>::max())
continue; // The negative rate is unlimited or the rate for ExtrusionRole iRole is unlimited.
float rate_end = feedrate_per_extrusion_role[iRole];
if (iRole == line.extrusion_role && rate_succ < rate_end)
// Limit by the succeeding volumetric flow rate.
rate_end = rate_succ;
if (line.volumetric_extrusion_rate_end > rate_end) {
if (line.extrusion_role == erExternalPerimeter || line.extrusion_role == erGapFill || line.extrusion_role == erBridgeInfill) {
rate_end = line.volumetric_extrusion_rate_end;
} else if (line.volumetric_extrusion_rate_end > rate_end) {
line.volumetric_extrusion_rate_end = rate_end;
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
line.modified = true;
} else if (iRole == line.extrusion_role) {
rate_end = line.volumetric_extrusion_rate_end;
} else if (rate_end == FLT_MAX) {
// The rate for ExtrusionRole iRole is unlimited.
continue;
} else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
}
// modified = false;
float rate_start = rate_end + rate_slope * line.time_corrected();
if (rate_start < line.volumetric_extrusion_rate_start) {
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// of ExtrusionType iRole, which will be extruded in the future.
line.volumetric_extrusion_rate_start = rate_start;
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
line.modified = true;
// modified = true;
}
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start;
// feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start;
feedrate_per_extrusion_role[iRole] = line.volumetric_extrusion_rate_start;
}
}
// Go forward and adjust the feedrate to decrease the slope of the extrusion rate changes.
for (size_t i = 0; i < numExtrusionRoles; ++ i)
feedrate_per_extrusion_role[i] = FLT_MAX;
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_end;
feedrate_per_extrusion_role.fill(std::numeric_limits<float>::max());
feedrate_per_extrusion_role[m_gcode_lines[line_idx].extrusion_role] = m_gcode_lines[line_idx].volumetric_extrusion_rate_end;
assert(circular_buffer[idx].extruding());
while (idx != idx_tail) {
size_t idx_next = circular_buffer_idx_next(idx);
for (; ! circular_buffer[idx_next].extruding() && idx_next != idx_tail; idx_next = circular_buffer_idx_next(idx_next)) ;
if (! circular_buffer[idx_next].extruding())
break;
float rate_prec = circular_buffer[idx].volumetric_extrusion_rate_end;
assert(m_gcode_lines[line_idx].extruding());
while (line_idx != last_line_idx) {
size_t idx_next = line_idx + 1;
for (; !m_gcode_lines[idx_next].extruding() && idx_next != last_line_idx; ++idx_next);
if (!m_gcode_lines[idx_next].extruding())
break;
float rate_prec = m_gcode_lines[line_idx].volumetric_extrusion_rate_end;
// What is the gradient of the extrusion rate between idx_prev and idx?
idx = idx_next;
GCodeLine &line = circular_buffer[idx];
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive;
if (rate_slope == 0)
// The positive rate is unlimited.
continue;
line_idx = idx_next;
GCodeLine &line = m_gcode_lines[line_idx];
for (size_t iRole = 1; iRole < erCount; ++ iRole) {
const float &rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive;
if (rate_slope == 0 || feedrate_per_extrusion_role[iRole] == std::numeric_limits<float>::max())
continue; // The positive rate is unlimited or the rate for ExtrusionRole iRole is unlimited.
float rate_start = feedrate_per_extrusion_role[iRole];
if (iRole == line.extrusion_role && rate_prec < rate_start)
if (line.extrusion_role == erExternalPerimeter || line.extrusion_role == erGapFill || line.extrusion_role == erBridgeInfill) {
rate_start = line.volumetric_extrusion_rate_start;
} else if (iRole == line.extrusion_role && rate_prec < rate_start)
rate_start = rate_prec;
if (line.volumetric_extrusion_rate_start > rate_start) {
line.volumetric_extrusion_rate_start = rate_start;
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
line.modified = true;
} else if (iRole == line.extrusion_role) {
rate_start = line.volumetric_extrusion_rate_start;
} else if (rate_start == FLT_MAX) {
// The rate for ExtrusionRole iRole is unlimited.
continue;
} else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
}
float rate_end = (rate_slope == 0) ? FLT_MAX : rate_start + rate_slope * line.time_corrected();
float rate_end = rate_start + rate_slope * line.time_corrected();
if (rate_end < line.volumetric_extrusion_rate_end) {
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// of ExtrusionType iRole, which was extruded before.
line.volumetric_extrusion_rate_end = rate_end;
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
line.modified = true;
}
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end;
// feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end;
feedrate_per_extrusion_role[iRole] = line.volumetric_extrusion_rate_end;
}
}
}
void PressureEqualizer::push_axis_to_output(const char axis, const float value, bool add_eol)
inline void PressureEqualizer::push_to_output(GCodeG1Formatter &formatter)
{
char buf[2048];
int len = sprintf(buf,
(axis == 'E') ? " %c%.3f" : " %c%.5f",
axis, value);
push_to_output(buf, len, add_eol);
return this->push_to_output(formatter.string(), false);
}
void PressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol)
inline void PressureEqualizer::push_to_output(const std::string &text, bool add_eol)
{
return this->push_to_output(text.data(), text.size(), add_eol);
}
inline void PressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol)
{
// New length of the output buffer content.
size_t len_new = output_buffer_length + len + 1;
if (add_eol)
++ len_new;
++len_new;
// Resize the output buffer to a power of 2 higher than the required memory.
if (output_buffer.size() < len_new) {
@ -603,21 +621,31 @@ void PressureEqualizer::push_to_output(const char *text, const size_t len, bool
output_buffer_length += len;
}
if (add_eol)
output_buffer[output_buffer_length ++] = '\n';
output_buffer[output_buffer_length++] = '\n';
output_buffer[output_buffer_length] = 0;
}
void PressureEqualizer::push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment)
{
push_to_output("G1", 2, false);
for (char i = 0; i < 3; ++ i)
if (line.pos_provided[i])
push_axis_to_output('X'+i, line.pos_end[i]);
push_axis_to_output('E', m_config->use_relative_e_distances.value ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3]);
// if (line.pos_provided[4] || fabs(line.feedrate() - new_feedrate) > 1e-5)
push_axis_to_output('F', new_feedrate);
// output comment and EOL
push_to_output(comment, (comment == NULL) ? 0 : strlen(comment), true);
}
push_to_output(EXTRUDE_END_TAG.data(), EXTRUDE_END_TAG.length(), true);
GCodeG1Formatter feedrate_formatter;
feedrate_formatter.emit_f(new_feedrate);
feedrate_formatter.emit_string(std::string(EXTRUDE_SET_SPEED_TAG.data(), EXTRUDE_SET_SPEED_TAG.length()));
if (line.extrusion_role == erExternalPerimeter)
feedrate_formatter.emit_string(std::string(EXTERNAL_PERIMETER_TAG.data(), EXTERNAL_PERIMETER_TAG.length()));
push_to_output(feedrate_formatter);
GCodeG1Formatter extrusion_formatter;
for (size_t axis_idx = 0; axis_idx < 3; ++axis_idx)
if (line.pos_provided[axis_idx])
extrusion_formatter.emit_axis(char('X' + axis_idx), line.pos_end[axis_idx], GCodeFormatter::XYZF_EXPORT_DIGITS);
extrusion_formatter.emit_axis('E', m_use_relative_e_distances ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3], GCodeFormatter::E_EXPORT_DIGITS);
if (comment != nullptr)
extrusion_formatter.emit_string(std::string(comment));
push_to_output(extrusion_formatter);
}
} // namespace Slic3r

View File

@ -5,37 +5,50 @@
#include "../PrintConfig.hpp"
#include "../ExtrusionEntity.hpp"
#include <queue>
namespace Slic3r {
struct LayerResult;
class GCodeG1Formatter;
//#define PRESSURE_EQUALIZER_STATISTIC
//#define PRESSURE_EQUALIZER_DEBUG
// Processes a G-code. Finds changes in the volumetric extrusion speed and adjusts the transitions
// between these paths to limit fast changes in the volumetric extrusion speed.
class PressureEqualizer
{
public:
PressureEqualizer(const Slic3r::GCodeConfig *config);
~PressureEqualizer();
void reset();
// Process a next batch of G-code lines. Flush the internal buffers if asked for.
const char* process(const char *szGCode, bool flush);
size_t get_output_buffer_length() const { return output_buffer_length; }
PressureEqualizer() = delete;
explicit PressureEqualizer(const Slic3r::GCodeConfig &config);
~PressureEqualizer() = default;
// Process a next batch of G-code lines.
// The last LayerResult must be LayerResult::make_nop_layer_result() because it always returns GCode for the previous layer.
// When process_layer is called for the first layer, then LayerResult::make_nop_layer_result() is returned.
LayerResult process_layer(LayerResult &&input);
private:
void process_layer(const std::string &gcode);
#ifdef PRESSURE_EQUALIZER_STATISTIC
struct Statistics
{
void reset() {
volumetric_extrusion_rate_min = std::numeric_limits<float>::max();
void reset()
{
volumetric_extrusion_rate_min = std::numeric_limits<float>::max();
volumetric_extrusion_rate_max = 0.f;
volumetric_extrusion_rate_avg = 0.f;
extrusion_length = 0.f;
extrusion_length = 0.f;
}
void update(float volumetric_extrusion_rate, float length) {
volumetric_extrusion_rate_min = std::min(volumetric_extrusion_rate_min, volumetric_extrusion_rate);
volumetric_extrusion_rate_max = std::max(volumetric_extrusion_rate_max, volumetric_extrusion_rate);
void update(float volumetric_extrusion_rate, float length)
{
volumetric_extrusion_rate_min = std::min(volumetric_extrusion_rate_min, volumetric_extrusion_rate);
volumetric_extrusion_rate_max = std::max(volumetric_extrusion_rate_max, volumetric_extrusion_rate);
volumetric_extrusion_rate_avg += volumetric_extrusion_rate * length;
extrusion_length += length;
extrusion_length += length;
}
float volumetric_extrusion_rate_min;
float volumetric_extrusion_rate_max;
@ -44,9 +57,7 @@ private:
};
struct Statistics m_stat;
// Keeps the reference, does not own the config.
const Slic3r::GCodeConfig *m_config;
#endif
// Private configuration values
// How fast could the volumetric extrusion rate increase / decrase? mm^3/sec^2
@ -54,8 +65,7 @@ private:
float positive;
float negative;
};
enum { numExtrusionRoles = erSupportMaterialInterface + 1 };
ExtrusionRateSlope m_max_volumetric_extrusion_rate_slopes[numExtrusionRoles];
ExtrusionRateSlope m_max_volumetric_extrusion_rate_slopes[erCount];
float m_max_volumetric_extrusion_rate_slope_positive;
float m_max_volumetric_extrusion_rate_slope_negative;
// Maximum segment length to split a long segment, if the initial and the final flow rate differ.
@ -71,9 +81,9 @@ private:
size_t m_current_extruder;
ExtrusionRole m_current_extrusion_role;
bool m_retracted;
bool m_use_relative_e_distances;
enum GCodeLineType
{
enum GCodeLineType {
GCODELINETYPE_INVALID,
GCODELINETYPE_NOOP,
GCODELINETYPE_OTHER,
@ -128,8 +138,6 @@ private:
// or maybe the line needs to be split into multiple lines.
bool modified;
// float timeStart;
// float timeEnd;
// X,Y,Z,E,F. Storing the state of the currently active extruder only.
float pos_start[5];
float pos_end[5];
@ -154,23 +162,16 @@ private:
float max_volumetric_extrusion_rate_slope_negative;
};
// Circular buffer of GCode lines. The circular buffer size will be limited to circular_buffer_size.
std::vector<GCodeLine> circular_buffer;
// Current position of the circular buffer (index, where to write the next line to, the line has to be pushed out before it is overwritten).
size_t circular_buffer_pos;
// Circular buffer size, configuration value.
size_t circular_buffer_size;
// Number of valid lines in the circular buffer. Lower or equal to circular_buffer_size.
size_t circular_buffer_items;
// Output buffer will only grow. It will not be reallocated over and over.
std::vector<char> output_buffer;
size_t output_buffer_length;
#ifdef PRESSURE_EQUALIZER_DEBUG
// For debugging purposes. Index of the G-code line processed.
size_t line_idx;
#endif
bool process_line(const char *line, const size_t len, GCodeLine &buf);
bool process_line(const char *line, const char *line_end, GCodeLine &buf);
void output_gcode_line(GCodeLine &buf);
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
@ -178,33 +179,16 @@ private:
void adjust_volumetric_rate();
// Push the text to the end of the output_buffer.
void push_to_output(const char *text, const size_t len, bool add_eol = true);
// Push an axis assignment to the end of the output buffer.
void push_axis_to_output(const char axis, const float value, bool add_eol = false);
// Push a G-code line to the output,
void push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment);
inline void push_to_output(GCodeG1Formatter &formatter);
inline void push_to_output(const std::string &text, bool add_eol);
inline void push_to_output(const char *text, size_t len, bool add_eol = true);
// Push a G-code line to the output.
void push_line_to_output(const GCodeLine &line, float new_feedrate, const char *comment);
size_t circular_buffer_idx_head() const {
size_t idx = circular_buffer_pos + circular_buffer_size - circular_buffer_items;
if (idx >= circular_buffer_size)
idx -= circular_buffer_size;
return idx;
}
public:
std::queue<LayerResult*> m_layer_results;
size_t circular_buffer_idx_tail() const { return circular_buffer_pos; }
size_t circular_buffer_idx_prev(size_t idx) const {
idx += circular_buffer_size - 1;
if (idx >= circular_buffer_size)
idx -= circular_buffer_size;
return idx;
}
size_t circular_buffer_idx_next(size_t idx) const {
if (++ idx >= circular_buffer_size)
idx -= circular_buffer_size;
return idx;
}
std::vector<GCodeLine> m_gcode_lines;
};
} // namespace Slic3r

View File

@ -427,9 +427,7 @@ static std::vector<std::string> s_Preset_print_options {
"ironing", "ironing_type", "ironing_flowrate", "ironing_speed", "ironing_spacing",
"max_print_speed", "max_volumetric_speed", "avoid_crossing_perimeters_max_detour",
"fuzzy_skin", "fuzzy_skin_thickness", "fuzzy_skin_point_dist",
#ifdef HAS_PRESSURE_EQUALIZER
"max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_negative",
#endif /* HAS_PRESSURE_EQUALIZER */
"perimeter_speed", "small_perimeter_speed", "external_perimeter_speed", "infill_speed", "solid_infill_speed",
"top_solid_infill_speed", "support_material_speed", "support_material_xy_spacing", "support_material_interface_speed",
"bridge_speed", "gap_fill_speed", "gap_fill_enabled", "travel_speed", "travel_speed_z", "first_layer_speed", "first_layer_speed_over_raft", "perimeter_acceleration", "infill_acceleration",

View File

@ -103,10 +103,8 @@ bool Print::invalidate_state_by_config_options(const ConfigOptionResolver & /* n
"min_print_speed",
"max_print_speed",
"max_volumetric_speed",
#ifdef HAS_PRESSURE_EQUALIZER
"max_volumetric_extrusion_rate_slope_positive",
"max_volumetric_extrusion_rate_slope_negative",
#endif /* HAS_PRESSURE_EQUALIZER */
"notes",
"only_retract_when_crossing_perimeters",
"output_filename_format",

View File

@ -1802,10 +1802,10 @@ void PrintConfigDef::init_fff_params()
def->mode = comExpert;
def->set_default_value(new ConfigOptionFloat(0));
#ifdef HAS_PRESSURE_EQUALIZER
def = this->add("max_volumetric_extrusion_rate_slope_positive", coFloat);
def->label = L("Max volumetric slope positive");
def->tooltip = L("This experimental setting is used to limit the speed of change in extrusion rate. "
def->tooltip = L("This experimental setting is used to limit the speed of change in extrusion rate"
"for a transition from lower speed to higher speed. "
"A value of 1.8 mm³/s² ensures, that a change from the extrusion rate "
"of 1.8 mm³/s (0.45mm extrusion width, 0.2mm extrusion height, feedrate 20 mm/s) "
"to 5.4 mm³/s (feedrate 60 mm/s) will take at least 2 seconds.");
@ -1816,15 +1816,15 @@ void PrintConfigDef::init_fff_params()
def = this->add("max_volumetric_extrusion_rate_slope_negative", coFloat);
def->label = L("Max volumetric slope negative");
def->tooltip = L("This experimental setting is used to limit the speed of change in extrusion rate. "
def->tooltip = L("This experimental setting is used to limit the speed of change in extrusion rate"
"for a transition from higher speed to lower speed. "
"A value of 1.8 mm³/s² ensures, that a change from the extrusion rate "
"of 1.8 mm³/s (0.45mm extrusion width, 0.2mm extrusion height, feedrate 20 mm/s) "
"to 5.4 mm³/s (feedrate 60 mm/s) will take at least 2 seconds.");
"of 1.8 mm³/s (0.45mm extrusion width, 0.2mm extrusion height, feedrate 60 mm/s) "
"to 5.4 mm³/s (feedrate 20 mm/s) will take at least 2 seconds.");
def->sidetext = L("mm³/s²");
def->min = 0;
def->mode = comExpert;
def->set_default_value(new ConfigOptionFloat(0));
#endif /* HAS_PRESSURE_EQUALIZER */
def = this->add("min_fan_speed", coInts);
def->label = L("Min");
@ -4008,9 +4008,7 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
"start_perimeters_at_concave_points", "start_perimeters_at_non_overhang", "randomize_start",
"seal_position", "vibration_limit", "bed_size",
"print_center", "g0", "threads", "pressure_advance", "wipe_tower_per_color_wipe"
#ifndef HAS_PRESSURE_EQUALIZER
, "max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_negative",
#endif /* HAS_PRESSURE_EQUALIZER */
"serial_port", "serial_speed",
// Introduced in some PrusaSlicer 2.3.1 alpha, later renamed or removed.
"fuzzy_skin_perimeter_mode", "fuzzy_skin_shape",

View File

@ -27,8 +27,6 @@
#include <boost/preprocessor/tuple/elem.hpp>
#include <boost/preprocessor/tuple/to_seq.hpp>
// #define HAS_PRESSURE_EQUALIZER
namespace Slic3r {
enum GCodeFlavor : unsigned char {
@ -670,10 +668,8 @@ PRINT_CONFIG_CLASS_DEFINE(
((ConfigOptionString, layer_gcode))
((ConfigOptionFloat, max_print_speed))
((ConfigOptionFloat, max_volumetric_speed))
//#ifdef HAS_PRESSURE_EQUALIZER
// ((ConfigOptionFloat, max_volumetric_extrusion_rate_slope_positive))
// ((ConfigOptionFloat, max_volumetric_extrusion_rate_slope_negative))
//#endif
((ConfigOptionFloat, max_volumetric_extrusion_rate_slope_positive))
((ConfigOptionFloat, max_volumetric_extrusion_rate_slope_negative))
((ConfigOptionPercents, retract_before_wipe))
((ConfigOptionFloats, retract_length))
((ConfigOptionFloats, retract_length_toolchange))

View File

@ -1611,10 +1611,10 @@ void TabPrint::build()
optgroup = page->new_optgroup(L("Autospeed (advanced)"));
optgroup->append_single_option_line("max_print_speed", "max-volumetric-speed_127176");
optgroup->append_single_option_line("max_volumetric_speed", "max-volumetric-speed_127176");
#ifdef HAS_PRESSURE_EQUALIZER
optgroup = page->new_optgroup(L("Pressure equalizer (experimental)"));
optgroup->append_single_option_line("max_volumetric_extrusion_rate_slope_positive");
optgroup->append_single_option_line("max_volumetric_extrusion_rate_slope_negative");
#endif /* HAS_PRESSURE_EQUALIZER */
page = add_options_page(L("Multiple Extruders"), "funnel");
optgroup = page->new_optgroup(L("Extruders"));