Merge branch 'vb_libudev_explicit_linking'
This commit is contained in:
commit
4bce9e0eb9
@ -169,7 +169,7 @@ void Fill3DHoneycomb::_fill_surface_single(
|
||||
if (params.dont_connect)
|
||||
append(polylines_out, std::move(polylines_chained));
|
||||
else
|
||||
this->connect_infill(std::move(polylines_chained), expolygon, polylines_out, params);
|
||||
this->connect_infill(std::move(polylines_chained), expolygon, polylines_out, this->spacing, params);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -610,16 +610,15 @@ static inline SegmentPoint clip_start_segment_and_point(const Points &polyline,
|
||||
// Initialized to "invalid".
|
||||
SegmentPoint out;
|
||||
if (polyline.size() >= 2) {
|
||||
const double d2 = distance * distance;
|
||||
Vec2d pt_prev = polyline.front().cast<double>();
|
||||
for (int i = 1; i < polyline.size(); ++ i) {
|
||||
Vec2d pt = polyline[i].cast<double>();
|
||||
Vec2d v = pt - pt_prev;
|
||||
double l2 = v.squaredNorm();
|
||||
if (l2 > d2) {
|
||||
if (l2 > distance * distance) {
|
||||
out.idx_segment = i;
|
||||
out.t = distance / sqrt(l2);
|
||||
out.point = pt + out.t * v;
|
||||
out.point = pt_prev + out.t * v;
|
||||
break;
|
||||
}
|
||||
distance -= sqrt(l2);
|
||||
@ -636,16 +635,17 @@ static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, do
|
||||
// Initialized to "invalid".
|
||||
SegmentPoint out;
|
||||
if (polyline.size() >= 2) {
|
||||
const double d2 = distance * distance;
|
||||
Vec2d pt_next = polyline.back().cast<double>();
|
||||
for (int i = int(polyline.size()) - 2; i >= 0; -- i) {
|
||||
Vec2d pt = polyline[i].cast<double>();
|
||||
Vec2d v = pt - pt_next;
|
||||
double l2 = v.squaredNorm();
|
||||
if (l2 > d2) {
|
||||
if (l2 > distance * distance) {
|
||||
out.idx_segment = i;
|
||||
out.t = distance / sqrt(l2);
|
||||
out.point = pt + out.t * v;
|
||||
out.point = pt_next + out.t * v;
|
||||
// Store the parameter referenced to the starting point of a segment.
|
||||
out.t = 1. - out.t;
|
||||
break;
|
||||
}
|
||||
distance -= sqrt(l2);
|
||||
@ -655,21 +655,26 @@ static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, do
|
||||
return out;
|
||||
}
|
||||
|
||||
// Optimized version with the precalculated v1 = p1b - p1a and l1_2 = v1.squaredNorm().
|
||||
// Assumption: l1_2 < EPSILON.
|
||||
static inline double segment_point_distance_squared(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &v1, const double l1_2, const Vec2d &p2)
|
||||
{
|
||||
assert(l1_2 > EPSILON);
|
||||
Vec2d v12 = p2 - p1a;
|
||||
double t = v12.dot(v1);
|
||||
return (t <= 0. ) ? v12.squaredNorm() :
|
||||
(t >= l1_2) ? (p2 - p1a).squaredNorm() :
|
||||
((t / l1_2) * v1 - v12).squaredNorm();
|
||||
}
|
||||
|
||||
static inline double segment_point_distance_squared(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &p2)
|
||||
{
|
||||
const Vec2d v = p1b - p1a;
|
||||
const Vec2d va = p2 - p1a;
|
||||
const double l2 = v.squaredNorm();
|
||||
if (l2 < EPSILON)
|
||||
// p1a == p1b
|
||||
return va.squaredNorm();
|
||||
// Project p2 onto the (p1a, p1b) segment.
|
||||
const double t = va.dot(v);
|
||||
if (t < 0.)
|
||||
return va.squaredNorm();
|
||||
else if (t > l2)
|
||||
return (p2 - p1b).squaredNorm();
|
||||
return ((t / l2) * v - va).squaredNorm();
|
||||
return (p2 - p1a).squaredNorm();
|
||||
return segment_point_distance_squared(p1a, p1b, v, v.squaredNorm(), p2);
|
||||
}
|
||||
|
||||
// Distance to the closest point of line.
|
||||
@ -685,43 +690,11 @@ static inline double min_distance_of_segments(const Vec2d &p1a, const Vec2d &p1b
|
||||
double l2_2 = v2.squaredNorm();
|
||||
if (l2_2 < EPSILON)
|
||||
// p2a == p2b: Return distance of p2a from the (p1a, p1b) segment.
|
||||
return segment_point_distance_squared(p1a, p1b, p2a);
|
||||
|
||||
// Project p2a, p2b onto the (p1a, p1b) segment.
|
||||
auto project_p2a_p2b_onto_seg_p1a_p1b = [](const Vec2d& p1a, const Vec2d& p1b, const Vec2d& p2a, const Vec2d& p2b, const Vec2d& v1, const double l1_2) {
|
||||
Vec2d v1a2a = p2a - p1a;
|
||||
Vec2d v1a2b = p2b - p1a;
|
||||
double t1 = v1a2a.dot(v1);
|
||||
double t2 = v1a2b.dot(v1);
|
||||
if (t1 <= 0.) {
|
||||
if (t2 <= 0.)
|
||||
// Both p2a and p2b are left of v1.
|
||||
return (((t1 < t2) ? p2b : p2a) - p1a).squaredNorm();
|
||||
else if (t2 < l1_2)
|
||||
// Project p2b onto the (p1a, p1b) segment.
|
||||
return ((t2 / l1_2) * v1 - v1a2b).squaredNorm();
|
||||
}
|
||||
else if (t1 >= l1_2) {
|
||||
if (t2 >= l1_2)
|
||||
// Both p2a and p2b are right of v1.
|
||||
return (((t1 < t2) ? p2a : p2b) - p1b).squaredNorm();
|
||||
else if (t2 < l1_2)
|
||||
// Project p2b onto the (p1a, p1b) segment.
|
||||
return ((t2 / l1_2) * v1 - v1a2b).squaredNorm();
|
||||
}
|
||||
else {
|
||||
// Project p1b onto the (p1a, p1b) segment.
|
||||
double dist_min = ((t2 / l1_2) * v1 - v1a2a).squaredNorm();
|
||||
if (t2 > 0. && t2 < l1_2)
|
||||
dist_min = std::min(dist_min, ((t2 / l1_2) * v1 - v1a2b).squaredNorm());
|
||||
return dist_min;
|
||||
}
|
||||
return std::numeric_limits<double>::max();
|
||||
};
|
||||
return segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a);
|
||||
|
||||
return std::min(
|
||||
project_p2a_p2b_onto_seg_p1a_p1b(p1a, p1b, p2a, p2b, v1, l1_2),
|
||||
project_p2a_p2b_onto_seg_p1a_p1b(p2a, p2b, p1a, p1b, v2, l2_2));
|
||||
std::min(segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a), segment_point_distance_squared(p1a, p1b, v1, l1_2, p2b)),
|
||||
std::min(segment_point_distance_squared(p2a, p2b, v2, l2_2, p1a), segment_point_distance_squared(p2a, p2b, v2, l2_2, p1b)));
|
||||
}
|
||||
|
||||
// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
|
||||
@ -757,12 +730,27 @@ void mark_boundary_segments_touching_infill(
|
||||
const Vec2d seg_pt2 = segment.second.cast<double>();
|
||||
if (min_distance_of_segments(seg_pt1, seg_pt2, *this->pt1, *this->pt2) < this->dist2_max) {
|
||||
// Mark this boundary segment as touching the infill line.
|
||||
ContourPointData&bdp = boundary_data[it_contour_and_segment->first][it_contour_and_segment->second];
|
||||
ContourPointData &bdp = boundary_data[it_contour_and_segment->first][it_contour_and_segment->second];
|
||||
bdp.segment_consumed = true;
|
||||
// There is no need for checking seg_pt2 as it will be checked the next time.
|
||||
if (segment_point_distance_squared(*this->pt1, *this->pt2, seg_pt1) < this->dist2_max)
|
||||
bool point_touching = false;
|
||||
if (segment_point_distance_squared(*this->pt1, *this->pt2, seg_pt1) < this->dist2_max) {
|
||||
point_touching = true;
|
||||
bdp.point_consumed = true;
|
||||
}
|
||||
#if 0
|
||||
{
|
||||
static size_t iRun = 0;
|
||||
ExPolygon expoly(Polygon(*grid.contours().front()));
|
||||
for (size_t i = 1; i < grid.contours().size(); ++i)
|
||||
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
|
||||
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun ++).c_str(), get_extents(expoly));
|
||||
svg.draw(expoly, "green");
|
||||
svg.draw(Line(segment.first, segment.second), "red");
|
||||
svg.draw(Line(this->pt1->cast<coord_t>(), this->pt2->cast<coord_t>()), "magenta");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
// Continue traversing the grid along the edge.
|
||||
return true;
|
||||
@ -780,6 +768,7 @@ void mark_boundary_segments_touching_infill(
|
||||
|
||||
BoundingBoxf bboxf(boundary_bbox.min.cast<double>(), boundary_bbox.max.cast<double>());
|
||||
bboxf.offset(- SCALED_EPSILON);
|
||||
|
||||
for (const Polyline &polyline : infill) {
|
||||
// Clip the infill polyline by the Eucledian distance along the polyline.
|
||||
SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
|
||||
@ -809,8 +798,20 @@ void mark_boundary_segments_touching_infill(
|
||||
visitor.init(pt1d, pt2d);
|
||||
grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
|
||||
#else
|
||||
Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx].cast<double>();
|
||||
Vec2d pt2 = (point_idx == end_point .idx_segment) ? end_point .point : polyline.points[point_idx].cast<double>();
|
||||
Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx ].cast<double>();
|
||||
Vec2d pt2 = (point_idx == end_point .idx_segment) ? end_point .point : polyline.points[point_idx + 1].cast<double>();
|
||||
#if 0
|
||||
{
|
||||
static size_t iRun = 0;
|
||||
ExPolygon expoly(Polygon(*grid.contours().front()));
|
||||
for (size_t i = 1; i < grid.contours().size(); ++i)
|
||||
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
|
||||
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun ++).c_str(), get_extents(expoly));
|
||||
svg.draw(expoly, "green");
|
||||
svg.draw(polyline, "blue");
|
||||
svg.draw(Line(pt1.cast<coord_t>(), pt2.cast<coord_t>()), "magenta", scale_(0.1));
|
||||
}
|
||||
#endif
|
||||
visitor.init(pt1, pt2);
|
||||
// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
|
||||
Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
|
||||
@ -829,7 +830,7 @@ void mark_boundary_segments_touching_infill(
|
||||
}
|
||||
}
|
||||
|
||||
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const FillParams ¶ms)
|
||||
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams ¶ms)
|
||||
{
|
||||
assert(! infill_ordered.empty());
|
||||
assert(! boundary_src.contour.points.empty());
|
||||
@ -905,16 +906,16 @@ void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_
|
||||
|
||||
// Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
|
||||
{
|
||||
//const double clip_distance = scale_(this->spacing);
|
||||
const double clip_distance = 3. * scale_(this->spacing);
|
||||
const double distance_colliding = scale_(this->spacing);
|
||||
// @supermerill used 2. * scale_(spacing)
|
||||
const double clip_distance = 3. * scale_(spacing);
|
||||
const double distance_colliding = 1.1 * scale_(spacing);
|
||||
mark_boundary_segments_touching_infill(boundary, boundary_data, bbox, infill_ordered, clip_distance, distance_colliding);
|
||||
}
|
||||
|
||||
// Connection from end of one infill line to the start of another infill line.
|
||||
//const float length_max = scale_(this->spacing);
|
||||
// const float length_max = scale_((2. / params.density) * this->spacing);
|
||||
const float length_max = scale_((1000. / params.density) * this->spacing);
|
||||
//const float length_max = scale_(spacing);
|
||||
// const float length_max = scale_((2. / params.density) * spacing);
|
||||
const float length_max = scale_((1000. / params.density) * spacing);
|
||||
std::vector<size_t> merged_with(infill_ordered.size());
|
||||
for (size_t i = 0; i < merged_with.size(); ++ i)
|
||||
merged_with[i] = i;
|
||||
@ -957,11 +958,25 @@ void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_
|
||||
size_t idx_chain_last = 0;
|
||||
for (ConnectionCost &connection_cost : connections_sorted) {
|
||||
const std::pair<size_t, size_t> *cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1];
|
||||
const std::pair<size_t, size_t> *cp1prev = cp1 - 1;
|
||||
const std::pair<size_t, size_t> *cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2];
|
||||
const std::pair<size_t, size_t> *cp2next = cp2 + 1;
|
||||
assert(cp1->first == cp2->first);
|
||||
std::vector<ContourPointData> &contour_data = boundary_data[cp1->first];
|
||||
if (connection_cost.reversed)
|
||||
std::swap(cp1, cp2);
|
||||
// Mark the the other end points of the segments to be taken as consumed temporarily, so they will not be crossed
|
||||
// by the new connection line.
|
||||
bool prev_marked = false;
|
||||
bool next_marked = false;
|
||||
if (cp1prev->first == cp1->first && ! contour_data[cp1prev->second].point_consumed) {
|
||||
contour_data[cp1prev->second].point_consumed = true;
|
||||
prev_marked = true;
|
||||
}
|
||||
if (cp2next->first == cp1->first && ! contour_data[cp2next->second].point_consumed) {
|
||||
contour_data[cp2next->second].point_consumed = true;
|
||||
next_marked = true;
|
||||
}
|
||||
if (could_take(contour_data, cp1->second, cp2->second)) {
|
||||
// Indices of the polygons to be connected.
|
||||
size_t idx_first = connection_cost.idx_first;
|
||||
@ -980,6 +995,10 @@ void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_
|
||||
// Mark the second polygon as merged with the first one.
|
||||
merged_with[idx_second] = merged_with[idx_first];
|
||||
}
|
||||
if (prev_marked)
|
||||
contour_data[cp1prev->second].point_consumed = false;
|
||||
if (next_marked)
|
||||
contour_data[cp2next->second].point_consumed = false;
|
||||
}
|
||||
polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline &pl) { return ! pl.empty(); }));
|
||||
for (Polyline &pl : infill_ordered)
|
||||
|
@ -111,9 +111,9 @@ protected:
|
||||
|
||||
virtual std::pair<float, Point> _infill_direction(const Surface *surface) const;
|
||||
|
||||
void connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary, Polylines &polylines_out, const FillParams ¶ms);
|
||||
|
||||
public:
|
||||
static void connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary, Polylines &polylines_out, double spacing, const FillParams ¶ms);
|
||||
|
||||
static coord_t _adjust_solid_spacing(const coord_t width, const coord_t distance);
|
||||
|
||||
// Align a coordinate to a grid. The coordinate may be negative,
|
||||
|
@ -185,6 +185,7 @@ void FillGyroid::_fill_surface_single(
|
||||
if (! polylines.empty())
|
||||
// remove too small bits (larger than longer)
|
||||
polylines.erase(
|
||||
//FIXME what is the small size? Removing tiny extrusions disconnects walls!
|
||||
std::remove_if(polylines.begin(), polylines.end(), [this](const Polyline &pl) { return pl.length() < scale_(this->spacing * 3); }),
|
||||
polylines.end());
|
||||
|
||||
@ -195,7 +196,7 @@ void FillGyroid::_fill_surface_single(
|
||||
if (params.dont_connect)
|
||||
append(polylines_out, std::move(polylines));
|
||||
else
|
||||
this->connect_infill(std::move(polylines), expolygon, polylines_out, params);
|
||||
this->connect_infill(std::move(polylines), expolygon, polylines_out, this->spacing, params);
|
||||
// new paths must be rotated back
|
||||
if (abs(infill_angle) >= EPSILON) {
|
||||
for (auto it = polylines_out.begin() + polylines_out_first_idx; it != polylines_out.end(); ++ it)
|
||||
|
@ -1065,7 +1065,7 @@ std::vector<size_t> chain_points(const Points &points, Point *start_near)
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
// #define DEBUG_SVG_OUTPUT
|
||||
// #define DEBUG_SVG_OUTPUT
|
||||
#endif /* NDEBUG */
|
||||
|
||||
#ifdef DEBUG_SVG_OUTPUT
|
||||
@ -1597,7 +1597,6 @@ static inline void reorder_by_two_exchanges_with_segment_flipping(std::vector<Fl
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static inline void reorder_by_three_exchanges_with_segment_flipping(std::vector<FlipEdge> &edges)
|
||||
{
|
||||
if (edges.size() < 3) {
|
||||
@ -1681,6 +1680,173 @@ static inline void reorder_by_three_exchanges_with_segment_flipping(std::vector<
|
||||
}
|
||||
}
|
||||
|
||||
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign> Matrixd;
|
||||
|
||||
class FourOptCosts {
|
||||
public:
|
||||
FourOptCosts(const ConnectionCost &c1, const ConnectionCost &c2, const ConnectionCost &c3, const ConnectionCost &c4) : costs { &c1, &c2, &c3, &c4 } {}
|
||||
|
||||
double operator()(size_t piece_idx, bool flipped) const { return flipped ? costs[piece_idx]->cost_flipped : costs[piece_idx]->cost; }
|
||||
|
||||
private:
|
||||
const ConnectionCost* costs[4];
|
||||
};
|
||||
|
||||
static inline std::pair<double, size_t> minimum_crossover_cost(
|
||||
const FourOptCosts &segment_costs,
|
||||
const Matrixd &segment_end_point_distance_matrix,
|
||||
const double cost_current)
|
||||
{
|
||||
// Distance from the end of span1 to the start of span2.
|
||||
auto end_point_distance = [&segment_end_point_distance_matrix](size_t span1, bool reversed1, bool flipped1, size_t span2, bool reversed2, bool flipped2) {
|
||||
return segment_end_point_distance_matrix(span1 * 4 + (! reversed1) * 2 + flipped1, span2 * 4 + reversed2 * 2 + flipped2);
|
||||
};
|
||||
auto connection_cost = [&segment_costs, end_point_distance](
|
||||
const size_t span1, bool reversed1, bool flipped1,
|
||||
const size_t span2, bool reversed2, bool flipped2,
|
||||
const size_t span3, bool reversed3, bool flipped3,
|
||||
const size_t span4, bool reversed4, bool flipped4) {
|
||||
// Calculate the cost of reverting chains and / or flipping segment orientations.
|
||||
return segment_costs(span1, flipped1) + segment_costs(span2, flipped2) + segment_costs(span3, flipped3) + segment_costs(span4, flipped4) +
|
||||
end_point_distance(span1, reversed1, flipped1, span2, reversed2, flipped2) +
|
||||
end_point_distance(span2, reversed2, flipped2, span3, reversed3, flipped3) +
|
||||
end_point_distance(span3, reversed3, flipped3, span4, reversed4, flipped4);
|
||||
};
|
||||
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
double c = connection_cost(0, false, false, 1, false, false, 2, false, false, 3, false, false);
|
||||
assert(std::abs(c - cost_current) < SCALED_EPSILON);
|
||||
}
|
||||
#endif /* NDEBUG */
|
||||
|
||||
double cost_min = cost_current;
|
||||
size_t flip_min = 0; // no flip, no improvement
|
||||
for (size_t i = 0; i < (1 << 8); ++ i) {
|
||||
// From the three combinations of 1,2,3 ordering, the other three are reversals of the first three.
|
||||
size_t permutation = 0;
|
||||
for (double c : {
|
||||
(i == 0) ? cost_current :
|
||||
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 1, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 1, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(2, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
||||
connection_cost(2, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0)
|
||||
}) {
|
||||
if (c < cost_min) {
|
||||
cost_min = c;
|
||||
flip_min = i + (permutation << 8);
|
||||
}
|
||||
++ permutation;
|
||||
}
|
||||
}
|
||||
return std::make_pair(cost_min, flip_min);
|
||||
}
|
||||
|
||||
static inline void reorder_by_three_exchanges_with_segment_flipping2(std::vector<FlipEdge> &edges)
|
||||
{
|
||||
if (edges.size() < 3) {
|
||||
reorder_by_two_exchanges_with_segment_flipping(edges);
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<ConnectionCost> connections(edges.size());
|
||||
std::vector<FlipEdge> edges_tmp(edges);
|
||||
std::vector<std::pair<double, size_t>> connection_lengths(edges.size() - 1, std::pair<double, size_t>(0., 0));
|
||||
std::vector<char> connection_tried(edges.size(), false);
|
||||
for (size_t iter = 0; iter < edges.size(); ++ iter) {
|
||||
// Initialize connection costs and connection lengths.
|
||||
for (size_t i = 1; i < edges.size(); ++ i) {
|
||||
const FlipEdge &e1 = edges[i - 1];
|
||||
const FlipEdge &e2 = edges[i];
|
||||
ConnectionCost &c = connections[i];
|
||||
c = connections[i - 1];
|
||||
double l = (e2.p1 - e1.p2).norm();
|
||||
c.cost += l;
|
||||
c.cost_flipped += (e2.p2 - e1.p1).norm();
|
||||
connection_lengths[i - 1] = std::make_pair(l, i);
|
||||
}
|
||||
std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair<double, size_t> &l, const std::pair<double, size_t> &r) { return l.first > r.first; });
|
||||
std::fill(connection_tried.begin(), connection_tried.end(), false);
|
||||
size_t crossover1_pos_final = std::numeric_limits<size_t>::max();
|
||||
size_t crossover2_pos_final = std::numeric_limits<size_t>::max();
|
||||
size_t crossover3_pos_final = std::numeric_limits<size_t>::max();
|
||||
size_t crossover_flip_final = 0;
|
||||
// Distances between the end points of the four pieces of the current segment sequence.
|
||||
#ifdef NDEBUG
|
||||
Matrixd segment_end_point_distance_matrix(4 * 4, 4 * 4);
|
||||
#else /* NDEBUG */
|
||||
Matrixd segment_end_point_distance_matrix = Matrixd::Constant(4 * 4, 4 * 4, std::numeric_limits<double>::max());
|
||||
#endif /* NDEBUG */
|
||||
for (const std::pair<double, size_t> &first_crossover_candidate : connection_lengths) {
|
||||
double longest_connection_length = first_crossover_candidate.first;
|
||||
size_t longest_connection_idx = first_crossover_candidate.second;
|
||||
connection_tried[longest_connection_idx] = true;
|
||||
// Find the second crossover connection with the lowest total chain cost.
|
||||
size_t crossover_pos_min = std::numeric_limits<size_t>::max();
|
||||
double crossover_cost_min = connections.back().cost;
|
||||
for (size_t j = 1; j < connections.size(); ++ j)
|
||||
if (! connection_tried[j]) {
|
||||
for (size_t k = j + 1; k < connections.size(); ++ k)
|
||||
if (! connection_tried[k]) {
|
||||
size_t a = longest_connection_idx;
|
||||
size_t b = j;
|
||||
size_t c = k;
|
||||
if (a > c)
|
||||
std::swap(a, c);
|
||||
if (a > b)
|
||||
std::swap(a, b);
|
||||
if (b > c)
|
||||
std::swap(b, c);
|
||||
const Vec2d* endpts[16] = {
|
||||
&edges[0].p1, &edges[0].p2, &edges[a - 1].p2, &edges[a - 1].p1,
|
||||
&edges[a].p1, &edges[a].p2, &edges[b - 1].p2, &edges[b - 1].p1,
|
||||
&edges[b].p1, &edges[b].p2, &edges[c - 1].p2, &edges[c - 1].p1,
|
||||
&edges[c].p1, &edges[c].p2, &edges.back().p2, &edges.back().p1 };
|
||||
for (size_t v = 0; v < 16; ++ v) {
|
||||
const Vec2d &p1 = *endpts[v];
|
||||
for (size_t u = (v & (~3)) + 4; u < 16; ++ u)
|
||||
segment_end_point_distance_matrix(u, v) = segment_end_point_distance_matrix(v, u) = (*endpts[u] - p1).norm();
|
||||
}
|
||||
FourOptCosts segment_costs(connections[a - 1], connections[b - 1] - connections[a], connections[c - 1] - connections[b], connections.back() - connections[c]);
|
||||
std::pair<double, size_t> cost_and_flip = minimum_crossover_cost(segment_costs, segment_end_point_distance_matrix, connections.back().cost);
|
||||
if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) {
|
||||
crossover_cost_min = cost_and_flip.first;
|
||||
crossover1_pos_final = a;
|
||||
crossover2_pos_final = b;
|
||||
crossover3_pos_final = c;
|
||||
crossover_flip_final = cost_and_flip.second;
|
||||
assert(crossover_cost_min < connections.back().cost + EPSILON);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (crossover_flip_final > 0) {
|
||||
// The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover.
|
||||
break;
|
||||
} else {
|
||||
// Continue with another long candidate edge.
|
||||
}
|
||||
}
|
||||
if (crossover_flip_final > 0) {
|
||||
// Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection.
|
||||
// Perform a crossover.
|
||||
do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final),
|
||||
std::make_pair(crossover2_pos_final, crossover3_pos_final), std::make_pair(crossover3_pos_final, edges.size()), crossover_flip_final);
|
||||
edges.swap(edges_tmp);
|
||||
} else {
|
||||
// No valid pair of cross over positions was found improving the total cost. Giving up.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Flip the sequences of polylines to lower the total length of connecting lines.
|
||||
static inline void improve_ordering_by_two_exchanges_with_segment_flipping(Polylines &polylines, bool fixed_start)
|
||||
{
|
||||
@ -1707,7 +1873,8 @@ static inline void improve_ordering_by_two_exchanges_with_segment_flipping(Polyl
|
||||
#if 1
|
||||
reorder_by_two_exchanges_with_segment_flipping(edges);
|
||||
#else
|
||||
reorder_by_three_exchanges_with_segment_flipping(edges);
|
||||
// reorder_by_three_exchanges_with_segment_flipping(edges);
|
||||
reorder_by_three_exchanges_with_segment_flipping2(edges);
|
||||
#endif
|
||||
Polylines out;
|
||||
out.reserve(polylines.size());
|
||||
|
Loading…
Reference in New Issue
Block a user