diff --git a/src/libslic3r/ShortestPath.cpp b/src/libslic3r/ShortestPath.cpp index b38655e68..0ebd6c173 100644 --- a/src/libslic3r/ShortestPath.cpp +++ b/src/libslic3r/ShortestPath.cpp @@ -389,6 +389,585 @@ std::vector> chain_segments_greedy_constrained_reversals return out; } +template +void update_end_point_in_queue(QueueType &queue, const KDTreeType &kdtree, ChainsType &chains, std::vector &end_points, EndPointType &end_point, size_t first_point_idx, const EndPointType *first_point) +{ + // Updating an end point or a 2nd from an end point. + size_t this_idx = end_point.index(end_points); + // If this segment is not the starting segment, then this end point or the opposite is unconnected. + assert(first_point_idx == this_idx || first_point_idx == (this_idx ^ 1) || end_point.chain_id == 0 || end_point.opposite(end_points).chain_id == 0); + end_point.edge_candidate = nullptr; + if (first_point_idx == this_idx || (end_point.chain_id > 0 && first_point_idx == (this_idx ^ 1))) + { + // One may never flip the 1st edge, don't try it again. + if (! end_point.heap_idx_invalid()) + queue.remove(end_point.heap_idx); + } + else + { + // Update edge_candidate and distance. + size_t chain1a = end_point.chain_id; + size_t chain1b = end_points[this_idx ^ 1].chain_id; + size_t this_chain = chains.equivalent(std::max(chain1a, chain1b)); + // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the filter lambda). + size_t next_idx = find_closest_point(kdtree, end_point.pos, [&end_points, &chains, this_idx, first_point_idx, first_point, this_chain](size_t idx) { + assert(end_points[this_idx].edge_candidate == nullptr); + // Either this end of the edge or the other end of the edge is not yet connected. + assert((end_points[this_idx ].chain_id == 0 && end_points[this_idx ].edge_out == nullptr) || + (end_points[this_idx ^ 1].chain_id == 0 && end_points[this_idx ^ 1].edge_out == nullptr)); + if ((idx ^ this_idx) <= 1 || idx == first_point_idx) + // Points of the same segment shall not be connected. + // Don't connect to the first point, we must not flip the 1st edge. + return false; + size_t chain2a = end_points[idx].chain_id; + size_t chain2b = end_points[idx ^ 1].chain_id; + if (chain2a > 0 && chain2b > 0) + // Only unconnected end point or a point next to an unconnected end point may be connected to. + // Ideally those would be removed from the KD tree, but the update is difficult. + return false; + assert(chain2a == 0 || chain2b == 0); + size_t chain2 = chains.equivalent(std::max(chain2a, chain2b)); + if (this_chain == chain2) + // Don't connect back to the same chain, don't create a loop. + return this_chain == 0; + // Don't connect to a segment requiring flipping if the segment starts or ends with the first point. + if (chain2a > 0) { + // Chain requires flipping. + assert(chain2b == 0); + auto &chain = chains.chain(chain2); + if (chain.begin == first_point || chain.end == first_point) + return false; + } + // Everything is all right, try to connect. + return true; + }); + assert(next_idx < end_points.size()); + assert(chains.equivalent(end_points[next_idx].chain_id) != chains.equivalent(end_points[next_idx ^ 1].chain_id) || end_points[next_idx].chain_id == 0); + end_point.edge_candidate = &end_points[next_idx]; + end_point.distance_out = (end_points[next_idx].pos - end_point.pos).norm(); + if (end_point.chain_id > 0) + end_point.distance_out += chains.chain_flip_penalty(this_chain); + if (end_points[next_idx].chain_id > 0) + // The candidate chain is flipped. + end_point.distance_out += chains.chain_flip_penalty(end_points[next_idx].chain_id); + // Update position of this end point in the queue based on the distance calculated at the line above. + if (end_point.heap_idx_invalid()) + queue.push(&end_point); + else + queue.update(end_point.heap_idx); + } +} + +template +std::vector> chain_segments_greedy_constrained_reversals2_(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near) +{ + std::vector> out; + + if (num_segments == 0) { + // Nothing to do. + } + else if (num_segments == 1) + { + // Just sort the end points so that the first point visited is closest to start_near. + out.emplace_back(0, start_near != nullptr && + (end_point_func(0, true) - *start_near).template cast().squaredNorm() < (end_point_func(0, false) - *start_near).template cast().squaredNorm()); + } + else + { + // End points of segments for the KD tree closest point search. + // A single end point is inserted into the search structure for loops, two end points are entered for open paths. + struct EndPoint { + EndPoint(const Vec2d &pos) : pos(pos) {} + Vec2d pos; + + // Candidate for a new connection link. + EndPoint *edge_candidate = nullptr; + // Distance to the next end point following the link. + // Zero value -> start of the final path. + double distance_out = std::numeric_limits::max(); + + size_t heap_idx = std::numeric_limits::max(); + bool heap_idx_invalid() const { return this->heap_idx == std::numeric_limits::max(); } + + // Identifier of the chain, to which this end point belongs. Zero means unassigned. + size_t chain_id = 0; + // Double linked chain of segment end points in current path. + EndPoint *edge_out = nullptr; + + size_t index(std::vector &endpoints) const { return this - endpoints.data(); } + // Opposite end point of the same segment. + EndPoint& opposite(std::vector &endpoints) { return endpoints[(this - endpoints.data()) ^ 1]; } + const EndPoint& opposite(const std::vector &endpoints) const { return endpoints[(this - endpoints.data()) ^ 1]; } + }; + + std::vector end_points; + end_points.reserve(num_segments * 2); + for (size_t i = 0; i < num_segments; ++ i) { + end_points.emplace_back(end_point_func(i, true ).template cast()); + end_points.emplace_back(end_point_func(i, false).template cast()); + } + + // Construct the closest point KD tree over end points of segments. + auto coordinate_fn = [&end_points](size_t idx, size_t dimension) -> double { return end_points[idx].pos[dimension]; }; + KDTreeIndirect<2, double, decltype(coordinate_fn)> kdtree(coordinate_fn, end_points.size()); + + // Chained segments with their sum of connection lengths. + // The chain supports flipping all the segments, connecting the segments at the opposite ends. + // (this is a very useful path optimization for infill lines). + struct Chain { + size_t num_segments = 0; + double cost = 0.; + double cost_flipped = 0.; + EndPoint *begin = nullptr; + EndPoint *end = nullptr; + size_t equivalent_with = 0; + + // Flipping the chain has a time complexity of O(n). + void flip(std::vector &endpoints) + { + assert(this->num_segments > 1); + assert(this->begin->edge_out == nullptr); + assert(this->end ->edge_out == nullptr); + assert(this->begin->opposite(endpoints).edge_out != nullptr); + assert(this->end ->opposite(endpoints).edge_out != nullptr); + // Start of the current segment processed. + EndPoint *ept = this->begin; + // Previous end point to connect the other side of ept to. + EndPoint *ept_prev = nullptr; + do { + EndPoint *ept_end = &ept->opposite(endpoints); + EndPoint *ept_next = ept_end->edge_out; + assert(ept_next == nullptr || ept_next->edge_out == ept_end); + // Connect to the preceding segment. + ept_end->edge_out = ept_prev; + if (ept_prev != nullptr) + ept_prev->edge_out = ept_end; + ept_prev = ept; + ept = ept_next; + } while (ept != nullptr); + ept_prev->edge_out = nullptr; + // Swap the costs. + std::swap(this->cost, this->cost_flipped); + // Swap the ends. + EndPoint *new_begin = &this->begin->opposite(endpoints); + EndPoint *new_end = &this->end->opposite(endpoints); + std::swap(this->begin->chain_id, new_begin->chain_id); + std::swap(this->end ->chain_id, new_end ->chain_id); + this->begin = new_begin; + this->end = new_end; + assert(this->begin->edge_out == nullptr); + assert(this->end ->edge_out == nullptr); + assert(this->begin->opposite(endpoints).edge_out != nullptr); + assert(this->end ->opposite(endpoints).edge_out != nullptr); + } + + double flip_penalty() const { return this->cost_flipped - this->cost; } + }; + + // Helper to detect loops in already connected paths and to accomodate flipping of chains. + // + // Unique chain IDs are assigned to paths. If paths are connected, end points will not have their chain IDs updated, but the chain IDs + // will remember an "equivalent" chain ID, which is the lowest ID of all the IDs in the path, and the lowest ID is equivalent to itself. + // Chain IDs are indexed starting with 1. + // + // Chains remember their lengths and their lengths when each segment of the chain is flipped. + class Chains { + public: + // Zero'th chain ID is invalid. + Chains(size_t reserve) { + m_chains.reserve(reserve / 2); + // Indexing starts with 1. + m_chains.emplace_back(); + } + + // Generate next equivalence class. + size_t next_id() { + m_chains.emplace_back(); + m_chains.back().equivalent_with = ++ m_last_chain_id; + return m_last_chain_id; + } + + // Get equivalence class for chain ID, update the "equivalent_with" along the equivalence path. + size_t equivalent(size_t chain_id) { + if (chain_id != 0) { + for (size_t last = chain_id;;) { + size_t lower = m_chains[last].equivalent_with; + if (lower == last) { + m_chains[chain_id].equivalent_with = lower; + chain_id = lower; + break; + } + last = lower; + } + } + return chain_id; + } + + // Return a lowest chain ID of the two input chains. + // Produce a new chain ID of both chain IDs are zero. + size_t merge(size_t chain_id1, size_t chain_id2) { + if (chain_id1 == 0) + return (chain_id2 == 0) ? this->next_id() : chain_id2; + if (chain_id2 == 0) + return chain_id1; + assert(m_chains[chain_id1].equivalent_with == chain_id1); + assert(m_chains[chain_id2].equivalent_with == chain_id2); + size_t chain_id = std::min(chain_id1, chain_id2); + m_chains[chain_id1].equivalent_with = chain_id; + m_chains[chain_id2].equivalent_with = chain_id; + return chain_id; + } + + Chain& chain(size_t chain_id) { return m_chains[chain_id]; } + const Chain& chain(size_t chain_id) const { return m_chains[chain_id]; } + + double chain_flip_penalty(size_t chain_id) { + chain_id = this->equivalent(chain_id); + return m_chains[chain_id].flip_penalty(); + } + +#ifndef NDEBUG + bool validate() + { + // Validate that the segments merged chain IDs make up a directed acyclic graph + // with edges oriented towards the lower chain ID, therefore all ending up + // in the lowest chain ID of all of them. + assert(m_last_chain_id >= 0); + assert(m_last_chain_id + 1 == m_chains.size()); + for (size_t i = 0; i < m_chains.size(); ++ i) { + for (size_t last = i;;) { + size_t lower = m_chains[last].equivalent_with; + assert(lower <= last); + if (lower == last) + break; + last = lower; + } + } + return true; + } +#endif /* NDEBUG */ + + private: + std::vector m_chains; + // Unique chain ID assigned to chains of end points of segments. + size_t m_last_chain_id = 0; + } chains(num_segments); + + // Find the first end point closest to start_near. + EndPoint *first_point = nullptr; + size_t first_point_idx = std::numeric_limits::max(); + if (start_near != nullptr) { + size_t idx = find_closest_point(kdtree, start_near->template cast()); + assert(idx < end_points.size()); + first_point = &end_points[idx]; + first_point->distance_out = 0.; + first_point->chain_id = chains.next_id(); + Chain &chain = chains.chain(first_point->chain_id); + chain.begin = first_point; + chain.end = &first_point->opposite(end_points); + first_point_idx = idx; + } + EndPoint *initial_point = first_point; + EndPoint *last_point = nullptr; + + // Assign the closest point and distance to the end points. + for (EndPoint &end_point : end_points) { + assert(end_point.edge_candidate == nullptr); + if (&end_point != first_point) { + size_t this_idx = end_point.index(end_points); + // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda). + // Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it. + size_t next_idx = find_closest_point(kdtree, end_point.pos, + [this_idx, first_point_idx](size_t idx){ return idx != first_point_idx && (idx ^ this_idx) > 1; }); + assert(next_idx < end_points.size()); + EndPoint &end_point2 = end_points[next_idx]; + end_point.edge_candidate = &end_point2; + end_point.distance_out = (end_point2.pos - end_point.pos).norm(); + } + } + + // Initialize a heap of end points sorted by the lowest distance to the next valid point of a path. + auto queue = make_mutable_priority_queue( + [](EndPoint *ep, size_t idx){ ep->heap_idx = idx; }, + [](EndPoint *l, EndPoint *r){ return l->distance_out < r->distance_out; }); + queue.reserve(end_points.size() * 2); + for (EndPoint &ep : end_points) + if (first_point != &ep) + queue.push(&ep); + +#ifndef NDEBUG + auto validate_graph_and_queue = [&chains, &end_points, &queue, first_point]() -> bool { + assert(chains.validate()); + for (EndPoint &ep : end_points) { + if (ep.heap_idx < queue.size()) { + // End point is on the heap. + assert(*(queue.cbegin() + ep.heap_idx) == &ep); + // One side or the other of the segment is not yet connected. + assert(ep.chain_id == 0 || ep.opposite(end_points).chain_id == 0); + } else { + // End point is NOT on the heap, therefore it must part of the output path. + assert(ep.heap_idx_invalid()); + assert(ep.chain_id != 0); + if (&ep == first_point) { + assert(ep.edge_out == nullptr); + } else { + assert(ep.edge_out != nullptr); + // Detect loops. + for (EndPoint *pt = &ep; pt != nullptr;) { + // Out of queue. It is a final point. + EndPoint *pt_other = &pt->opposite(end_points); + if (pt_other->heap_idx < queue.size()) { + // The other side of this segment is undecided yet. + // assert(pt_other->edge_out == nullptr); + break; + } + pt = pt_other->edge_out; + } + } + } + } + for (EndPoint *ep : queue) + // Points in the queue or the opposites of the same segment are not connected yet. + assert(ep->chain_id == 0 || ep->opposite(end_points).chain_id == 0); + return true; + }; +#endif /* NDEBUG */ + + // Chain the end points: find (num_segments - 1) shortest links not forming bifurcations or loops. + assert(num_segments >= 2); +#ifndef NDEBUG + double distance_taken_last = 0.; +#endif /* NDEBUG */ + // Some links stored onto the priority queue are being invalidated during the calculation and they are not + // updated immediately. If such a situation is detected for an end point pulled from the priority queue, + // the end point is being updated and re-inserted into the priority queue. Therefore the number of iterations + // required is higher than expected (it would be the number of links, num_segments - 1). + // The limit here may not be necessary, but it guards us against an endless loop if something goes wrong. + size_t num_iter = num_segments * 16; + for (size_t num_connections_to_end = num_segments - 1; num_iter > 0; -- num_iter) { + assert(validate_graph_and_queue()); + // Take the first end point, for which the link points to the currently closest valid neighbor. + EndPoint *end_point1 = queue.top(); + assert(end_point1 != first_point); + EndPoint *end_point1_other = &end_point1->opposite(end_points); + // true if end_point1 is not the end of its chain, but the 2nd point. When connecting to the 2nd point, this chain needs + // to be flipped first. + bool chain1_flip = end_point1->chain_id > 0; + // Either this point at the queue is not connected, or it is the 2nd point of a chain. + // If connecting to a 2nd point of a chain, the 1st point shall not yet be connected and this chain will need + // to be flipped. + assert( chain1_flip || (end_point1->chain_id == 0 && end_point1->edge_out == nullptr)); + assert(! chain1_flip || (end_point1_other->chain_id == 0 && end_point1_other->edge_out == nullptr)); + assert(end_point1->edge_candidate != nullptr); +#ifndef NDEBUG + // Each edge added shall be longer than the previous one taken. + //assert(end_point1->distance_out > distance_taken_last - SCALED_EPSILON); + if (end_point1->distance_out < distance_taken_last - SCALED_EPSILON) { +// printf("Warning: taking shorter length than previously is suspicious\n"); + } + distance_taken_last = end_point1->distance_out; +#endif /* NDEBUG */ + // Take the closest end point to the first end point, + EndPoint *end_point2 = end_point1->edge_candidate; + EndPoint *end_point2_other = &end_point2->opposite(end_points); + bool chain2_flip = end_point2->chain_id > 0; + // Is the link from end_point1 to end_point2 still valid? If yes, the link may be taken. Otherwise the link needs to be refreshed. + bool valid = true; + size_t end_point1_chain_id = 0; + size_t end_point2_chain_id = 0; + if (end_point2->chain_id > 0 && end_point2_other->chain_id > 0) { + // The other side is part of the output path. Don't connect to end_point2, update end_point1 and try another one. + valid = false; + } else { + // End points of the opposite ends of the segments. + end_point1_chain_id = chains.equivalent((chain1_flip ? end_point1 : end_point1_other)->chain_id); + end_point2_chain_id = chains.equivalent((chain2_flip ? end_point2 : end_point2_other)->chain_id); + if (end_point1_chain_id == end_point2_chain_id && end_point1_chain_id != 0) + // This edge forms a loop. Update end_point1 and try another one. + valid = false; + else { + // Verify whether end_point1.distance_out still matches the current state of the two end points to be connected and their chains. + // Namely, the other chain may have been flipped in the meantime. + double dist = (end_point2->pos - end_point1->pos).norm(); + if (chain1_flip) + dist += chains.chain_flip_penalty(end_point1_chain_id); + if (chain2_flip) + dist += chains.chain_flip_penalty(end_point2_chain_id); + if (std::abs(dist - end_point1->distance_out) > SCALED_EPSILON) + // The distance changed due to flipping of one of the chains. Refresh this end point in the queue. + valid = false; + } + if (valid && first_point != nullptr) { + // Verify that a chain starting or ending with the first_point does not get flipped. + if (chain1_flip) { + Chain &chain = chains.chain(end_point1_chain_id); + if (chain.begin == first_point || chain.end == first_point) + valid = false; + } + if (valid && chain2_flip) { + Chain &chain = chains.chain(end_point2_chain_id); + if (chain.begin == first_point || chain.end == first_point) + valid = false; + } + } + } + if (valid) { + // Remove the first and second point from the queue. + queue.pop(); + queue.remove(end_point2->heap_idx); + assert(end_point1->edge_candidate == end_point2); + end_point1->edge_candidate = nullptr; + Chain *chain1 = (end_point1_chain_id == 0) ? nullptr : &chains.chain(end_point1_chain_id); + Chain *chain2 = (end_point2_chain_id == 0) ? nullptr : &chains.chain(end_point2_chain_id); + assert(chain1 == nullptr || (chain1_flip ? (chain1->begin == end_point1_other || chain1->end == end_point1_other) : (chain1->begin == end_point1 || chain1->end == end_point1))); + assert(chain2 == nullptr || (chain2_flip ? (chain2->begin == end_point2_other || chain2->end == end_point2_other) : (chain2->begin == end_point2 || chain2->end == end_point2))); + if (chain1_flip) + chain1->flip(end_points); + if (chain2_flip) + chain2->flip(end_points); + assert(chain1 == nullptr || chain1->begin == end_point1 || chain1->end == end_point1); + assert(chain2 == nullptr || chain2->begin == end_point2 || chain2->end == end_point2); + size_t chain_id = chains.merge(end_point1_chain_id, end_point2_chain_id); + Chain &chain = chains.chain(chain_id); + { + Chain chain_dst; + chain_dst.begin = (chain1 == nullptr) ? end_point1_other : (chain1->begin == end_point1) ? chain1->end : chain1->begin; + chain_dst.end = (chain2 == nullptr) ? end_point2_other : (chain2->begin == end_point2) ? chain2->end : chain2->begin; + chain_dst.cost = (chain1 == 0 ? 0. : chain1->cost) + (chain2 == 0 ? 0. : chain2->cost) + (end_point2->pos - end_point1->pos).norm(); + chain_dst.cost_flipped = (chain1 == 0 ? 0. : chain1->cost_flipped) + (chain2 == 0 ? 0. : chain2->cost_flipped) + (end_point2_other->pos - end_point1_other->pos).norm(); + chain_dst.num_segments = (chain1 == 0 ? 1 : chain1->num_segments) + (chain2 == 0 ? 1 : chain2->num_segments); + chain_dst.equivalent_with = chain_id; + chain = chain_dst; + } + if (chain.begin != end_point1_other && ! end_point1_other->heap_idx_invalid()) + queue.remove(end_point1_other->heap_idx); + if (chain.end != end_point2_other && ! end_point2_other->heap_idx_invalid()) + queue.remove(end_point2_other->heap_idx); + end_point1->edge_out = end_point2; + end_point2->edge_out = end_point1; + end_point1->chain_id = chain_id; + end_point2->chain_id = chain_id; + end_point1_other->chain_id = chain_id; + end_point2_other->chain_id = chain_id; + if (chain.begin != first_point) + chain.begin->chain_id = 0; + if (chain.end != first_point) + chain.end->chain_id = 0; + if (-- num_connections_to_end == 0) { + assert(validate_graph_and_queue()); + // Last iteration. There shall be exactly one or two end points waiting to be connected. + assert(queue.size() <= ((first_point == nullptr) ? 4 : 2)); + if (first_point == nullptr) { + // Find the first remaining end point. + do { + first_point = queue.top(); + queue.pop(); + } while (first_point->edge_out != nullptr); + assert(first_point->edge_out == nullptr); + } + // Find the first remaining end point. + do { + last_point = queue.top(); + queue.pop(); + } while (last_point->edge_out != nullptr); + assert(last_point->edge_out == nullptr); +#ifndef NDEBUG + while (! queue.empty()) { + assert(queue.top()->edge_out != nullptr && queue.top()->chain_id > 0); + queue.pop(); + } +#endif /* NDEBUG */ + break; + } else { + //FIXME update the 2nd end points on the queue. + // Update end points of the flipped segments. + update_end_point_in_queue(queue, kdtree, chains, end_points, chain.begin->opposite(end_points), first_point_idx, first_point); + update_end_point_in_queue(queue, kdtree, chains, end_points, chain.end->opposite(end_points), first_point_idx, first_point); + if (chain1_flip) + update_end_point_in_queue(queue, kdtree, chains, end_points, *chain.begin, first_point_idx, first_point); + if (chain2_flip) + update_end_point_in_queue(queue, kdtree, chains, end_points, *chain.end, first_point_idx, first_point); + // End points of chains shall certainly stay in the queue. + assert(chain.begin == first_point || chain.begin->heap_idx < queue.size()); + assert(chain.end == first_point || chain.end ->heap_idx < queue.size()); + assert(&chain.begin->opposite(end_points) != first_point && + (chain.begin == first_point ? chain.begin->opposite(end_points).heap_idx_invalid() : chain.begin->opposite(end_points).heap_idx < queue.size())); + assert(&chain.end ->opposite(end_points) != first_point && + (chain.end == first_point ? chain.end ->opposite(end_points).heap_idx_invalid() : chain.end ->opposite(end_points).heap_idx < queue.size())); + + } + } else { + // This edge forms a loop. Update end_point1 and try another one. + update_end_point_in_queue(queue, kdtree, chains, end_points, *end_point1, first_point_idx, first_point); +#ifndef NDEBUG + // Each edge shall be longer than the last one removed from the queue. + //assert(end_point1->distance_out > distance_taken_last - SCALED_EPSILON); + if (end_point1->distance_out < distance_taken_last - SCALED_EPSILON) { +// printf("Warning: taking shorter length than previously is suspicious\n"); + } +#endif /* NDEBUG */ + //FIXME Remove the other end point from the KD tree. + // As the KD tree update is expensive, do it only after some larger number of points is removed from the queue. + } + assert(validate_graph_and_queue()); + } + assert(queue.empty()); + + // Now interconnect pairs of segments into a chain. + assert(first_point != nullptr); + out.reserve(num_segments); + bool failed = false; + do { + assert(out.size() < num_segments); + size_t first_point_id = first_point - &end_points.front(); + size_t segment_id = first_point_id >> 1; + bool reverse = (first_point_id & 1) != 0; + EndPoint *second_point = &end_points[first_point_id ^ 1]; + if (REVERSE_COULD_FAIL) { + if (reverse && ! could_reverse_func(segment_id)) { + failed = true; + break; + } + } else { + assert(! reverse || could_reverse_func(segment_id)); + } + out.emplace_back(segment_id, reverse); + first_point = second_point->edge_out; + } while (first_point != nullptr); + if (REVERSE_COULD_FAIL) { + if (failed) { + if (start_near == nullptr) { + // We may try the reverse order. + out.clear(); + first_point = last_point; + failed = false; + do { + assert(out.size() < num_segments); + size_t first_point_id = first_point - &end_points.front(); + size_t segment_id = first_point_id >> 1; + bool reverse = (first_point_id & 1) != 0; + EndPoint *second_point = &end_points[first_point_id ^ 1]; + if (reverse && ! could_reverse_func(segment_id)) { + failed = true; + break; + } + out.emplace_back(segment_id, reverse); + first_point = second_point->edge_out; + } while (first_point != nullptr); + } + } + if (failed) + // As a last resort, try a dumb algorithm, which is not sensitive to edge reversal constraints. + out = chain_segments_closest_point(end_points, kdtree, could_reverse_func, (initial_point != nullptr) ? *initial_point : end_points.front()); + } else { + assert(! failed); + } + } + + assert(out.size() == num_segments); + return out; +} + template std::vector> chain_segments_greedy_constrained_reversals(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near) { @@ -402,6 +981,19 @@ std::vector> chain_segments_greedy(SegmentEndPointFunc e return chain_segments_greedy_constrained_reversals_(end_point_func, could_reverse_func, num_segments, start_near); } +template +std::vector> chain_segments_greedy_constrained_reversals2(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near) +{ + return chain_segments_greedy_constrained_reversals2_(end_point_func, could_reverse_func, num_segments, start_near); +} + +template +std::vector> chain_segments_greedy2(SegmentEndPointFunc end_point_func, size_t num_segments, const PointType *start_near) +{ + auto could_reverse_func = [](size_t /* idx */) -> bool { return true; }; + return chain_segments_greedy_constrained_reversals2_(end_point_func, could_reverse_func, num_segments, start_near); +} + std::vector> chain_extrusion_entities(std::vector &entities, const Point *start_near) { auto segment_end_point = [&entities](size_t idx, bool first_point) -> const Point& { return first_point ? entities[idx]->first_point() : entities[idx]->last_point(); }; @@ -472,8 +1064,22 @@ std::vector chain_points(const Points &points, Point *start_near) return out; } +#ifndef NDEBUG +// #define DEBUG_SVG_OUTPUT +#endif /* NDEBUG */ + +#ifdef DEBUG_SVG_OUTPUT +void svg_draw_polyline_chain(const char *name, size_t idx, const Polylines &polylines) +{ + BoundingBox bbox = get_extents(polylines); + SVG svg(debug_out_path("%s-%d.svg", name, idx).c_str(), bbox); + svg.draw(polylines); + for (size_t i = 1; i < polylines.size(); ++i) + svg.draw(Line(polylines[i - 1].last_point(), polylines[i].first_point()), "red"); +} +#endif /* DEBUG_SVG_OUTPUT */ + // Flip the sequences of polylines to lower the total length of connecting lines. -// #define DEBUG_SVG_OUTPUT static inline void improve_ordering_by_segment_flipping(Polylines &polylines, bool fixed_start) { #ifndef NDEBUG @@ -487,14 +1093,8 @@ static inline void improve_ordering_by_segment_flipping(Polylines &polylines, bo static int iRun = 0; ++ iRun; - BoundingBox bbox = get_extents(polylines); #ifdef DEBUG_SVG_OUTPUT - { - SVG svg(debug_out_path("improve_ordering_by_segment_flipping-initial-%d.svg", iRun).c_str(), bbox); - svg.draw(polylines); - for (size_t i = 1; i < polylines.size(); ++ i) - svg.draw(Line(polylines[i - 1].last_point(), polylines[i].first_point()), "red"); - } + svg_draw_polyline_chain("improve_ordering_by_segment_flipping-initial", iRun, polylines); #endif /* DEBUG_SVG_OUTPUT */ #endif /* NDEBUG */ @@ -643,34 +1243,285 @@ static inline void improve_ordering_by_segment_flipping(Polylines &polylines, bo #ifndef NDEBUG double cost_final = cost(); #ifdef DEBUG_SVG_OUTPUT + svg_draw_polyline_chain("improve_ordering_by_segment_flipping-final", iRun, polylines); +#endif /* DEBUG_SVG_OUTPUT */ + assert(cost_final <= cost_prev); + assert(cost_final <= cost_initial); +#endif /* NDEBUG */ +} + +struct FlipEdge { + FlipEdge(const Vec2d &p1, const Vec2d &p2, size_t source_index) : p1(p1), p2(p2), source_index(source_index) {} + void flip() { std::swap(this->p1, this->p2); } + Vec2d p1; + Vec2d p2; + size_t source_index; +}; + +struct ConnectionCost { + ConnectionCost(double cost, double cost_flipped) : cost(cost), cost_flipped(cost_flipped) {} + ConnectionCost() : cost(0.), cost_flipped(0.) {} + void flip() { std::swap(this->cost, this->cost_flipped); } + double cost = 0; + double cost_flipped = 0; +}; +static inline ConnectionCost operator-(const ConnectionCost &lhs, const ConnectionCost& rhs) { return ConnectionCost(lhs.cost - rhs.cost, lhs.cost_flipped - rhs.cost_flipped); } + +static inline std::pair minimum_crossover_cost( + const std::vector &edges, + const std::pair &span1, const ConnectionCost &cost1, + const std::pair &span2, const ConnectionCost &cost2, + const std::pair &span3, const ConnectionCost &cost3, + const double cost_current) +{ + auto connection_cost = [&edges]( + const std::pair &span1, const ConnectionCost &cost1, bool reversed1, bool flipped1, + const std::pair &span2, const ConnectionCost &cost2, bool reversed2, bool flipped2, + const std::pair &span3, const ConnectionCost &cost3, bool reversed3, bool flipped3) { + auto first_point = [&edges](const std::pair &span, bool flipped) { return flipped ? edges[span.first].p2 : edges[span.first].p1; }; + auto last_point = [&edges](const std::pair &span, bool flipped) { return flipped ? edges[span.second - 1].p1 : edges[span.second - 1].p2; }; + auto point = [first_point, last_point](const std::pair &span, bool start, bool flipped) { return start ? first_point(span, flipped) : last_point(span, flipped); }; + auto cost = [](const ConnectionCost &acost, bool flipped) { + assert(acost.cost >= 0. && acost.cost_flipped >= 0.); + return flipped ? acost.cost_flipped : acost.cost; + }; + // Ignore reversed single segment spans. + auto simple_span_ignore = [](const std::pair& span, bool reversed) { + return span.first + 1 == span.second && reversed; + }; + assert(span1.first < span1.second); + assert(span2.first < span2.second); + assert(span3.first < span3.second); + return + simple_span_ignore(span1, reversed1) || simple_span_ignore(span2, reversed2) || simple_span_ignore(span3, reversed3) ? + // Don't perform unnecessary calculations simulating reversion of single segment spans. + std::numeric_limits::max() : + // Calculate the cost of reverting chains and / or flipping segment orientations. + cost(cost1, flipped1) + cost(cost2, flipped2) + cost(cost3, flipped3) + + (point(span2, ! reversed2, flipped2) - point(span1, reversed1, flipped1)).norm() + + (point(span3, ! reversed3, flipped3) - point(span2, reversed2, flipped2)).norm(); + }; + +#ifndef NDEBUG { - SVG svg(debug_out_path("improve_ordering_by_segment_flipping-final-%d.svg", iRun).c_str(), bbox); - svg.draw(polylines); - for (size_t i = 1; i < polylines.size(); ++ i) - svg.draw(Line(polylines[i - 1].last_point(), polylines[i].first_point()), "red"); + double c = connection_cost(span1, cost1, false, false, span2, cost2, false, false, span3, cost3, false, false); + assert(std::abs(c - cost_current) < SCALED_EPSILON); } +#endif /* NDEBUG */ + + double cost_min = cost_current; + size_t flip_min = 0; // no flip, no improvement + for (size_t i = 0; i < (1 << 6); ++ i) { + // From the three combinations of 1,2,3 ordering, the other three are reversals of the first three. + double c1 = (i == 0) ? cost_current : + connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); + double c2 = connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); + double c3 = connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); + if (c1 < cost_min) { + cost_min = c1; + flip_min = i; + } + if (c2 < cost_min) { + cost_min = c2; + flip_min = i + (1 << 6); + } + if (c3 < cost_min) { + cost_min = c3; + flip_min = i + (2 << 6); + } + } + return std::make_pair(cost_min, flip_min); +} + +static inline void do_crossover(const std::vector &edges_in, std::vector &edges_out, + const std::pair &span1, const std::pair &span2, const std::pair &span3, + size_t i) +{ + assert(edges_in.size() == edges_out.size()); + auto do_it = [&edges_in, &edges_out]( + const std::pair &span1, bool reversed1, bool flipped1, + const std::pair &span2, bool reversed2, bool flipped2, + const std::pair &span3, bool reversed3, bool flipped3) { + auto it_edges_out = edges_out.begin(); + auto copy_span = [&edges_in, &edges_out, &it_edges_out](std::pair span, bool reversed, bool flipped) { + assert(span.first < span.second); + auto it = it_edges_out; + if (reversed) + std::reverse_copy(edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out); + else + std::copy (edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out); + it_edges_out += span.second - span.first; + if (reversed != flipped) { + for (; it != it_edges_out; ++ it) + it->flip(); + } + }; + copy_span(span1, reversed1, flipped1); + copy_span(span2, reversed2, flipped2); + copy_span(span3, reversed3, flipped3); + }; + switch (i >> 6) { + case 0: + do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); + break; + case 1: + do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); + break; + default: + assert((i >> 6) == 2); + do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); + } + assert(edges_in.size() == edges_out.size()); +} + +static inline void reorder_by_two_exchanges_with_segment_flipping(std::vector &edges) +{ + if (edges.size() < 2) + return; + + std::vector connections(edges.size()); + std::vector edges_tmp(edges); + std::vector> connection_lengths(edges.size() - 1, std::pair(0., 0)); + std::vector connection_tried(edges.size(), false); + for (size_t iter = 0; iter < edges.size(); ++ iter) { + // Initialize connection costs and connection lengths. + for (size_t i = 1; i < edges.size(); ++ i) { + const FlipEdge &e1 = edges[i - 1]; + const FlipEdge &e2 = edges[i]; + ConnectionCost &c = connections[i]; + c = connections[i - 1]; + double l = (e2.p1 - e1.p2).norm(); + c.cost += l; + c.cost_flipped += (e2.p2 - e1.p1).norm(); + connection_lengths[i - 1] = std::make_pair(l, i); + } + std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair &l, const std::pair &r) { return l.first > r.first; }); + std::fill(connection_tried.begin(), connection_tried.end(), false); + size_t crossover1_pos_final = std::numeric_limits::max(); + size_t crossover2_pos_final = std::numeric_limits::max(); + size_t crossover_flip_final = 0; + for (const std::pair &first_crossover_candidate : connection_lengths) { + double longest_connection_length = first_crossover_candidate.first; + size_t longest_connection_idx = first_crossover_candidate.second; + connection_tried[longest_connection_idx] = true; + // Find the second crossover connection with the lowest total chain cost. + size_t crossover_pos_min = std::numeric_limits::max(); + double crossover_cost_min = connections.back().cost; + size_t crossover_flip_min = 0; + for (size_t j = 1; j < connections.size(); ++ j) + if (! connection_tried[j]) { + size_t a = j; + size_t b = longest_connection_idx; + if (a > b) + std::swap(a, b); + std::pair cost_and_flip = minimum_crossover_cost(edges, + std::make_pair(size_t(0), a), connections[a - 1], std::make_pair(a, b), connections[b - 1] - connections[a], std::make_pair(b, edges.size()), connections.back() - connections[b], + connections.back().cost); + if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) { + crossover_pos_min = j; + crossover_cost_min = cost_and_flip.first; + crossover_flip_min = cost_and_flip.second; + assert(crossover_cost_min < connections.back().cost + EPSILON); + } + } + if (crossover_cost_min < connections.back().cost) { + // The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover. + crossover1_pos_final = longest_connection_idx; + crossover2_pos_final = crossover_pos_min; + crossover_flip_final = crossover_flip_min; + break; + } else { + // Continue with another long candidate edge. + } + } + if (crossover_flip_final > 0) { + // Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection. + // Perform a crossover. + if (crossover1_pos_final > crossover2_pos_final) + std::swap(crossover1_pos_final, crossover2_pos_final); + do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final), std::make_pair(crossover2_pos_final, edges.size()), crossover_flip_final); + edges.swap(edges_tmp); + } else { + // No valid pair of cross over positions was found improving the total cost. Giving up. + break; + } + } +} + +// Flip the sequences of polylines to lower the total length of connecting lines. +static inline void improve_ordering_by_two_exchanges_with_segment_flipping(Polylines &polylines, bool fixed_start) +{ +#ifndef NDEBUG + auto cost = [&polylines]() { + double sum = 0.; + for (size_t i = 1; i < polylines.size(); ++i) + sum += (polylines[i].first_point() - polylines[i - 1].last_point()).cast().norm(); + return sum; + }; + double cost_initial = cost(); + + static int iRun = 0; + ++ iRun; +#ifdef DEBUG_SVG_OUTPUT + svg_draw_polyline_chain("improve_ordering_by_two_exchanges_with_segment_flipping-initial", iRun, polylines); #endif /* DEBUG_SVG_OUTPUT */ #endif /* NDEBUG */ - assert(cost_final <= cost_prev); + std::vector edges; + edges.reserve(polylines.size()); + std::transform(polylines.begin(), polylines.end(), std::back_inserter(edges), + [&polylines](const Polyline &pl){ return FlipEdge(pl.first_point().cast(), pl.last_point().cast(), &pl - polylines.data()); }); + reorder_by_two_exchanges_with_segment_flipping(edges); + Polylines out; + out.reserve(polylines.size()); + for (const FlipEdge &edge : edges) { + Polyline &pl = polylines[edge.source_index]; + out.emplace_back(std::move(pl)); + if (edge.p2 == pl.first_point().cast()) { + // Polyline is flipped. + out.back().reverse(); + } else { + // Polyline is not flipped. + assert(edge.p1 == pl.first_point().cast()); + } + } + +#ifndef NDEBUG + double cost_final = cost(); +#ifdef DEBUG_SVG_OUTPUT + svg_draw_polyline_chain("improve_ordering_by_two_exchanges_with_segment_flipping-final", iRun, out); +#endif /* DEBUG_SVG_OUTPUT */ assert(cost_final <= cost_initial); +#endif /* NDEBUG */ } Polylines chain_polylines(Polylines &&polylines, const Point *start_near) { +#ifdef DEBUG_SVG_OUTPUT + static int iRun = 0; + ++ iRun; + svg_draw_polyline_chain("chain_polylines-initial", iRun, polylines); +#endif /* DEBUG_SVG_OUTPUT */ + Polylines out; if (! polylines.empty()) { auto segment_end_point = [&polylines](size_t idx, bool first_point) -> const Point& { return first_point ? polylines[idx].first_point() : polylines[idx].last_point(); }; - std::vector> ordered = chain_segments_greedy(segment_end_point, polylines.size(), start_near); + std::vector> ordered = chain_segments_greedy2(segment_end_point, polylines.size(), start_near); out.reserve(polylines.size()); for (auto &segment_and_reversal : ordered) { out.emplace_back(std::move(polylines[segment_and_reversal.first])); if (segment_and_reversal.second) out.back().reverse(); } - if (out.size() > 1) - improve_ordering_by_segment_flipping(out, start_near != nullptr); + if (out.size() > 1 && start_near == nullptr) { + improve_ordering_by_two_exchanges_with_segment_flipping(out, start_near != nullptr); + //improve_ordering_by_segment_flipping(out, start_near != nullptr); + } } + +#ifdef DEBUG_SVG_OUTPUT + svg_draw_polyline_chain("chain_polylines-final", iRun, out); +#endif /* DEBUG_SVG_OUTPUT */ return out; } diff --git a/tests/libslic3r/test_geometry.cpp b/tests/libslic3r/test_geometry.cpp index 4a800b3d3..6f2bd1c39 100644 --- a/tests/libslic3r/test_geometry.cpp +++ b/tests/libslic3r/test_geometry.cpp @@ -263,6 +263,42 @@ SCENARIO("Path chaining", "[Geometry]") { } } } + GIVEN("Gyroid infill end points") { + Polylines polylines = { + { {28122608, 3221037}, {27919139, 56036027} }, + { {33642863, 3400772}, {30875220, 56450360} }, + { {34579315, 3599827}, {35049758, 55971572} }, + { {26483070, 3374004}, {23971830, 55763598} }, + { {38931405, 4678879}, {38740053, 55077714} }, + { {20311895, 5015778}, {20079051, 54551952} }, + { {16463068, 6773342}, {18823514, 53992958} }, + { {44433771, 7424951}, {42629462, 53346059} }, + { {15697614, 7329492}, {15350896, 52089991} }, + { {48085792, 10147132}, {46435427, 50792118} }, + { {48828819, 10972330}, {49126582, 48368374} }, + { {9654526, 12656711}, {10264020, 47691584} }, + { {5726905, 18648632}, {8070762, 45082416} }, + { {54818187, 39579970}, {52974912, 43271272} }, + { {4464342, 37371742}, {5027890, 39106220} }, + { {54139746, 18417661}, {55177987, 38472580} }, + { {56527590, 32058461}, {56316456, 34067185} }, + { {3303988, 29215290}, {3569863, 32985633} }, + { {56255666, 25025857}, {56478310, 27144087} }, + { {4300034, 22805361}, {3667946, 25752601} }, + { {8266122, 14250611}, {6244813, 17751595} }, + { {12177955, 9886741}, {10703348, 11491900} } + }; + Polylines chained = chain_polylines(polylines); + THEN("Chained taking the shortest path") { + double connection_length = 0.; + for (size_t i = 1; i < chained.size(); ++i) { + const Polyline &pl1 = chained[i - 1]; + const Polyline &pl2 = chained[i]; + connection_length += (pl2.first_point() - pl1.last_point()).cast().norm(); + } + REQUIRE(connection_length < 85206000.); + } + } GIVEN("Loop pieces") { Point a { 2185796, 19058485 }; Point b { 3957902, 18149382 };