Fixed the fill density for rectilinear, triangular and cubic infills.
Initial implementation of the "infill link maximum distance" feature. Parts of the perimeter connecting two infill lines will be dropped, if longer than a given threshold.
This commit is contained in:
parent
34fab1566f
commit
4e66ed81d2
6 changed files with 402 additions and 38 deletions
|
@ -147,9 +147,7 @@ package Slic3r::Filler;
|
|||
|
||||
sub fill_surface {
|
||||
my ($self, $surface, %args) = @_;
|
||||
$self->set_width($args{width}) if defined($args{width});
|
||||
$self->set_density($args{density}) if defined($args{density});
|
||||
$self->set_distance($args{distance}) if defined($args{distance});
|
||||
$self->set_dont_connect($args{dont_connect}) if defined($args{dont_connect});
|
||||
$self->set_dont_adjust($args{dont_adjust}) if defined($args{dont_adjust});
|
||||
$self->set_complete($args{complete}) if defined($args{complete});
|
||||
|
|
286
xs/src/libslic3r/Fill/Fill.cpp
Normal file
286
xs/src/libslic3r/Fill/Fill.cpp
Normal file
|
@ -0,0 +1,286 @@
|
|||
#include <stdio.h>
|
||||
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "../Surface.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
#if 0
|
||||
// Generate infills for Slic3r::Layer::Region.
|
||||
// The Slic3r::Layer::Region at this point of time may contain
|
||||
// surfaces of various types (internal/bridge/top/bottom/solid).
|
||||
// The infills are generated on the groups of surfaces with a compatible type.
|
||||
// Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
|
||||
// and the thin fills generated by generate_perimeters().
|
||||
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
||||
{
|
||||
// Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
|
||||
|
||||
double fill_density = layerm.region()->config.fill_density;
|
||||
Flow infill_flow = layerm.flow(frInfill);
|
||||
Flow solid_infill_flow = layerm.flow(frSolidInfill);
|
||||
Flow top_solid_infill_flow = layerm.flow(frTopSolidInfill);
|
||||
|
||||
Surfaces surfaces;
|
||||
|
||||
// merge adjacent surfaces
|
||||
// in case of bridge surfaces, the ones with defined angle will be attached to the ones
|
||||
// without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
SurfacesPtr surfaces_with_bridge_angle;
|
||||
surfaces_with_bridge_angle.reserve(layerm->fill_surfaces.surfaces.size());
|
||||
for (Surfaces::iterator it = layerm->fill_surfaces.surfaces.begin(); it != layerm->fill_surfaces.surfaces.end(); ++ it)
|
||||
if (it->bridge_angle >= 0)
|
||||
surfaces_with_bridge_angle.push_back(&(*it));
|
||||
|
||||
// group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
|
||||
// group is of type Slic3r::SurfaceCollection
|
||||
//FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
|
||||
std::vector<SurfacesPtr> groups;
|
||||
layerm->fill_surfaces.group(&groups);
|
||||
|
||||
// merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
// cache flow widths and patterns used for all solid groups
|
||||
// (we'll use them for comparing compatible groups)
|
||||
my @is_solid = my @fw = my @pattern = ();
|
||||
for (my $i = 0; $i <= $num_ groups; $i++) {
|
||||
// we can only merge solid non-bridge surfaces, so discard
|
||||
// non-solid surfaces
|
||||
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||||
$is_solid[$i] = 1;
|
||||
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||||
? $top_solid_infill_flow->width
|
||||
: $solid_infill_flow->width;
|
||||
$pattern[$i] = $groups[$i][0]->is_external
|
||||
? $layerm->region->config->external_fill_pattern
|
||||
: 'rectilinear';
|
||||
} else {
|
||||
$is_solid[$i] = 0;
|
||||
$fw[$i] = 0;
|
||||
$pattern[$i] = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
// loop through solid groups
|
||||
for (my $i = 0; $i <= $num_groups; $i++) {
|
||||
next if !$is_solid[$i];
|
||||
|
||||
// find compatible groups and append them to this one
|
||||
for (my $j = $i+1; $j <= $num_groups; $j++) {
|
||||
next if !$is_solid[$j];
|
||||
|
||||
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||||
// groups are compatible, merge them
|
||||
push @{$groups[$i]}, @{$groups[$j]};
|
||||
splice @groups, $j, 1;
|
||||
splice @is_solid, $j, 1;
|
||||
splice @fw, $j, 1;
|
||||
splice @pattern, $j, 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// give priority to bridges
|
||||
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||||
|
||||
foreach my $group (@groups) {
|
||||
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
my $union_p = union([ map $_->p, @$group ], 1);
|
||||
|
||||
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||||
$union_p = diff(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces_with_bridge_angle ],
|
||||
1,
|
||||
);
|
||||
}
|
||||
|
||||
// subtract any other surface already processed
|
||||
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
my $union = diff_ex(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces ],
|
||||
1,
|
||||
);
|
||||
|
||||
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
// we need to detect any narrow surfaces that might collapse
|
||||
// when adding spacing below
|
||||
// such narrow surfaces are often generated in sloping walls
|
||||
// by bridge_over_infill() and combine_infill() as a result of the
|
||||
// subtraction of the combinable area from the layer infill area,
|
||||
// which leaves small areas near the perimeters
|
||||
// we are going to grow such regions by overlapping them with the void (if any)
|
||||
// TODO: detect and investigate whether there could be narrow regions without
|
||||
// any void neighbors
|
||||
{
|
||||
my $distance_between_surfaces = max(
|
||||
$infill_flow->scaled_spacing,
|
||||
$solid_infill_flow->scaled_spacing,
|
||||
$top_solid_infill_flow->scaled_spacing,
|
||||
);
|
||||
my $collapsed = diff(
|
||||
[ map @{$_->expolygon}, @surfaces ],
|
||||
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||||
1,
|
||||
);
|
||||
push @surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => S_TYPE_INTERNALSOLID,
|
||||
), @{intersection_ex(
|
||||
offset($collapsed, $distance_between_surfaces),
|
||||
[
|
||||
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||||
(@$collapsed),
|
||||
],
|
||||
1,
|
||||
)};
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
);
|
||||
}
|
||||
|
||||
SURFACE: foreach my $surface (@surfaces) {
|
||||
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||||
my $filler = $layerm->region->config->fill_pattern;
|
||||
my $density = $fill_density;
|
||||
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||||
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||||
: FLOW_ROLE_INFILL;
|
||||
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||||
my $is_solid = $surface->is_solid;
|
||||
|
||||
if ($surface->is_solid) {
|
||||
$density = 100;
|
||||
$filler = 'rectilinear';
|
||||
if ($surface->is_external && !$is_bridge) {
|
||||
$filler = $layerm->region->config->external_fill_pattern;
|
||||
}
|
||||
} else {
|
||||
next SURFACE unless $density > 0;
|
||||
}
|
||||
|
||||
// get filler object
|
||||
my $f = $self->filler($filler);
|
||||
|
||||
// calculate the actual flow we'll be using for this infill
|
||||
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||||
my $flow = $layerm->region->flow(
|
||||
$role,
|
||||
$h,
|
||||
$is_bridge || $f->use_bridge_flow,
|
||||
$layerm->layer->id == 0,
|
||||
-1,
|
||||
$layerm->layer->object,
|
||||
);
|
||||
|
||||
// calculate flow spacing for infill pattern generation
|
||||
my $using_internal_flow = 0;
|
||||
if (!$is_solid && !$is_bridge) {
|
||||
// it's internal infill, so we can calculate a generic flow spacing
|
||||
// for all layers, for avoiding the ugly effect of
|
||||
// misaligned infill on first layer because of different extrusion width and
|
||||
// layer height
|
||||
my $internal_flow = $layerm->region->flow(
|
||||
FLOW_ROLE_INFILL,
|
||||
$layerm->layer->object->config->layer_height, // TODO: handle infill_every_layers?
|
||||
0, // no bridge
|
||||
0, // no first layer
|
||||
-1, // auto width
|
||||
$layerm->layer->object,
|
||||
);
|
||||
$f->set_spacing($internal_flow->spacing);
|
||||
$using_internal_flow = 1;
|
||||
} else {
|
||||
$f->set_spacing($flow->spacing);
|
||||
}
|
||||
|
||||
my $link_max_length = 0;
|
||||
if (! $is_bridge) {
|
||||
$link_max_length = $layerm->region->config->get_abs_value_over($surface->is_external ? 'external_fill_link_max_length' : 'fill_link_max_length', $flow->spacing);
|
||||
print "flow spacing: ", $flow->spacing, " is_external: ", $surface->is_external, ", link_max_length: $link_max_length\n";
|
||||
}
|
||||
|
||||
$f->set_layer_id($layerm->layer->id);
|
||||
$f->set_z($layerm->layer->print_z);
|
||||
$f->set_angle(deg2rad($layerm->region->config->fill_angle));
|
||||
// Maximum length of the perimeter segment linking two infill lines.
|
||||
$f->set_link_max_length(scale($link_max_length));
|
||||
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||||
$f->set_loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||||
|
||||
// apply half spacing using this flow's own spacing and generate infill
|
||||
my @polylines = $f->fill_surface(
|
||||
$surface,
|
||||
density => $density/100,
|
||||
layer_height => $h,
|
||||
);
|
||||
next unless @polylines;
|
||||
|
||||
|
||||
// calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
// pattern generator)
|
||||
if ($using_internal_flow) {
|
||||
// if we used the internal flow we're not doing a solid infill
|
||||
// so we can safely ignore the slight variation that might have
|
||||
// been applied to $f->flow_spacing
|
||||
} else {
|
||||
$flow = Slic3r::Flow->new_from_spacing(
|
||||
spacing => $f->spacing,
|
||||
nozzle_diameter => $flow->nozzle_diameter,
|
||||
layer_height => $h,
|
||||
bridge => $is_bridge || $f->use_bridge_flow,
|
||||
);
|
||||
}
|
||||
|
||||
// save into layer
|
||||
{
|
||||
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||||
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||||
: EXTR_ROLE_FILL;
|
||||
|
||||
out.
|
||||
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||||
// Only concentric fills are not sorted.
|
||||
$collection->no_sort($f->no_sort);
|
||||
$collection->append(
|
||||
map Slic3r::ExtrusionPath->new(
|
||||
polyline => $_,
|
||||
role => $role,
|
||||
mm3_per_mm => $flow->mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $flow->height,
|
||||
), map @$_, @polylines,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// add thin fill regions
|
||||
// thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
|
||||
// Unpacks the collection, creates multiple collections per path.
|
||||
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||||
// Why the paths are unpacked?
|
||||
for (ExtrusionEntitiesPtr::iterator thin_fill = layerm.thin_fills.entities.begin(); thin_fill != layerm.thin_fills.entities.end(); ++ thin_fill) {
|
||||
// ExtrusionEntityCollection
|
||||
out.append(new ExtrusionEntityCollection->new($thin_fill);
|
||||
}
|
||||
|
||||
return @fills;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace Slic3r
|
33
xs/src/libslic3r/Fill/Fill.hpp
Normal file
33
xs/src/libslic3r/Fill/Fill.hpp
Normal file
|
@ -0,0 +1,33 @@
|
|||
#ifndef slic3r_Fill_hpp_
|
||||
#define slic3r_Fill_hpp_
|
||||
|
||||
#include <memory.h>
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../BoundingBox.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
|
||||
// An interface class to Perl, aggregating an instance of a Fill and a FillData.
|
||||
class Filler
|
||||
{
|
||||
public:
|
||||
Filler() : fill(NULL) {}
|
||||
~Filler() {
|
||||
delete fill;
|
||||
fill = NULL;
|
||||
}
|
||||
Fill *fill;
|
||||
FillParams params;
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_Fill_hpp_
|
|
@ -17,10 +17,8 @@ struct FillParams
|
|||
{
|
||||
FillParams() { memset(this, 0, sizeof(FillParams)); }
|
||||
|
||||
coordf_t width;
|
||||
// Fraction in <0, 1>
|
||||
// Fill density, fraction in <0, 1>
|
||||
float density;
|
||||
coordf_t distance;
|
||||
|
||||
// Don't connect the fill lines around the inner perimeter.
|
||||
bool dont_connect;
|
||||
|
@ -45,9 +43,13 @@ public:
|
|||
coordf_t spacing;
|
||||
// in radians, ccw, 0 = East
|
||||
float angle;
|
||||
// in scaled coordinates
|
||||
// In scaled coordinates. Maximum lenght of a perimeter segment connecting two infill lines.
|
||||
// Used by the FillRectilinear2, FillGrid2, FillTriangles and FillCubic.
|
||||
// If left to zero, the links will not be limited.
|
||||
coord_t link_max_length;
|
||||
// In scaled coordinates. Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||||
coord_t loop_clipping;
|
||||
// in scaled coordinates
|
||||
// In scaled coordinates. Bounding box of the 2D projection of the object.
|
||||
BoundingBox bounding_box;
|
||||
|
||||
public:
|
||||
|
@ -74,6 +76,7 @@ protected:
|
|||
spacing(0.f),
|
||||
// Initial angle is undefined.
|
||||
angle(FLT_MAX),
|
||||
link_max_length(0),
|
||||
loop_clipping(0),
|
||||
// The initial bounding box is empty, therefore undefined.
|
||||
bounding_box(Point(0, 0), Point(-1, -1))
|
||||
|
@ -116,19 +119,6 @@ protected:
|
|||
{ return Point(_align_to_grid(coord.x, spacing.x, base.x), _align_to_grid(coord.y, spacing.y, base.y)); }
|
||||
};
|
||||
|
||||
// An interface class to Perl, aggregating an instance of a Fill and a FillData.
|
||||
class Filler
|
||||
{
|
||||
public:
|
||||
Filler() : fill(NULL) {}
|
||||
~Filler() {
|
||||
delete fill;
|
||||
fill = NULL;
|
||||
}
|
||||
Fill *fill;
|
||||
FillParams params;
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillBase_hpp_
|
||||
|
|
|
@ -713,6 +713,31 @@ static inline void emit_perimeter_prev_next_segment(
|
|||
out.points.push_back(Point(il2.pos, itsct2.pos()));
|
||||
}
|
||||
|
||||
static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
size_t iInnerContour,
|
||||
size_t iIntersection,
|
||||
size_t iIntersection2,
|
||||
bool forward)
|
||||
{
|
||||
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
||||
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
||||
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
|
||||
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
||||
myassert(itsct.is_inner());
|
||||
myassert(itsct2.is_inner());
|
||||
myassert(itsct.type != itsct2.type);
|
||||
myassert(itsct.iContour == iInnerContour);
|
||||
myassert(itsct.iContour == itsct2.iContour);
|
||||
Point p1(il.pos, itsct.pos());
|
||||
Point p2(il.pos, itsct2.pos());
|
||||
return forward ?
|
||||
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
|
||||
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
|
||||
}
|
||||
|
||||
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
|
||||
// The first point (the point of iIntersection) will not be inserted,
|
||||
// the last point will be inserted.
|
||||
|
@ -1300,8 +1325,19 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
(distNext < distPrev) :
|
||||
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
|
||||
myassert(intrsctn->is_inner());
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
|
||||
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
|
||||
bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
|
||||
if (skip) {
|
||||
// Just skip the connecting contour and start a new path.
|
||||
goto dont_connect;
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
|
||||
polylines_out.push_back(Polyline());
|
||||
polyline_current = &polylines_out.back();
|
||||
const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
|
||||
polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos()));
|
||||
} else {
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
|
||||
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
|
||||
}
|
||||
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
||||
if (iPrev != -1)
|
||||
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
|
||||
|
@ -1350,9 +1386,23 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
(distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
|
||||
distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
|
||||
(vert_seg_dir_valid_mask == DIR_FORWARD);
|
||||
// Consume the connecting contour and the next segment.
|
||||
// Skip this perimeter line?
|
||||
bool skip = params.dont_connect;
|
||||
if (! skip && link_max_length > 0) {
|
||||
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
|
||||
poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
|
||||
skip = link_length > link_max_length;
|
||||
}
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
|
||||
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
|
||||
if (skip) {
|
||||
// Just skip the connecting contour and start a new path.
|
||||
polylines_out.push_back(Polyline());
|
||||
polyline_current = &polylines_out.back();
|
||||
polyline_current->points.push_back(Point(seg.pos, seg.intersections[iNext].pos()));
|
||||
} else {
|
||||
// Consume the connecting contour and the next segment.
|
||||
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
|
||||
}
|
||||
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
||||
// If there are any outer intersection points skipped (bypassed) by the contour,
|
||||
// mark them as processed.
|
||||
|
@ -1374,7 +1424,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
dont_connect:
|
||||
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
|
||||
// This will finish the polyline, starting another polyline at a new point.
|
||||
if (going_up)
|
||||
|
@ -1450,9 +1500,12 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
|||
|
||||
Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
{
|
||||
// Each linear fill covers half of the target coverage.
|
||||
FillParams params2 = params;
|
||||
params2.density *= 0.5f;
|
||||
Polylines polylines_out;
|
||||
if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params, float(M_PI / 2.), 0.f, polylines_out)) {
|
||||
if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) {
|
||||
printf("FillGrid2::fill_surface() failed to fill a region.\n");
|
||||
}
|
||||
return polylines_out;
|
||||
|
@ -1460,10 +1513,13 @@ Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams ¶
|
|||
|
||||
Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
{
|
||||
// Each linear fill covers 1/3 of the target coverage.
|
||||
FillParams params2 = params;
|
||||
params2.density *= 0.333333333f;
|
||||
Polylines polylines_out;
|
||||
if (! fill_surface_by_lines(surface, params, 0.f, 0., polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params, float(M_PI / 3.), 0., polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params, float(2. * M_PI / 3.), 0., polylines_out)) {
|
||||
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params2, float(2. * M_PI / 3.), 0., polylines_out)) {
|
||||
printf("FillTriangles::fill_surface() failed to fill a region.\n");
|
||||
}
|
||||
return polylines_out;
|
||||
|
@ -1471,11 +1527,14 @@ Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams &
|
|||
|
||||
Polylines FillCubic::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
{
|
||||
// Each linear fill covers 1/3 of the target coverage.
|
||||
FillParams params2 = params;
|
||||
params2.density *= 0.333333333f;
|
||||
Polylines polylines_out;
|
||||
if (! fill_surface_by_lines(surface, params, 0.f, z, polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params, float(M_PI / 3.), -z, polylines_out) ||
|
||||
if (! fill_surface_by_lines(surface, params2, 0.f, z, polylines_out) ||
|
||||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), -z, polylines_out) ||
|
||||
// Rotated by PI*2/3 + PI to achieve reverse sloping wall.
|
||||
! fill_surface_by_lines(surface, params, float(M_PI * 2. / 3.), z, polylines_out)) {
|
||||
! fill_surface_by_lines(surface, params2, float(M_PI * 2. / 3.), z, polylines_out)) {
|
||||
printf("FillCubic::fill_surface() failed to fill a region.\n");
|
||||
}
|
||||
return polylines_out;
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
%{
|
||||
#include <xsinit.h>
|
||||
#include "libslic3r/Fill/FillBase.hpp"
|
||||
#include "libslic3r/Fill/Fill.hpp"
|
||||
#include "libslic3r/PolylineCollection.hpp"
|
||||
%}
|
||||
|
||||
|
@ -21,6 +21,8 @@
|
|||
%code{% THIS->fill->z = z; %};
|
||||
void set_angle(float angle)
|
||||
%code{% THIS->fill->angle = angle; %};
|
||||
void set_link_max_length(coordf_t len)
|
||||
%code{% THIS->fill->link_max_length = len; %};
|
||||
void set_loop_clipping(coordf_t clipping)
|
||||
%code{% THIS->fill->loop_clipping = clipping; %};
|
||||
|
||||
|
@ -29,12 +31,8 @@
|
|||
bool no_sort()
|
||||
%code{% RETVAL = THIS->fill->no_sort(); %};
|
||||
|
||||
void set_width(float width)
|
||||
%code{% THIS->params.width = width; %};
|
||||
void set_density(float density)
|
||||
%code{% THIS->params.density = density; %};
|
||||
void set_distance(float distance)
|
||||
%code{% THIS->params.distance = distance; %};
|
||||
void set_dont_connect(bool dont_connect)
|
||||
%code{% THIS->params.dont_connect = dont_connect; %};
|
||||
void set_dont_adjust(bool dont_adjust)
|
||||
|
|
Loading…
Reference in a new issue