Merge branch 'master' of https://github.com/prusa3d/PrusaSlicer into et_gcode_viewer

This commit is contained in:
enricoturri1966 2020-05-21 10:36:54 +02:00
commit 4f5aefc919
8 changed files with 169 additions and 187 deletions

View file

@ -120,6 +120,10 @@ void GLGizmoFdmSupports::render_triangles(const Selection& selection) const
mo->instances[selection.get_instance_idx()]->get_transformation().get_matrix() *
mv->get_matrix();
bool is_left_handed = trafo_matrix.matrix().determinant() < 0.;
if (is_left_handed)
glsafe(::glFrontFace(GL_CW));
glsafe(::glPushMatrix());
glsafe(::glMultMatrixd(trafo_matrix.data()));
@ -130,6 +134,8 @@ void GLGizmoFdmSupports::render_triangles(const Selection& selection) const
iva.render();
}
glsafe(::glPopMatrix());
if (is_left_handed)
glsafe(::glFrontFace(GL_CCW));
}
if (clipping_plane_active)
glsafe(::glDisable(GL_CLIP_PLANE0));
@ -205,7 +211,6 @@ void GLGizmoFdmSupports::update_from_model_object()
if (mv->is_model_part())
++num_of_volumes;
m_selected_facets.resize(num_of_volumes);
m_neighbors.resize(num_of_volumes);
m_ivas.clear();
m_ivas.resize(num_of_volumes);
@ -235,17 +240,6 @@ void GLGizmoFdmSupports::update_from_model_object()
}
update_vertex_buffers(mesh, volume_id, FacetSupportType::ENFORCER);
update_vertex_buffers(mesh, volume_id, FacetSupportType::BLOCKER);
m_neighbors[volume_id].resize(3 * mesh->its.indices.size());
// Prepare vector of vertex_index - facet_index pairs to quickly find adjacent facets
for (size_t i=0; i<mesh->its.indices.size(); ++i) {
const stl_triangle_vertex_indices& ind = mesh->its.indices[i];
m_neighbors[volume_id][3*i] = std::make_pair(ind(0), i);
m_neighbors[volume_id][3*i+1] = std::make_pair(ind(1), i);
m_neighbors[volume_id][3*i+2] = std::make_pair(ind(2), i);
}
std::sort(m_neighbors[volume_id].begin(), m_neighbors[volume_id].end());
}
}
@ -267,11 +261,6 @@ bool GLGizmoFdmSupports::is_mesh_point_clipped(const Vec3d& point) const
}
bool operator<(const GLGizmoFdmSupports::NeighborData& a, const GLGizmoFdmSupports::NeighborData& b) {
return a.first < b.first;
}
// Following function is called from GLCanvas3D to inform the gizmo about a mouse/keyboard event.
// The gizmo has an opportunity to react - if it does, it should return true so that the Canvas3D is
// aware that the event was reacted to and stops trying to make different sense of it. If the gizmo
@ -325,7 +314,7 @@ bool GLGizmoFdmSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous
const Transform3d& instance_trafo = mi->get_transformation().get_matrix();
std::vector<std::vector<std::pair<Vec3f, size_t>>> hit_positions_and_facet_ids;
bool some_mesh_was_hit = false;
bool clipped_mesh_was_hit = false;
Vec3f normal = Vec3f::Zero();
Vec3f hit = Vec3f::Zero();
@ -360,7 +349,7 @@ bool GLGizmoFdmSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous
{
// In case this hit is clipped, skip it.
if (is_mesh_point_clipped(hit.cast<double>())) {
some_mesh_was_hit = true;
clipped_mesh_was_hit = true;
continue;
}
@ -374,124 +363,119 @@ bool GLGizmoFdmSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous
}
}
}
// We now know where the ray hit, let's save it and cast another ray
if (closest_hit_mesh_id != size_t(-1)) // only if there is at least one hit
some_mesh_was_hit = true;
if (some_mesh_was_hit) {
// Now propagate the hits
mesh_id = -1;
const TriangleMesh* mesh = nullptr;
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
++mesh_id;
if (mesh_id == closest_hit_mesh_id) {
mesh = &mv->mesh();
break;
}
if (closest_hit_mesh_id == -1) {
// In case we have no valid hit, we can return. The event will
// be stopped in following two cases:
// 1. clicking the clipping plane
// 2. dragging while painting (to prevent scene rotations and moving the object)
return clipped_mesh_was_hit
|| (action == SLAGizmoEventType::Dragging && m_button_down != Button::None);
}
// Now propagate the hits
mesh_id = -1;
const TriangleMesh* mesh = nullptr;
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
++mesh_id;
if (mesh_id == closest_hit_mesh_id) {
mesh = &mv->mesh();
break;
}
}
bool update_both = false;
bool update_both = false;
const Transform3d& trafo_matrix = trafo_matrices[mesh_id];
const Transform3d& trafo_matrix = trafo_matrices[mesh_id];
// Calculate how far can a point be from the line (in mesh coords).
// FIXME: The scaling of the mesh can be non-uniform.
const Vec3d sf = Geometry::Transformation(trafo_matrix).get_scaling_factor();
const float avg_scaling = (sf(0) + sf(1) + sf(2))/3.;
const float limit = pow(m_cursor_radius/avg_scaling , 2.f);
// Calculate how far can a point be from the line (in mesh coords).
// FIXME: The scaling of the mesh can be non-uniform.
const Vec3d sf = Geometry::Transformation(trafo_matrix).get_scaling_factor();
const float avg_scaling = (sf(0) + sf(1) + sf(2))/3.;
const float limit = pow(m_cursor_radius/avg_scaling , 2.f);
const std::pair<Vec3f, size_t>& hit_and_facet = { closest_hit, closest_facet };
const std::pair<Vec3f, size_t>& hit_and_facet = { closest_hit, closest_facet };
const std::vector<NeighborData>& neighbors = m_neighbors[mesh_id];
// Calculate direction from camera to the hit (in mesh coords):
Vec3f dir = ((trafo_matrix.inverse() * camera.get_position()).cast<float>() - hit_and_facet.first).normalized();
// Calculate direction from camera to the hit (in mesh coords):
Vec3f dir = ((trafo_matrix.inverse() * camera.get_position()).cast<float>() - hit_and_facet.first).normalized();
// A lambda to calculate distance from the centerline:
auto squared_distance_from_line = [&hit_and_facet, &dir](const Vec3f& point) -> float {
Vec3f diff = hit_and_facet.first - point;
return (diff - diff.dot(dir) * dir).squaredNorm();
};
// A lambda to calculate distance from the centerline:
auto squared_distance_from_line = [&hit_and_facet, &dir](const Vec3f& point) -> float {
Vec3f diff = hit_and_facet.first - point;
return (diff - diff.dot(dir) * dir).squaredNorm();
};
// A lambda to determine whether this facet is potentionally visible (still can be obscured)
auto faces_camera = [&dir, &mesh](const size_t& facet) -> bool {
return (mesh->stl.facet_start[facet].normal.dot(dir) > 0.);
};
// Now start with the facet the pointer points to and check all adjacent facets. neighbors vector stores
// pairs of vertex_idx - facet_idx and is sorted with respect to the former. Neighboring facet index can be
// quickly found by finding a vertex in the list and read the respective facet ids.
std::vector<size_t> facets_to_select{hit_and_facet.second};
NeighborData vertex = std::make_pair(0, 0);
std::vector<bool> visited(m_selected_facets[mesh_id].size(), false); // keep track of facets we already processed
size_t facet_idx = 0; // index into facets_to_select
auto it = neighbors.end();
while (facet_idx < facets_to_select.size()) {
size_t facet = facets_to_select[facet_idx];
if (! visited[facet]) {
// check all three vertices and in case they're close enough, find the remaining facets
// and add them to the list to be proccessed later
for (size_t i=0; i<3; ++i) {
vertex.first = mesh->its.indices[facet](i); // vertex index
float dist = squared_distance_from_line(mesh->its.vertices[vertex.first]);
if (dist < limit) {
it = std::lower_bound(neighbors.begin(), neighbors.end(), vertex);
while (it != neighbors.end() && it->first == vertex.first) {
if (it->second != facet && faces_camera(it->second))
facets_to_select.push_back(it->second);
++it;
}
// A lambda to determine whether this facet is potentionally visible (still can be obscured)
auto faces_camera = [&dir, &mesh](const size_t& facet) -> bool {
return (mesh->stl.facet_start[facet].normal.dot(dir) > 0.);
};
// Now start with the facet the pointer points to and check all adjacent facets.
std::vector<size_t> facets_to_select{hit_and_facet.second};
std::vector<bool> visited(m_selected_facets[mesh_id].size(), false); // keep track of facets we already processed
size_t facet_idx = 0; // index into facets_to_select
while (facet_idx < facets_to_select.size()) {
size_t facet = facets_to_select[facet_idx];
if (! visited[facet]) {
// check all three vertices and in case they're close enough,
// add neighboring facets to be proccessed later
for (size_t i=0; i<3; ++i) {
float dist = squared_distance_from_line(
mesh->its.vertices[mesh->its.indices[facet](i)]);
if (dist < limit) {
for (int n=0; n<3; ++n) {
if (faces_camera(mesh->stl.neighbors_start[facet].neighbor[n]))
facets_to_select.push_back(mesh->stl.neighbors_start[facet].neighbor[n]);
}
}
visited[facet] = true;
}
++facet_idx;
visited[facet] = true;
}
std::vector<size_t> new_facets;
new_facets.reserve(facets_to_select.size());
// Now just select all facets that passed and remember which
// ones have really changed state.
for (size_t next_facet : facets_to_select) {
FacetSupportType& facet = m_selected_facets[mesh_id][next_facet];
if (facet != new_state) {
if (facet != FacetSupportType::NONE) {
// this triangle is currently in the other VBA.
// Both VBAs need to be refreshed.
update_both = true;
}
facet = new_state;
new_facets.push_back(next_facet);
}
}
if (! new_facets.empty()) {
if (new_state != FacetSupportType::NONE) {
// append triangles into the respective VBA
update_vertex_buffers(mesh, mesh_id, new_state, &new_facets);
if (update_both) {
auto other = new_state == FacetSupportType::ENFORCER
? FacetSupportType::BLOCKER
: FacetSupportType::ENFORCER;
update_vertex_buffers(mesh, mesh_id, other); // regenerate the other VBA
}
}
else {
update_vertex_buffers(mesh, mesh_id, FacetSupportType::ENFORCER);
update_vertex_buffers(mesh, mesh_id, FacetSupportType::BLOCKER);
}
}
if (m_button_down == Button::None)
m_button_down = ((action == SLAGizmoEventType::LeftDown) ? Button::Left : Button::Right);
return true;
++facet_idx;
}
if (action == SLAGizmoEventType::Dragging && m_button_down != Button::None)
return true;
std::vector<size_t> new_facets;
new_facets.reserve(facets_to_select.size());
// Now just select all facets that passed and remember which
// ones have really changed state.
for (size_t next_facet : facets_to_select) {
FacetSupportType& facet = m_selected_facets[mesh_id][next_facet];
if (facet != new_state) {
if (facet != FacetSupportType::NONE) {
// this triangle is currently in the other VBA.
// Both VBAs need to be refreshed.
update_both = true;
}
facet = new_state;
new_facets.push_back(next_facet);
}
}
if (! new_facets.empty()) {
if (new_state != FacetSupportType::NONE) {
// append triangles into the respective VBA
update_vertex_buffers(mesh, mesh_id, new_state, &new_facets);
if (update_both) {
auto other = new_state == FacetSupportType::ENFORCER
? FacetSupportType::BLOCKER
: FacetSupportType::ENFORCER;
update_vertex_buffers(mesh, mesh_id, other); // regenerate the other VBA
}
}
else {
update_vertex_buffers(mesh, mesh_id, FacetSupportType::ENFORCER);
update_vertex_buffers(mesh, mesh_id, FacetSupportType::BLOCKER);
}
}
if (m_button_down == Button::None)
m_button_down = ((action == SLAGizmoEventType::LeftDown) ? Button::Left : Button::Right);
return true;
}
if ((action == SLAGizmoEventType::LeftUp || action == SLAGizmoEventType::RightUp)
@ -809,7 +793,6 @@ void GLGizmoFdmSupports::on_set_state()
}
m_old_mo_id = -1;
m_ivas.clear();
m_neighbors.clear();
m_selected_facets.clear();
}
m_old_state = m_state;

View file

@ -49,7 +49,6 @@ public:
~GLGizmoFdmSupports() override;
void set_fdm_support_data(ModelObject* model_object, const Selection& selection);
bool gizmo_event(SLAGizmoEventType action, const Vec2d& mouse_position, bool shift_down, bool alt_down, bool control_down);
using NeighborData = std::pair<size_t, size_t>;
private:
@ -86,8 +85,6 @@ private:
Button m_button_down = Button::None;
EState m_old_state = Off; // to be able to see that the gizmo has just been closed (see on_set_state)
std::vector<std::vector<NeighborData>> m_neighbors; // pairs of vertex_index - facet_index for each mesh
protected:
void on_set_state() override;
void on_start_dragging() override;

View file

@ -1,7 +1,6 @@
// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
#include "GLGizmoFlatten.hpp"
#include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/GUI_App.hpp"
#include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp"
#include <numeric>
@ -80,12 +79,7 @@ void GLGizmoFlatten::on_render() const
else
glsafe(::glColor4f(0.9f, 0.9f, 0.9f, 0.5f));
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
{
::glVertex3dv(vertex.data());
}
glsafe(::glEnd());
m_planes[i].vbo.render();
}
glsafe(::glPopMatrix());
}
@ -112,12 +106,7 @@ void GLGizmoFlatten::on_render_for_picking() const
for (int i = 0; i < (int)m_planes.size(); ++i)
{
glsafe(::glColor4fv(picking_color_component(i).data()));
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
{
::glVertex3dv(vertex.data());
}
glsafe(::glEnd());
m_planes[i].vbo.render();
}
glsafe(::glPopMatrix());
}
@ -181,7 +170,7 @@ void GLGizmoFlatten::update_planes()
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back((double)first_vertex[j](0), (double)first_vertex[j](1), (double)first_vertex[j](2));
m_planes.back().vertices.emplace_back(first_vertex[j].cast<double>());
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
@ -193,15 +182,16 @@ void GLGizmoFlatten::update_planes()
}
m_planes.back().normal = normal_ptr->cast<double>();
Pointf3s& verts = m_planes.back().vertices;
// Now we'll transform all the points into world coordinates, so that the areas, angles and distances
// make real sense.
m_planes.back().vertices = transform(m_planes.back().vertices, inst_matrix);
verts = transform(verts, inst_matrix);
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway):
if (m_planes.back().vertices.size() == 3 &&
((m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < minimal_side
|| (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < minimal_side
|| (m_planes.back().vertices[1] - m_planes.back().vertices[2]).norm() < minimal_side))
if (verts.size() == 3 &&
((verts[0] - verts[1]).norm() < minimal_side
|| (verts[0] - verts[2]).norm() < minimal_side
|| (verts[1] - verts[2]).norm() < minimal_side))
m_planes.pop_back();
}
@ -246,7 +236,7 @@ void GLGizmoFlatten::update_planes()
discard = true;
else {
// We also check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
constexpr double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
for (unsigned int i = 0; i < polygon.size(); ++i) {
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
@ -334,6 +324,21 @@ void GLGizmoFlatten::update_planes()
m_first_instance_mirror = mo->instances.front()->get_mirror();
m_old_model_object = mo;
// And finally create respective VBOs. The polygon is convex with
// the vertices in order, so triangulation is trivial.
for (auto& plane : m_planes) {
plane.vbo.reserve(plane.vertices.size());
for (const auto& vert : plane.vertices)
plane.vbo.push_geometry(vert, plane.normal);
for (size_t i=1; i<plane.vertices.size()-1; ++i)
plane.vbo.push_triangle(0, i, i+1); // triangle fan
plane.vbo.finalize_geometry(true);
// FIXME: vertices should really be local, they need not
// persist now when we use VBOs
plane.vertices.clear();
plane.vertices.shrink_to_fit();
}
m_planes_valid = true;
}

View file

@ -16,7 +16,8 @@ private:
mutable Vec3d m_normal;
struct PlaneData {
std::vector<Vec3d> vertices;
std::vector<Vec3d> vertices; // should be in fact local in update_planes()
GLIndexedVertexArray vbo;
Vec3d normal;
float area;
};

View file

@ -898,6 +898,7 @@ void GLGizmoSlaSupports::on_set_state()
// Set default head diameter from config.
const DynamicPrintConfig& cfg = wxGetApp().preset_bundle->sla_prints.get_edited_preset().config;
m_new_point_head_diameter = static_cast<const ConfigOptionFloat*>(cfg.option("support_head_front_diameter"))->value;
m_c->instances_hider()->show_supports(true);
}
if (m_state == Off && m_old_state != Off) { // the gizmo was just turned Off
bool will_ask = mo && m_editing_mode && unsaved_changes();

View file

@ -342,15 +342,11 @@ void ObjectClipper::render_cut() const
clipper->set_plane(*m_clp);
clipper->set_transformation(trafo);
if (! clipper->get_triangles().empty()) {
::glPushMatrix();
::glColor3f(1.0f, 0.37f, 0.0f);
::glBegin(GL_TRIANGLES);
for (const Vec3f& point : clipper->get_triangles())
::glVertex3f(point(0), point(1), point(2));
::glEnd();
::glPopMatrix();
}
::glPushMatrix();
::glColor3f(1.0f, 0.37f, 0.0f);
clipper->render_cut();
::glPopMatrix();
++clipper_id;
}
}
@ -457,15 +453,10 @@ void SupportsClipper::render_cut() const
m_clipper->set_plane(*ocl->get_clipping_plane());
m_clipper->set_transformation(supports_trafo);
if (! m_clipper->get_triangles().empty()) {
::glPushMatrix();
::glColor3f(1.0f, 0.f, 0.37f);
::glBegin(GL_TRIANGLES);
for (const Vec3f& point : m_clipper->get_triangles())
::glVertex3f(point(0), point(1), point(2));
::glEnd();
::glPopMatrix();
}
::glPushMatrix();
::glColor3f(1.0f, 0.f, 0.37f);
m_clipper->render_cut();
::glPopMatrix();
}

View file

@ -27,7 +27,6 @@ void MeshClipper::set_mesh(const TriangleMesh& mesh)
m_mesh = &mesh;
m_triangles_valid = false;
m_triangles2d.resize(0);
m_triangles3d.resize(0);
m_tms.reset(nullptr);
}
}
@ -40,18 +39,17 @@ void MeshClipper::set_transformation(const Geometry::Transformation& trafo)
m_trafo = trafo;
m_triangles_valid = false;
m_triangles2d.resize(0);
m_triangles3d.resize(0);
}
}
const std::vector<Vec3f>& MeshClipper::get_triangles()
void MeshClipper::render_cut()
{
if (! m_triangles_valid)
recalculate_triangles();
return m_triangles3d;
m_vertex_array.render();
}
@ -67,29 +65,35 @@ void MeshClipper::recalculate_triangles()
const Vec3f& scaling = m_trafo.get_scaling_factor().cast<float>();
// Calculate clipping plane normal in mesh coordinates.
Vec3f up_noscale = instance_matrix_no_translation_no_scaling.inverse() * m_plane.get_normal().cast<float>();
Vec3f up (up_noscale(0)*scaling(0), up_noscale(1)*scaling(1), up_noscale(2)*scaling(2));
Vec3d up (up_noscale(0)*scaling(0), up_noscale(1)*scaling(1), up_noscale(2)*scaling(2));
// Calculate distance from mesh origin to the clipping plane (in mesh coordinates).
float height_mesh = m_plane.distance(m_trafo.get_offset()) * (up_noscale.norm()/up.norm());
// Now do the cutting
std::vector<ExPolygons> list_of_expolys;
m_tms->set_up_direction(up);
m_tms->set_up_direction(up.cast<float>());
m_tms->slice(std::vector<float>{height_mesh}, SlicingMode::Regular, 0.f, &list_of_expolys, [](){});
m_triangles2d = triangulate_expolygons_2f(list_of_expolys[0], m_trafo.get_matrix().matrix().determinant() < 0.);
// Rotate the cut into world coords:
Eigen::Quaternionf q;
q.setFromTwoVectors(Vec3f::UnitZ(), up);
Transform3f tr = Transform3f::Identity();
Eigen::Quaterniond q;
q.setFromTwoVectors(Vec3d::UnitZ(), up);
Transform3d tr = Transform3d::Identity();
tr.rotate(q);
tr = m_trafo.get_matrix().cast<float>() * tr;
tr = m_trafo.get_matrix() * tr;
m_triangles3d.clear();
m_triangles3d.reserve(m_triangles2d.size());
for (const Vec2f& pt : m_triangles2d) {
m_triangles3d.push_back(Vec3f(pt(0), pt(1), height_mesh+0.001f));
m_triangles3d.back() = tr * m_triangles3d.back();
}
// to avoid z-fighting
height_mesh += 0.001f;
m_vertex_array.release_geometry();
for (auto it=m_triangles2d.cbegin(); it != m_triangles2d.cend(); it=it+3) {
m_vertex_array.push_geometry(tr * Vec3d((*(it+0))(0), (*(it+0))(1), height_mesh), up);
m_vertex_array.push_geometry(tr * Vec3d((*(it+1))(0), (*(it+1))(1), height_mesh), up);
m_vertex_array.push_geometry(tr * Vec3d((*(it+2))(0), (*(it+2))(1), height_mesh), up);
size_t idx = it - m_triangles2d.cbegin();
m_vertex_array.push_triangle(idx, idx+1, idx+2);
}
m_vertex_array.finalize_geometry(true);
m_triangles_valid = true;
}

View file

@ -6,7 +6,7 @@
#include "libslic3r/SLA/EigenMesh3D.hpp"
#include "admesh/stl.h"
#include "slic3r/GUI/3DScene.hpp"
#include <cfloat>
@ -82,9 +82,9 @@ public:
// into world coordinates.
void set_transformation(const Geometry::Transformation& trafo);
// Return the triangulated cut. The points are returned directly
// in world coordinates.
const std::vector<Vec3f>& get_triangles();
// Render the triangulated cut. Transformation matrices should
// be set in world coords.
void render_cut();
private:
void recalculate_triangles();
@ -93,7 +93,7 @@ private:
const TriangleMesh* m_mesh = nullptr;
ClippingPlane m_plane;
std::vector<Vec2f> m_triangles2d;
std::vector<Vec3f> m_triangles3d;
GLIndexedVertexArray m_vertex_array;
bool m_triangles_valid = false;
std::unique_ptr<TriangleMeshSlicer> m_tms;
};