Finished --cut implementation

This commit is contained in:
Alessandro Ranellucci 2014-04-25 12:40:21 +02:00
parent fe1691c151
commit 4f5d9ca795
8 changed files with 2009 additions and 10 deletions

View File

@ -132,9 +132,9 @@ if (@ARGV) { # slicing from command line
$mesh->cut($opt{cut}, $upper, $lower);
$upper->repair;
$lower->repair;
Slic3r::Format::STL->write_file("${file}_upper.stl", $upper, binary => 0)
$upper->write_ascii("${file}_upper.stl")
if $upper->facets_count > 0;
Slic3r::Format::STL->write_file("${file}_lower.stl", $lower, binary => 0)
$lower->write_ascii("${file}_lower.stl")
if $lower->facets_count > 0;
}
exit;

View File

@ -3,6 +3,9 @@
#include "Polygon.hpp"
#include "Line.hpp"
#include "ClipperUtils.hpp"
#include "polypartition.h"
#include <list>
namespace Slic3r {
@ -188,6 +191,54 @@ ExPolygon::triangulate(Polygons* polygons) const
polygon->triangulate_convex(polygons);
}
void
ExPolygon::triangulate2(Polygons* polygons) const
{
// convert polygons
std::list<TPPLPoly> input;
// contour
{
TPPLPoly p;
p.Init(this->contour.points.size());
for (Points::const_iterator point = this->contour.points.begin(); point != this->contour.points.end(); ++point) {
p[ point-this->contour.points.begin() ].x = point->x;
p[ point-this->contour.points.begin() ].y = point->y;
}
p.SetHole(false);
input.push_back(p);
}
// holes
for (Polygons::const_iterator hole = this->holes.begin(); hole != this->holes.end(); ++hole) {
TPPLPoly p;
p.Init(hole->points.size());
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
p[ point-hole->points.begin() ].x = point->x;
p[ point-hole->points.begin() ].y = point->y;
}
p.SetHole(true);
input.push_back(p);
}
// perform triangulation
std::list<TPPLPoly> output;
int res = TPPLPartition().Triangulate_MONO(&input, &output);
if (res != 1) CONFESS("Triangulation failed");
// convert output polygons
for (std::list<TPPLPoly>::iterator poly = output.begin(); poly != output.end(); ++poly) {
long num_points = poly->GetNumPoints();
Polygon p;
p.points.resize(num_points);
for (long i = 0; i < num_points; ++i) {
p.points[i].x = (*poly)[i].x;
p.points[i].y = (*poly)[i].y;
}
polygons->push_back(p);
}
}
#ifdef SLIC3RXS
SV*
ExPolygon::to_AV() {

View File

@ -30,6 +30,7 @@ class ExPolygon
void get_trapezoids(Polygons* polygons) const;
void get_trapezoids(Polygons* polygons, double angle) const;
void triangulate(Polygons* polygons) const;
void triangulate2(Polygons* polygons) const;
#ifdef SLIC3RXS
void from_SV(SV* poly_sv);

View File

@ -680,6 +680,40 @@ class _area_comp {
std::vector<double>* abs_area;
};
void
TriangleMeshSlicer::make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices)
{
Polygons loops;
this->make_loops(lines, &loops);
Polygons cw;
for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++loop) {
if (loop->area() >= 0) {
ExPolygon ex;
ex.contour = *loop;
slices->push_back(ex);
} else {
cw.push_back(*loop);
}
}
// assign holes to contours
for (Polygons::const_iterator loop = cw.begin(); loop != cw.end(); ++loop) {
int slice_idx = -1;
double current_contour_area = -1;
for (ExPolygons::iterator slice = slices->begin(); slice != slices->end(); ++slice) {
if (slice->contour.contains_point(loop->points.front())) {
double area = slice->contour.area();
if (area < current_contour_area || current_contour_area == -1) {
slice_idx = slice - slices->begin();
current_contour_area = area;
}
}
}
(*slices)[slice_idx].holes.push_back(*loop);
}
}
void
TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices)
{
@ -852,24 +886,27 @@ TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
if (upper != NULL) {
// compute shape of section
ExPolygons section;
this->make_expolygons(upper_lines, &section);
this->make_expolygons_simple(upper_lines, &section);
// triangulate section
Polygons triangles;
for (ExPolygons::const_iterator expolygon = section.begin(); expolygon != section.end(); ++expolygon)
expolygon->triangulate(&triangles);
expolygon->triangulate2(&triangles);
// convert triangles to facets and append them to mesh
for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) {
Polygon p = *polygon;
p.reverse();
stl_facet facet;
facet.normal.x = 0;
facet.normal.y = 0;
facet.normal.z = -1;
for (size_t i = 0; i <= 2; ++i) {
facet.vertex[i].x = unscale(p.points[i].x);
facet.vertex[i].y = unscale(p.points[i].y);
facet.vertex[i].z = z;
}
//stl_add_facet(&upper->stl, &facet);
stl_add_facet(&upper->stl, &facet);
}
}
@ -877,29 +914,32 @@ TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
if (lower != NULL) {
// compute shape of section
ExPolygons section;
this->make_expolygons(lower_lines, &section);
this->make_expolygons_simple(lower_lines, &section);
// triangulate section
Polygons triangles;
for (ExPolygons::const_iterator expolygon = section.begin(); expolygon != section.end(); ++expolygon)
expolygon->triangulate(&triangles);
expolygon->triangulate2(&triangles);
// convert triangles to facets and append them to mesh
for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) {
stl_facet facet;
facet.normal.x = 0;
facet.normal.y = 0;
facet.normal.z = 1;
for (size_t i = 0; i <= 2; ++i) {
facet.vertex[i].x = unscale(polygon->points[i].x);
facet.vertex[i].y = unscale(polygon->points[i].y);
facet.vertex[i].z = z;
}
//stl_add_facet(&lower->stl, &facet);
stl_add_facet(&lower->stl, &facet);
}
}
/*
stl_get_size(&(upper->stl));
stl_get_size(&(lower->stl));
*/
}
TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) : mesh(_mesh), v_scaled_shared(NULL)

View File

@ -92,6 +92,7 @@ class TriangleMeshSlicer
stl_vertex* v_scaled_shared;
void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops);
void make_expolygons(const Polygons &loops, ExPolygons* slices);
void make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices);
void make_expolygons(std::vector<IntersectionLine> &lines, ExPolygons* slices);
};

1561
xs/src/polypartition.cpp Normal file

File diff suppressed because it is too large Load Diff

343
xs/src/polypartition.h Normal file
View File

@ -0,0 +1,343 @@
//Copyright (C) 2011 by Ivan Fratric
//
//Permission is hereby granted, free of charge, to any person obtaining a copy
//of this software and associated documentation files (the "Software"), to deal
//in the Software without restriction, including without limitation the rights
//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
//copies of the Software, and to permit persons to whom the Software is
//furnished to do so, subject to the following conditions:
//
//The above copyright notice and this permission notice shall be included in
//all copies or substantial portions of the Software.
//
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
//THE SOFTWARE.
#include <list>
using namespace std;
typedef double tppl_float;
#define TPPL_CCW 1
#define TPPL_CW -1
//2D point structure
struct TPPLPoint {
tppl_float x;
tppl_float y;
TPPLPoint operator + (const TPPLPoint& p) const {
TPPLPoint r;
r.x = x + p.x;
r.y = y + p.y;
return r;
}
TPPLPoint operator - (const TPPLPoint& p) const {
TPPLPoint r;
r.x = x - p.x;
r.y = y - p.y;
return r;
}
TPPLPoint operator * (const tppl_float f ) const {
TPPLPoint r;
r.x = x*f;
r.y = y*f;
return r;
}
TPPLPoint operator / (const tppl_float f ) const {
TPPLPoint r;
r.x = x/f;
r.y = y/f;
return r;
}
bool operator==(const TPPLPoint& p) const {
if((x == p.x)&&(y==p.y)) return true;
else return false;
}
bool operator!=(const TPPLPoint& p) const {
if((x == p.x)&&(y==p.y)) return false;
else return true;
}
};
//Polygon implemented as an array of points with a 'hole' flag
class TPPLPoly {
protected:
TPPLPoint *points;
long numpoints;
bool hole;
public:
//constructors/destructors
TPPLPoly();
~TPPLPoly();
TPPLPoly(const TPPLPoly &src);
TPPLPoly& operator=(const TPPLPoly &src);
//getters and setters
long GetNumPoints() {
return numpoints;
}
bool IsHole() {
return hole;
}
void SetHole(bool hole) {
this->hole = hole;
}
TPPLPoint &GetPoint(long i) {
return points[i];
}
TPPLPoint *GetPoints() {
return points;
}
TPPLPoint& operator[] (int i) {
return points[i];
}
//clears the polygon points
void Clear();
//inits the polygon with numpoints vertices
void Init(long numpoints);
//creates a triangle with points p1,p2,p3
void Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
//inverts the orfer of vertices
void Invert();
//returns the orientation of the polygon
//possible values:
// TPPL_CCW : polygon vertices are in counter-clockwise order
// TPPL_CW : polygon vertices are in clockwise order
// 0 : the polygon has no (measurable) area
int GetOrientation();
//sets the polygon orientation
//orientation can be
// TPPL_CCW : sets vertices in counter-clockwise order
// TPPL_CW : sets vertices in clockwise order
void SetOrientation(int orientation);
};
class TPPLPartition {
protected:
struct PartitionVertex {
bool isActive;
bool isConvex;
bool isEar;
TPPLPoint p;
tppl_float angle;
PartitionVertex *previous;
PartitionVertex *next;
};
struct MonotoneVertex {
TPPLPoint p;
long previous;
long next;
};
class VertexSorter{
MonotoneVertex *vertices;
public:
VertexSorter(MonotoneVertex *v) : vertices(v) {}
bool operator() (long index1, long index2);
};
struct Diagonal {
long index1;
long index2;
};
//dynamic programming state for minimum-weight triangulation
struct DPState {
bool visible;
tppl_float weight;
long bestvertex;
};
//dynamic programming state for convex partitioning
struct DPState2 {
bool visible;
long weight;
list<Diagonal> pairs;
};
//edge that intersects the scanline
struct ScanLineEdge {
long index;
TPPLPoint p1;
TPPLPoint p2;
//determines if the edge is to the left of another edge
bool operator< (const ScanLineEdge & other) const;
bool IsConvex(const TPPLPoint& p1, const TPPLPoint& p2, const TPPLPoint& p3) const;
};
//standard helper functions
bool IsConvex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3);
bool IsReflex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3);
bool IsInside(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3, TPPLPoint &p);
bool InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
bool InCone(PartitionVertex *v, TPPLPoint &p);
int Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22);
TPPLPoint Normalize(const TPPLPoint &p);
tppl_float Distance(const TPPLPoint &p1, const TPPLPoint &p2);
//helper functions for Triangulate_EC
void UpdateVertexReflexity(PartitionVertex *v);
void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices);
//helper functions for ConvexPartition_OPT
void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
//helper functions for MonotonePartition
bool Below(TPPLPoint &p1, TPPLPoint &p2);
void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2);
//triangulates a monotone polygon, used in Triangulate_MONO
int TriangulateMonotone(TPPLPoly *inPoly, list<TPPLPoly> *triangles);
public:
//simple heuristic procedure for removing holes from a list of polygons
//works by creating a diagonal from the rightmost hole vertex to some visible vertex
//time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons that can contain holes
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// outpolys : a list of polygons without holes
//returns 1 on success, 0 on failure
int RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys);
//triangulates a polygon by ear clipping
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_EC(TPPLPoly *poly, list<TPPLPoly> *triangles);
//triangulates a list of polygons that may contain holes by ear clipping algorithm
//first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon
//time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_EC(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles);
//creates an optimal polygon triangulation in terms of minimal edge length
//time complexity: O(n^3), n is the number of vertices
//space complexity: O(n^2)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_OPT(TPPLPoly *poly, list<TPPLPoly> *triangles);
//triangulates a polygons by firstly partitioning it into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_MONO(TPPLPoly *poly, list<TPPLPoly> *triangles);
//triangulates a list of polygons by firstly partitioning them into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_MONO(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles);
//creates a monotone partition of a list of polygons that can contain holes
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// monotonePolys : a list of monotone polygons (result)
//returns 1 on success, 0 on failure
int MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *monotonePolys);
//partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
//however, in practice it works much better than that and often gives optimal partition
//uses triangulation obtained by ear clipping as intermediate result
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be partitioned
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts);
//partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
//however, in practice it works much better than that and often gives optimal partition
//uses triangulation obtained by ear clipping as intermediate result
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : an input list of polygons to be partitioned
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_HM(list<TPPLPoly> *inpolys, list<TPPLPoly> *parts);
//optimal convex partitioning (in terms of number of resulting convex polygons)
//using the Keil-Snoeyink algorithm
//M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998
//time complexity O(n^3), n is the number of vertices
//space complexity: O(n^3)
// poly : an input polygon to be partitioned
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts);
};

View File

@ -33,6 +33,8 @@
%code{% THIS->get_trapezoids(&RETVAL, angle); %};
Polygons triangulate()
%code{% THIS->triangulate(&RETVAL); %};
Polygons triangulate2()
%code{% THIS->triangulate2(&RETVAL); %};
%{
ExPolygon*