WIP: MutablePolygon - linked list based polygon implementation

allowing rapid insertion and removal of points.
WIP: porting smooth_outward() from Cura.
This commit is contained in:
Vojtech Bubnik 2021-03-01 18:41:36 +01:00
parent 409849d238
commit 5276bd98d7
6 changed files with 632 additions and 5 deletions

View file

@ -145,6 +145,8 @@ add_library(libslic3r STATIC
Point.hpp
Polygon.cpp
Polygon.hpp
MutablePolygon.cpp
MutablePolygon.hpp
PolygonTrimmer.cpp
PolygonTrimmer.hpp
Polyline.cpp

View file

@ -0,0 +1,242 @@
#include "MutablePolygon.hpp"
#include "Line.hpp"
namespace Slic3r {
// Remove exact duplicate points. May reduce the polygon down to empty polygon.
void remove_duplicates(MutablePolygon &polygon)
{
if (! polygon.empty()) {
auto begin = polygon.begin();
auto it = begin;
for (++ it; it != begin;) {
auto prev = it.prev();
if (*prev == *it)
it = it.remove();
else
++ it;
}
}
}
// Remove nearly duplicate points. May reduce the polygon down to empty polygon.
void remove_duplicates(MutablePolygon &polygon, double eps)
{
if (! polygon.empty()) {
auto eps2 = eps * eps;
auto begin = polygon.begin();
auto it = begin;
for (++ it; it != begin;) {
auto prev = it.prev();
if ((*it - *prev).cast<double>().squaredNorm() < eps2)
it = it.remove();
else
++ it;
}
}
}
// Sample a point on line (a, b) at distance "dist" from ref_pt.
// If two points fulfill the condition, then the first one (closer to point a) is taken.
// If none of the two points falls on line (a, b), return false.
template<typename VectorType>
static inline VectorType point_on_line_at_dist(const VectorType &a, const VectorType &b, const VectorType &ref_pt, const double dist)
{
using T = typename VectorType::Scalar;
auto v = b - a;
auto l2 = v.squaredNorm();
assert(l2 > T(0));
auto vpt = ref_pt - a;
// Parameter of the foot point of ref_pt on line (a, b).
auto t = v.dot(vpt) / l2;
// Foot point of ref_pt on line (a, b).
auto foot_pt = a + t * v;
auto dfoot2 = vpt.squaredNorm() - (foot_pt - ref_pt).squaredNorm();
// Distance of the result point from the foot point, normalized to length of (a, b).
auto dfoot = dfoot2 > T(0) ? sqrt(dfoot2) / sqrt(l2) : T(0);
auto t_result = t - dfoot;
if (t_result < T(0))
t_result = t + dfoot;
t_result = Slic3r::clamp(0., 1., t_result);
return a + v * t;
}
static bool smooth_corner_complex(const Vec2d p1, MutablePolygon::iterator &it0, MutablePolygon::iterator &it2, const double shortcut_length)
{
// walk away from the corner until the shortcut > shortcut_length or it would smooth a piece inward
// - walk in both directions untill shortcut > shortcut_length
// - stop walking in one direction if it would otherwise cut off a corner in that direction
// - same in the other direction
// - stop if both are cut off
// walk by updating p0_it and p2_it
double shortcut_length2 = shortcut_length * shortcut_length;
bool forward_is_blocked = false;
bool forward_is_too_far = false;
bool backward_is_blocked = false;
bool backward_is_too_far = false;
for (;;) {
const bool forward_has_converged = forward_is_blocked || forward_is_too_far;
const bool backward_has_converged = backward_is_blocked || backward_is_too_far;
if (forward_has_converged && backward_has_converged) {
if (forward_is_too_far && backward_is_too_far && (*it0.prev() - *it2.next()).cast<double>().squaredNorm() < shortcut_length2) {
// Trim the narrowing region.
-- it0;
++ it2;
forward_is_too_far = false;
backward_is_too_far = false;
continue;
} else
break;
}
const Vec2d p0 = it0->cast<double>();
const Vec2d p2 = it2->cast<double>();
if (! forward_has_converged && (backward_has_converged || (p2 - p1).squaredNorm() < (p0 - p1).squaredNorm())) {
// walk forward
const auto it2_2 = it2.next();
const Vec2d p2_2 = it2_2->cast<double>();
if (cross2(p2 - p0, p2_2 - p0) > 0) {
forward_is_blocked = true;
} else if ((p2_2 - p0).squaredNorm() > shortcut_length2) {
forward_is_too_far = true;
} else {
it2 = it2_2; // make one step in the forward direction
backward_is_blocked = false; // invalidate data about backward walking
backward_is_too_far = false;
}
} else {
// walk backward
const auto it0_2 = it0.prev();
const Vec2d p0_2 = it0_2->cast<double>();
if (cross2(p0_2 - p0, p2 - p0_2) > 0) {
backward_is_blocked = true;
} else if ((p2 - p0_2).squaredNorm() > shortcut_length2) {
backward_is_too_far = true;
} else {
it0 = it0_2; // make one step in the backward direction
forward_is_blocked = false; // invalidate data about forward walking
forward_is_too_far = false;
}
}
if (it0.prev() == it2 || it0 == it2) {
// stop if we went all the way around the polygon
// this should only be the case for hole polygons (?)
if (forward_is_too_far && backward_is_too_far) {
// in case p0_it.prev() == p2_it :
// / .
// / /|
// | becomes | |
// \ \|
// \ .
// in case p0_it == p2_it :
// / .
// / becomes /|
// \ \|
// \ .
break;
} else {
// this whole polygon can be removed
return true;
}
}
}
const Vec2d p0 = it0->cast<double>();
const Vec2d p2 = it2->cast<double>();
const Vec2d v02 = p2 - p0;
const int64_t l2_v02 = v02.squaredNorm();
if (std::abs(l2_v02 - shortcut_length2) < shortcut_length * 10) // i.e. if (size2 < l * (l+10) && size2 > l * (l-10))
{ // v02 is approximately shortcut length
// handle this separately to avoid rounding problems below in the getPointOnLineWithDist function
// p0_it and p2_it are already correct
} else if (! backward_is_blocked && ! forward_is_blocked) {
const auto l_v02 = sqrt(l2_v02);
const Vec2d p0_2 = it0.prev()->cast<double>();
const Vec2d p2_2 = it2.next()->cast<double>();
double t = Slic3r::clamp(0., 1., (shortcut_length - l_v02) / ((p2_2 - p0_2).norm() - l_v02));
it0 = it0.prev().insert((p0 + (p0_2 - p0) * t).cast<coord_t>());
it2 = it2.insert((p2 + (p2_2 - p2) * t).cast<coord_t>());
} else if (! backward_is_blocked) {
it0 = it0.prev().insert(point_on_line_at_dist(p0, Vec2d(it0.prev()->cast<double>()), p2, shortcut_length).cast<coord_t>());
} else if (! forward_is_blocked) {
it2 = it2.insert(point_on_line_at_dist(p2, Vec2d(it2.next()->cast<double>()), p0, shortcut_length).cast<coord_t>());
} else {
// |
// __|2
// | / > shortcut cannot be of the desired length
// ___|/ .
// 0
// both are blocked and p0_it and p2_it are already correct
}
// Delete all the points between it0 and it2.
while (it0.next() != it2)
it0.next().remove();
return false;
}
void smooth_outward(MutablePolygon &polygon, double shortcut_length)
{
remove_duplicates(polygon, scaled<double>(0.01));
const int shortcut_length2 = shortcut_length * shortcut_length;
static constexpr const double cos_min_angle = -0.70710678118654752440084436210485; // cos(135 degrees)
MutablePolygon::iterator it1 = polygon.begin();
do {
const Vec2d p1 = it1->cast<double>();
auto it0 = it1.prev();
auto it2 = it1.next();
const Vec2d p0 = it0->cast<double>();
const Vec2d p2 = it2->cast<double>();
const Vec2d v1 = p0 - p1;
const Vec2d v2 = p2 - p1;
const double cos_angle = v1.dot(v2);
if (cos_angle < cos_min_angle && cross2(v1, v2) < 0) {
// Simplify the sharp angle.
const Vec2d v02 = p2 - p0;
const double l2_v02 = v02.squaredNorm();
if (l2_v02 >= shortcut_length2) {
// Trim an obtuse corner.
it1.remove();
if (l2_v02 > Slic3r::sqr(shortcut_length + SCALED_EPSILON)) {
double l2_1 = v1.squaredNorm();
double l2_2 = v2.squaredNorm();
bool trim = true;
if (cos_angle > 0.9999) {
// The triangle p0, p1, p2 is likely degenerate.
// Measure height of the triangle.
double d2 = l2_1 > l2_2 ? line_alg::distance_to_squared(Linef{ p0, p1 }, p2) : line_alg::distance_to_squared(Linef{ p2, p1 }, p0);
if (d2 < Slic3r::sqr(scaled<double>(0.02)))
trim = false;
}
if (trim) {
Vec2d bisector = v1 / l2_1 + v2 / l2_2;
double d1 = v1.dot(bisector) / l2_1;
double d2 = v2.dot(bisector) / l2_2;
double lbisector = bisector.norm();
if (d1 < shortcut_length && d2 < shortcut_length) {
it0.insert((p1 + v1 * (shortcut_length / d1)).cast<coord_t>())
.insert((p1 + v2 * (shortcut_length / d2)).cast<coord_t>());
} else if (v1.squaredNorm() < v2.squaredNorm())
it0.insert(point_on_line_at_dist(p1, p2, p0, shortcut_length).cast<coord_t>());
else
it0.insert(point_on_line_at_dist(p1, p0, p2, shortcut_length).cast<coord_t>());
}
}
} else {
bool remove_poly = smooth_corner_complex(p1, it0, it2, shortcut_length); // edits p0_it and p2_it!
if (remove_poly) {
// don't convert ListPolygon into result
return;
}
}
// update:
it1 = it2; // next point to consider for whether it's an internal corner
}
else
++ it1;
} while (it1 != polygon.begin());
}
} // namespace Slic3r

View file

@ -0,0 +1,227 @@
#ifndef slic3r_MutablePolygon_hpp_
#define slic3r_MutablePolygon_hpp_
#include "Point.hpp"
#include "Polygon.hpp"
namespace Slic3r {
class MutablePolygon
{
public:
using IndexType = int32_t;
using PointType = Point;
class const_iterator {
public:
bool operator==(const const_iterator &rhs) const { assert(m_data == rhs.m_data); assert(this->valid()); return m_idx == rhs.m_idx; }
bool operator!=(const const_iterator &rhs) const { return ! (*this == rhs); }
const_iterator& operator--() { assert(this->valid()); m_idx = m_data->at(m_idx).prev; return *this; }
const_iterator operator--(int) { const_iterator result(*this); --(*this); return result; }
const_iterator& operator++() { assert(this->valid()); m_idx = m_data->at(m_idx).next; return *this; }
const_iterator operator++(int) { const_iterator result(*this); ++(*this); return result; }
const_iterator prev() const { assert(this->valid()); return { m_data, m_data->at(m_idx).prev }; }
const_iterator next() const { assert(this->valid()); return { m_data, m_data->at(m_idx).next }; }
bool valid() const { return m_idx >= 0; }
const PointType& operator*() const { return m_data->at(m_idx).point; }
const PointType* operator->() const { return &m_data->at(m_idx).point; }
const MutablePolygon& polygon() const { assert(this->valid()); m_data; }
IndexType size() const { assert(this->valid()); m_data->size(); }
private:
const_iterator(const MutablePolygon *data, IndexType idx) : m_data(data), m_idx(idx) {}
friend class MutablePolygon;
const MutablePolygon *m_data;
IndexType m_idx;
};
class iterator {
public:
bool operator==(const iterator &rhs) const { assert(m_data == rhs.m_data); assert(this->valid()); return m_idx == rhs.m_idx; }
bool operator!=(const iterator &rhs) const { return !(*this == rhs); }
iterator& operator--() { assert(this->valid()); m_idx = m_data->at(m_idx).prev; return *this; }
iterator operator--(int) { iterator result(*this); --(*this); return result; }
iterator& operator++() { assert(this->valid()); m_idx = m_data->at(m_idx).next; return *this; }
iterator operator++(int) { iterator result(*this); ++(*this); return result; }
iterator prev() const { assert(this->valid()); return { m_data, m_data->at(m_idx).prev }; }
iterator next() const { assert(this->valid()); return { m_data, m_data->at(m_idx).next }; }
bool valid() const { return m_idx >= 0; }
PointType& operator*() const { return m_data->at(m_idx).point; }
PointType* operator->() const { return &m_data->at(m_idx).point; }
MutablePolygon& polygon() const { assert(this->valid()); m_data; }
IndexType size() const { assert(this->valid()); m_data->size(); }
iterator& remove() { this->m_idx = m_data->remove(*this).m_idx; return *this; }
iterator insert(const PointType pt) const { return m_data->insert(*this, pt); }
private:
iterator(MutablePolygon *data, IndexType idx) : m_data(data), m_idx(idx) {}
friend class MutablePolygon;
MutablePolygon *m_data;
IndexType m_idx;
};
MutablePolygon() = default;
MutablePolygon(const Polygon &rhs, size_t reserve = 0) : MutablePolygon(rhs.points.begin(), rhs.points.end(), reserve) {}
MutablePolygon(std::initializer_list<Point> rhs, size_t reserve = 0) : MutablePolygon(rhs.begin(), rhs.end(), reserve) {}
template<typename IT>
MutablePolygon(IT begin, IT end, size_t reserve = 0) {
m_size = IndexType(end - begin);
if (m_size > 0) {
m_head = 0;
m_data.reserve(std::max<size_t>(m_size, reserve));
auto i = IndexType(-1);
auto j = IndexType(1);
for (auto it = begin; it != end; ++ it)
m_data.push_back({ *it, i ++, j ++ });
m_data.front().prev = m_size - 1;
m_data.back ().next = 0;
}
};
Polygon polygon() const {
Polygon out;
if (this->valid()) {
out.points.reserve(this->size());
for (auto it = this->cbegin(); it != this->cend(); ++ it)
out.points.emplace_back(*it);
}
return out;
};
bool empty() const { return this->m_size == 0; }
size_t size() const { return this->m_size; }
size_t capacity() const { return this->m_data.capacity(); }
bool valid() const { return this->m_size >= 3; }
iterator begin() { return { this, m_head }; }
const_iterator cbegin() const { return { this, m_head }; }
const_iterator begin() const { return this->cbegin(); }
// End points to the last item before roll over. This is different from the usual end() concept!
iterator end() { return { this, this->empty() ? -1 : this->at(m_head).prev }; }
const_iterator cend() const { return { this, this->empty() ? -1 : this->at(m_head).prev }; }
const_iterator end() const { return this->cend(); }
// Returns iterator following the removed element. Returned iterator will become invalid if last point is removed.
// If begin() is removed, then the next element will become the new begin().
iterator remove(const iterator it) { assert(it.m_data == this); return { this, this->remove(it.m_idx) }; }
// Insert a new point before it. Returns iterator to the newly inserted point.
// begin() will not change, end() may point to the newly inserted point.
iterator insert(const iterator it, const PointType pt) { assert(it.m_data == this); return { this, this->insert(it.m_idx, pt) }; }
private:
struct LinkedPoint {
PointType point;
IndexType prev;
IndexType next;
};
std::vector<LinkedPoint> m_data;
// Number of points in the linked list.
IndexType m_size { 0 };
IndexType m_head { IndexType(-1) };
// Head of the free list.
IndexType m_head_free { IndexType(-1) };
LinkedPoint& at(IndexType i) { return m_data[i]; }
const LinkedPoint& at(IndexType i) const { return m_data[i]; }
IndexType remove(const IndexType i) {
assert(i >= 0);
assert(m_size > 0);
assert(m_head != -1);
LinkedPoint &lp = this->at(i);
IndexType prev = lp.prev;
IndexType next = lp.next;
lp.next = m_head_free;
m_head_free = i;
if (-- m_size == 0)
m_head = -1;
else if (m_head == i)
m_head = next;
assert(! this->empty() || (prev == i && next == i));
if (this->empty())
return IndexType(-1);
this->at(prev).next = next;
this->at(next).prev = prev;
return next;
}
IndexType insert(const IndexType i, const Point pt) {
assert(i >= 0);
IndexType n;
IndexType j = this->at(i).prev;
if (m_head_free == -1) {
// Allocate a new item.
n = IndexType(m_data.size());
m_data.push_back({ pt, j, i });
} else {
n = m_head_free;
LinkedPoint &nlp = this->at(n);
m_head_free = nlp.next;
nlp = { pt, j, i };
}
this->at(j).next = n;
this->at(i).prev = n;
++ m_size;
return n;
}
/*
IndexType insert(const IndexType i, const Point pt) {
assert(i >= 0);
if (this->at(i).point == pt)
return i;
IndexType j = this->at(i).next;
if (this->at(j).point == pt)
return i;
IndexType n;
if (m_head_free == -1) {
// Allocate a new item.
n = IndexType(m_data.size());
m_data.push_back({ pt, i, j });
} else {
LinkedPoint &nlp = this->at(m_head_free);
m_head_free = nlp.next;
nlp = { pt, i, j };
}
this->at(i).next = n;
this->at(j).prev = n;
++ m_size;
return n;
}
*/
};
inline bool operator==(const MutablePolygon &p1, const MutablePolygon &p2)
{
if (p1.size() != p2.size())
return false;
if (p1.empty())
return true;
auto begin = p1.cbegin();
auto it = begin;
auto it2 = p2.cbegin();
for (;;) {
if (! (*it == *it2))
return false;
if (++ it == begin)
return true;
++ it2;
}
}
inline bool operator!=(const MutablePolygon &p1, const MutablePolygon &p2) { return ! (p1 == p2); }
// Remove exact duplicate points. May reduce the polygon down to empty polygon.
void remove_duplicates(MutablePolygon &polygon);
void remove_duplicates(MutablePolygon &polygon, double eps);
void smooth_outward(MutablePolygon &polygon, double shortcut_length);
inline Polygon smooth_outward(const Polygon &polygon, double shortcut_length)
{
MutablePolygon mp(polygon, polygon.size() * 2);
smooth_outward(mp, shortcut_length);
return mp.polygon();
}
}
#endif // slic3r_MutablePolygon_hpp_

View file

@ -56,11 +56,21 @@ typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d
inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); }
// One likely does not want to perform the cross product with a 32bit accumulator.
//inline int32_t cross2(const Vec2i32 &v1, const Vec2i32 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
template<int Options>
int32_t cross2(const Eigen::MatrixBase<Eigen::Matrix<int32_t, 2, 1, Options>> &v1, const Eigen::MatrixBase<Eigen::Matrix<int32_t, 2, 1, Options>> &v2) = delete;
template<typename T, int Options>
inline T cross2(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> &v1, const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> &v2)
{
return v1(0) * v2(1) - v1(1) * v2(0);
}
template<typename Derived, typename Derived2>
inline typename Derived::Scalar cross2(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2)
{
static_assert(std::is_same<typename Derived::Scalar, typename Derived2::Scalar>::value, "cross2(): Scalar types of 1st and 2nd operand must be equal.");
return v1(0) * v2(1) - v1(1) * v2(0);
}
template<typename T, int Options>
inline Eigen::Matrix<T, 2, 1, Eigen::DontAlign> perp(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> &v) { return Eigen::Matrix<T, 2, 1, Eigen::DontAlign>(- v.y(), v.x()); }

View file

@ -11,6 +11,7 @@ add_executable(${_TEST_NAME}_tests
test_geometry.cpp
test_placeholder_parser.cpp
test_polygon.cpp
test_mutable_polygon.cpp
test_stl.cpp
test_meshsimplify.cpp
test_meshboolean.cpp

View file

@ -0,0 +1,145 @@
#include <catch2/catch.hpp>
#include "libslic3r/MutablePolygon.hpp"
using namespace Slic3r;
SCENARIO("Iterators", "[MutablePolygon]") {
GIVEN("Polygon with three points") {
Slic3r::MutablePolygon p({ { 0, 0 }, { 0, 1 }, { 1, 0 } });
WHEN("Iterating upwards") {
auto begin = p.begin();
auto end = p.end();
auto it = begin;
THEN("++ it is not equal to begin") {
REQUIRE(++ it != begin);
} THEN("++ it is not equal to end") {
REQUIRE(++ it != end);
} THEN("++ (++ it) is not equal to begin") {
REQUIRE(++ (++ it) != begin);
} THEN("++ (++ it) is equal to end") {
REQUIRE(++ (++ it) == end);
} THEN("++ (++ (++ it)) is equal to begin") {
REQUIRE(++ (++ (++ it)) == begin);
} THEN("++ (++ (++ it)) is not equal to end") {
REQUIRE(++ (++ (++ it)) != end);
}
}
WHEN("Iterating downwards") {
auto begin = p.begin();
auto end = p.end();
auto it = begin;
THEN("-- it is not equal to begin") {
REQUIRE(-- it != begin);
} THEN("-- it is equal to end") {
REQUIRE(-- it == end);
} THEN("-- (-- it) is not equal to begin") {
REQUIRE(-- (-- it) != begin);
} THEN("-- (-- it) is not equal to end") {
REQUIRE(-- (-- it) != end);
} THEN("-- (-- (-- it)) is equal to begin") {
REQUIRE(-- (-- (-- it)) == begin);
} THEN("-- (-- (-- it)) is not equal to end") {
REQUIRE(-- (-- (-- it)) != end);
}
}
WHEN("Deleting 1st point") {
auto it_2nd = p.begin().next();
auto it_3rd = p.end();
auto it = p.begin().remove();
THEN("Size is 2") {
REQUIRE(p.size() == 2);
} THEN("p.begin().remove() == it_2nd") {
REQUIRE(it == it_2nd);
} THEN("it_2nd == new begin()") {
REQUIRE(it_2nd == p.begin());
}
}
WHEN("Deleting 2nd point") {
auto it_1st = p.begin();
auto it_2nd = it_1st.next();
auto it_3rd = p.end();
auto it = it_2nd.remove();
THEN("Size is 2") {
REQUIRE(p.size() == 2);
REQUIRE(! p.empty());
} THEN("it_2nd.remove() == it_3rd") {
REQUIRE(it == it_2nd);
} THEN("it_1st == new begin()") {
REQUIRE(it_1st == p.begin());
}
}
WHEN("Deleting two points") {
p.begin().remove().remove();
THEN("Size is 1") {
REQUIRE(p.size() == 1);
} THEN("p.begin().next() == p.begin()") {
REQUIRE(p.begin().next() == p.begin());
} THEN("p.begin().prev() == p.begin()") {
REQUIRE(p.begin().prev() == p.begin());
}
}
WHEN("Deleting all points") {
auto it = p.begin().remove().remove().remove();
THEN("Size is 0") {
REQUIRE(p.size() == 0);
REQUIRE(p.empty());
} THEN("! p.begin().valid()") {
REQUIRE(!p.begin().valid());
} THEN("last iterator not valid") {
REQUIRE(! it.valid());
}
}
WHEN("Inserting a point at the beginning") {
p.insert(p.begin(), { 3, 4 });
THEN("Polygon content is ok") {
REQUIRE(p == MutablePolygon{ { 0, 0 }, { 0, 1 }, { 1, 0 }, { 3, 4 } });
}
}
WHEN("Inserting a point at the 2nd position") {
p.insert(++ p.begin(), { 3, 4 });
THEN("Polygon content is ok") {
REQUIRE(p == MutablePolygon{ { 0, 0 }, { 3, 4 }, { 0, 1 }, { 1, 0 } });
}
} WHEN("Inserting a point after a point was removed") {
size_t capacity = p.capacity();
THEN("Initial capacity is 3") {
REQUIRE(capacity == 3);
}
p.begin().remove();
THEN("After removal of the 1st point the capacity is still 3") {
REQUIRE(p.capacity() == 3);
}
THEN("After removal of the 1st point the content is ok") {
REQUIRE(p == MutablePolygon{ { 0, 1 }, { 1, 0 } });
}
p.insert(p.begin(), { 5, 6 });
THEN("After insertion at head position the polygon content is ok") {
REQUIRE(p == MutablePolygon{ { 0, 1 }, { 1, 0 }, { 5, 6 } });
} THEN("and the capacity is still 3") {
REQUIRE(p.capacity() == 3);
}
}
}
}
SCENARIO("Remove degenerate points from MutablePolygon", "[MutablePolygon]") {
GIVEN("Polygon with duplicate points"){
Slic3r::MutablePolygon p({
{ 0, 0 },
{ 0, 100 }, { 0, 100 }, { 0, 100 },
{ 0, 150 },
{ 0, 200 },
{ 200, 200 },
{ 180, 200 }, { 180, 200 },
{ 180, 20 },
{ 180, 0 },
});
WHEN("Duplicate points are removed") {
remove_duplicates(p);
THEN("Polygon content is ok") {
REQUIRE(p == Slic3r::MutablePolygon{ { 0, 0 }, { 0, 100 }, { 0, 150 }, { 0, 200 }, { 200, 200 }, { 180, 200 }, { 180, 20 }, { 180, 0 } });
}
}
}
}