Optimized seed fill and bucket fill selection to recompute selection only in case the cursor is pointing on a non-selected triangle.

This commit is contained in:
Lukáš Hejl 2021-07-19 11:15:04 +02:00
parent 5b67fafb75
commit 5405ab1986

View file

@ -65,8 +65,8 @@ void TriangleSelector::Triangle::set_division(int sides_to_split, int special_si
assert(sides_to_split >= 0 && sides_to_split <= 3); assert(sides_to_split >= 0 && sides_to_split <= 3);
assert(special_side_idx >= 0 && special_side_idx < 3); assert(special_side_idx >= 0 && special_side_idx < 3);
assert(sides_to_split == 1 || sides_to_split == 2 || special_side_idx == 0); assert(sides_to_split == 1 || sides_to_split == 2 || special_side_idx == 0);
this->number_of_splits = sides_to_split; this->number_of_splits = char(sides_to_split);
this->special_side_idx = special_side_idx; this->special_side_idx = char(special_side_idx);
} }
inline bool is_point_inside_triangle(const Vec3f &pt, const Vec3f &p1, const Vec3f &p2, const Vec3f &p3) inline bool is_point_inside_triangle(const Vec3f &pt, const Vec3f &p1, const Vec3f &p2, const Vec3f &p3)
@ -167,8 +167,7 @@ void TriangleSelector::select_patch(const Vec3f& hit, int facet_start,
if (! visited[facet]) { if (! visited[facet]) {
if (select_triangle(facet, new_state, triangle_splitting)) { if (select_triangle(facet, new_state, triangle_splitting)) {
// add neighboring facets to list to be proccessed later // add neighboring facets to list to be proccessed later
for (int n=0; n<3; ++n) { for (int neighbor_idx : m_mesh->stl.neighbors_start[facet].neighbor) {
int neighbor_idx = m_mesh->stl.neighbors_start[facet].neighbor[n];
if (neighbor_idx >=0 && (m_cursor.type == SPHERE || faces_camera(neighbor_idx))) if (neighbor_idx >=0 && (m_cursor.type == SPHERE || faces_camera(neighbor_idx)))
facets_to_check.push_back(neighbor_idx); facets_to_check.push_back(neighbor_idx);
} }
@ -182,6 +181,11 @@ void TriangleSelector::select_patch(const Vec3f& hit, int facet_start,
void TriangleSelector::seed_fill_select_triangles(const Vec3f &hit, int facet_start, float seed_fill_angle) void TriangleSelector::seed_fill_select_triangles(const Vec3f &hit, int facet_start, float seed_fill_angle)
{ {
assert(facet_start < m_orig_size_indices); assert(facet_start < m_orig_size_indices);
// Recompute seed fill only if the cursor is pointing on facet unselected by seed fill.
if (int start_facet_idx = select_unsplit_triangle(hit, facet_start); start_facet_idx >= 0 && m_triangles[start_facet_idx].is_selected_by_seed_fill())
return;
this->seed_fill_unselect_all_triangles(); this->seed_fill_unselect_all_triangles();
std::vector<bool> visited(m_triangles.size(), false); std::vector<bool> visited(m_triangles.size(), false);
@ -308,13 +312,15 @@ std::vector<int> TriangleSelector::neighboring_triangles(const int first_facet_i
void TriangleSelector::bucket_fill_select_triangles(const Vec3f& hit, int facet_start, bool propagate) void TriangleSelector::bucket_fill_select_triangles(const Vec3f& hit, int facet_start, bool propagate)
{ {
this->seed_fill_unselect_all_triangles();
int start_facet_idx = select_unsplit_triangle(hit, facet_start); int start_facet_idx = select_unsplit_triangle(hit, facet_start);
EnforcerBlockerType start_facet_state = m_triangles[start_facet_idx].get_state(); // Recompute bucket fill only if the cursor is pointing on facet unselected by bucket fill.
if (start_facet_idx == -1) if (start_facet_idx == -1 || m_triangles[start_facet_idx].is_selected_by_seed_fill())
return; return;
assert(!m_triangles[start_facet_idx].is_split());
EnforcerBlockerType start_facet_state = m_triangles[start_facet_idx].get_state();
this->seed_fill_unselect_all_triangles();
if (!propagate) { if (!propagate) {
m_triangles[start_facet_idx].select_by_seed_fill(); m_triangles[start_facet_idx].select_by_seed_fill();
return; return;
@ -478,7 +484,7 @@ int TriangleSelector::triangle_midpoint_or_allocate(int itriangle, int vertexi,
Vec3f c = 0.5f * (m_vertices[vertexi].v + m_vertices[vertexj].v); Vec3f c = 0.5f * (m_vertices[vertexi].v + m_vertices[vertexj].v);
#ifdef EXPENSIVE_DEBUG_CHECKS #ifdef EXPENSIVE_DEBUG_CHECKS
// Verify that the vertex is really a new one. // Verify that the vertex is really a new one.
auto it = std::find_if(m_vertices.begin(), m_vertices.end(), [this, c](const Vertex &v) { auto it = std::find_if(m_vertices.begin(), m_vertices.end(), [c](const Vertex &v) {
return v.ref_cnt > 0 && (v.v - c).norm() < EPSILON; }); return v.ref_cnt > 0 && (v.v - c).norm() < EPSILON; });
assert(it == m_vertices.end()); assert(it == m_vertices.end());
#endif // EXPENSIVE_DEBUG_CHECKS #endif // EXPENSIVE_DEBUG_CHECKS
@ -777,8 +783,7 @@ void TriangleSelector::split_triangle(int facet_idx, const Vec3i &neighbors)
} }
} }
std::array<double, 3> sides; std::array<double, 3> sides = {(*pts[2] - *pts[1]).squaredNorm(),
sides = { (*pts[2]-*pts[1]).squaredNorm(),
(*pts[0] - *pts[2]).squaredNorm(), (*pts[0] - *pts[2]).squaredNorm(),
(*pts[1] - *pts[0]).squaredNorm()}; (*pts[1] - *pts[0]).squaredNorm()};
@ -798,7 +803,7 @@ void TriangleSelector::split_triangle(int facet_idx, const Vec3i &neighbors)
// Save how the triangle will be split. Second argument makes sense only for one // Save how the triangle will be split. Second argument makes sense only for one
// or two split sides, otherwise the value is ignored. // or two split sides, otherwise the value is ignored.
tr->set_division(sides_to_split.size(), tr->set_division(int(sides_to_split.size()),
sides_to_split.size() == 2 ? side_to_keep : sides_to_split[0]); sides_to_split.size() == 2 ? side_to_keep : sides_to_split[0]);
perform_split(facet_idx, neighbors, old_type); perform_split(facet_idx, neighbors, old_type);
@ -1028,10 +1033,10 @@ void TriangleSelector::reset()
m_triangles.reserve(m_mesh->its.indices.size()); m_triangles.reserve(m_mesh->its.indices.size());
for (size_t i = 0; i < m_mesh->its.indices.size(); ++i) { for (size_t i = 0; i < m_mesh->its.indices.size(); ++i) {
const stl_triangle_vertex_indices &ind = m_mesh->its.indices[i]; const stl_triangle_vertex_indices &ind = m_mesh->its.indices[i];
push_triangle(ind[0], ind[1], ind[2], i); push_triangle(ind[0], ind[1], ind[2], int(i));
} }
m_orig_size_vertices = m_vertices.size(); m_orig_size_vertices = int(m_vertices.size());
m_orig_size_indices = m_triangles.size(); m_orig_size_indices = int(m_triangles.size());
} }
@ -1412,7 +1417,7 @@ void TriangleSelector::deserialize(const std::pair<std::vector<std::pair<int, in
for (auto [triangle_id, ibit] : data.first) { for (auto [triangle_id, ibit] : data.first) {
assert(triangle_id < int(m_triangles.size())); assert(triangle_id < int(m_triangles.size()));
assert(ibit < data.second.size()); assert(ibit < int(data.second.size()));
auto next_nibble = [&data, &ibit = ibit]() { auto next_nibble = [&data, &ibit = ibit]() {
int n = 0; int n = 0;
for (int i = 0; i < 4; ++ i) for (int i = 0; i < 4; ++ i)
@ -1498,7 +1503,7 @@ bool TriangleSelector::has_facets(const std::pair<std::vector<std::pair<int, int
for (const std::pair<int, int> &triangle_id_and_ibit : data.first) { for (const std::pair<int, int> &triangle_id_and_ibit : data.first) {
int ibit = triangle_id_and_ibit.second; int ibit = triangle_id_and_ibit.second;
assert(ibit < data.second.size()); assert(ibit < int(data.second.size()));
auto next_nibble = [&data, &ibit = ibit]() { auto next_nibble = [&data, &ibit = ibit]() {
int n = 0; int n = 0;
for (int i = 0; i < 4; ++ i) for (int i = 0; i < 4; ++ i)
@ -1556,7 +1561,7 @@ void TriangleSelector::seed_fill_apply_on_triangles(EnforcerBlockerType new_stat
for (Triangle &triangle : m_triangles) for (Triangle &triangle : m_triangles)
if (triangle.is_split() && triangle.valid()) { if (triangle.is_split() && triangle.valid()) {
size_t facet_idx = &triangle - &m_triangles.front(); size_t facet_idx = &triangle - &m_triangles.front();
remove_useless_children(facet_idx); remove_useless_children(int(facet_idx));
} }
} }
@ -1570,7 +1575,7 @@ TriangleSelector::Cursor::Cursor(
{ {
Vec3d sf = Geometry::Transformation(trafo_).get_scaling_factor(); Vec3d sf = Geometry::Transformation(trafo_).get_scaling_factor();
if (is_approx(sf(0), sf(1)) && is_approx(sf(1), sf(2))) { if (is_approx(sf(0), sf(1)) && is_approx(sf(1), sf(2))) {
radius_sqr = std::pow(radius_world / sf(0), 2); radius_sqr = float(std::pow(radius_world / sf(0), 2));
uniform_scaling = true; uniform_scaling = true;
} }
else { else {