Merge branch 'dev_native' of https://github.com/prusa3d/Slic3r into dev_native

This commit is contained in:
bubnikv 2018-10-24 14:45:50 +02:00
commit 540a94b36d
3 changed files with 13 additions and 509 deletions

View File

@ -251,460 +251,6 @@ inline NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
return {rsh, top_nfp};
}
template<class RawShape>
NfpResult<RawShape> nfpSimpleSimple(const RawShape& cstationary,
const RawShape& cother)
{
// Algorithms are from the original algorithm proposed in paper:
// https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf
// /////////////////////////////////////////////////////////////////////////
// Algorithm 1: Obtaining the minkowski sum
// /////////////////////////////////////////////////////////////////////////
// I guess this is not a full minkowski sum of the two input polygons by
// definition. This yields a subset that is compatible with the next 2
// algorithms.
using Result = NfpResult<RawShape>;
using Vertex = TPoint<RawShape>;
using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
namespace sl = shapelike;
using std::signbit;
using std::sort;
using std::vector;
using std::ref;
using std::reference_wrapper;
// TODO The original algorithms expects the stationary polygon in
// counter clockwise and the orbiter in clockwise order.
// So for preventing any further complication, I will make the input
// the way it should be, than make my way around the orientations.
// Reverse the stationary contour to counter clockwise
auto stcont = sl::contour(cstationary);
{
std::reverse(sl::begin(stcont), sl::end(stcont));
stcont.pop_back();
auto it = std::min_element(sl::begin(stcont), sl::end(stcont),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(sl::begin(stcont), it, sl::end(stcont));
sl::addVertex(stcont, sl::front(stcont));
}
RawShape stationary;
sl::contour(stationary) = stcont;
// Reverse the orbiter contour to counter clockwise
auto orbcont = sl::contour(cother);
{
std::reverse(orbcont.begin(), orbcont.end());
// Step 1: Make the orbiter reverse oriented
orbcont.pop_back();
auto it = std::min_element(orbcont.begin(), orbcont.end(),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(orbcont.begin(), it, orbcont.end());
orbcont.emplace_back(orbcont.front());
for(auto &v : orbcont) v = -v;
}
// Copy the orbiter (contour only), we will have to work on it
RawShape orbiter;
sl::contour(orbiter) = orbcont;
// An edge with additional data for marking it
struct MarkedEdge {
Edge e; Radians turn_angle = 0; bool is_turning_point = false;
MarkedEdge() = default;
MarkedEdge(const Edge& ed, Radians ta, bool tp):
e(ed), turn_angle(ta), is_turning_point(tp) {}
// debug
std::string label;
};
// Container for marked edges
using EdgeList = vector<MarkedEdge>;
EdgeList A, B;
// This is how an edge list is created from the polygons
auto fillEdgeList = [](EdgeList& L, const RawShape& ppoly, int dir) {
auto& poly = sl::contour(ppoly);
L.reserve(sl::contourVertexCount(poly));
if(dir > 0) {
auto it = poly.begin();
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != poly.end()) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
} else {
auto it = sl::rbegin(poly);
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != sl::rend(poly)) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
}
auto getTurnAngle = [](const Edge& e1, const Edge& e2) {
auto phi = e1.angleToXaxis();
auto phi_prev = e2.angleToXaxis();
auto turn_angle = phi-phi_prev;
if(turn_angle > Pi) turn_angle -= TwoPi;
if(turn_angle < -Pi) turn_angle += TwoPi;
return turn_angle;
};
auto eit = L.begin();
auto enext = std::next(eit);
eit->turn_angle = getTurnAngle(L.front().e, L.back().e);
while(enext != L.end()) {
enext->turn_angle = getTurnAngle( enext->e, eit->e);
eit->is_turning_point =
signbit(enext->turn_angle) != signbit(eit->turn_angle);
++eit; ++enext;
}
L.back().is_turning_point = signbit(L.back().turn_angle) !=
signbit(L.front().turn_angle);
};
// Step 2: Fill the edgelists
fillEdgeList(A, stationary, 1);
fillEdgeList(B, orbiter, 1);
int i = 1;
for(MarkedEdge& me : A) {
std::cout << "a" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "a"; me.label += std::to_string(i);
i++;
}
i = 1;
for(MarkedEdge& me : B) {
std::cout << "b" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "b"; me.label += std::to_string(i);
i++;
}
// A reference to a marked edge that also knows its container
struct MarkedEdgeRef {
reference_wrapper<MarkedEdge> eref;
reference_wrapper<vector<MarkedEdgeRef>> container;
Coord dir = 1; // Direction modifier
inline Radians angleX() const { return eref.get().e.angleToXaxis(); }
inline const Edge& edge() const { return eref.get().e; }
inline Edge& edge() { return eref.get().e; }
inline bool isTurningPoint() const {
return eref.get().is_turning_point;
}
inline bool isFrom(const vector<MarkedEdgeRef>& cont ) {
return &(container.get()) == &cont;
}
inline bool eq(const MarkedEdgeRef& mr) {
return &(eref.get()) == &(mr.eref.get());
}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec):
eref(er), container(ec), dir(1) {}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec,
Coord d):
eref(er), container(ec), dir(d) {}
};
using EdgeRefList = vector<MarkedEdgeRef>;
// Comparing two marked edges
auto sortfn = [](const MarkedEdgeRef& e1, const MarkedEdgeRef& e2) {
return e1.angleX() < e2.angleX();
};
EdgeRefList Aref, Bref; // We create containers for the references
Aref.reserve(A.size()); Bref.reserve(B.size());
// Fill reference container for the stationary polygon
std::for_each(A.begin(), A.end(), [&Aref](MarkedEdge& me) {
Aref.emplace_back( ref(me), ref(Aref) );
});
// Fill reference container for the orbiting polygon
std::for_each(B.begin(), B.end(), [&Bref](MarkedEdge& me) {
Bref.emplace_back( ref(me), ref(Bref) );
});
auto mink = [sortfn] // the Mink(Q, R, direction) sub-procedure
(const EdgeRefList& Q, const EdgeRefList& R, bool positive)
{
// Step 1 "merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)"
// Sort the containers of edge references and merge them.
// Q could be sorted only once and be reused here but we would still
// need to merge it with sorted(R).
EdgeRefList merged;
EdgeRefList S, seq;
merged.reserve(Q.size() + R.size());
merged.insert(merged.end(), R.begin(), R.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
merged.insert(merged.end(), Q.begin(), Q.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
// Step 2 "set i = 1, k = 1, direction = 1, s1 = q1"
// we don't use i, instead, q is an iterator into Q. k would be an index
// into the merged sequence but we use "it" as an iterator for that
// here we obtain references for the containers for later comparisons
const auto& Rcont = R.begin()->container.get();
const auto& Qcont = Q.begin()->container.get();
// Set the initial direction
Coord dir = 1;
// roughly i = 1 (so q = Q.begin()) and s1 = q1 so S[0] = q;
if(positive) {
auto q = Q.begin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.end();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.begin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
} else {
auto q = Q.rbegin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.rend();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
S.back().dir = -1;
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.rbegin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
}
// Step 4:
// "Let starting edge r1 be in position si in sequence"
// whaaat? I guess this means the following:
auto it = S.begin();
while(!it->eq(*R.begin())) ++it;
// "Set j = 1, next = 2, direction = 1, seq1 = si"
// we don't use j, seq is expanded dynamically.
dir = 1;
auto next = std::next(R.begin()); seq.emplace_back(*it);
// Step 5:
// "If all si edges have been allocated to seqj" should mean that
// we loop until seq has equal size with S
auto send = it; //it == S.begin() ? it : std::prev(it);
while(it != S.end()) {
++it; if(it == S.end()) it = S.begin();
if(it == send) break;
if(it->isFrom(Qcont)) {
seq.emplace_back(*it); // "If si is from Q, j = j + 1, seqj = si"
// "If si is a turning point in Q,
// direction = - direction, next = next + direction"
if(it->isTurningPoint()) {
dir = -dir;
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
if(it->eq(*next) /*&& dir == next->dir*/) { // "If si = direction.rnext"
// "j = j + 1, seqj = si, next = next + direction"
seq.emplace_back(*it);
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
return seq;
};
std::vector<EdgeRefList> seqlist;
seqlist.reserve(Bref.size());
EdgeRefList Bslope = Bref; // copy Bref, we will make a slope diagram
// make the slope diagram of B
std::sort(Bslope.begin(), Bslope.end(), sortfn);
auto slopeit = Bslope.begin(); // search for the first turning point
while(!slopeit->isTurningPoint() && slopeit != Bslope.end()) slopeit++;
if(slopeit == Bslope.end()) {
// no turning point means convex polygon.
seqlist.emplace_back(mink(Aref, Bref, true));
} else {
int dir = 1;
auto firstturn = Bref.begin();
while(!firstturn->eq(*slopeit)) ++firstturn;
assert(firstturn != Bref.end());
EdgeRefList bgroup; bgroup.reserve(Bref.size());
bgroup.emplace_back(*slopeit);
auto b_it = std::next(firstturn);
while(b_it != firstturn) {
if(b_it == Bref.end()) b_it = Bref.begin();
while(!slopeit->eq(*b_it)) {
__nfp::advance(slopeit, Bslope, dir > 0);
}
if(!slopeit->isTurningPoint()) {
bgroup.emplace_back(*slopeit);
} else {
if(!bgroup.empty()) {
if(dir > 0) bgroup.emplace_back(*slopeit);
for(auto& me : bgroup) {
std::cout << me.eref.get().label << ", ";
}
std::cout << std::endl;
seqlist.emplace_back(mink(Aref, bgroup, dir == 1 ? true : false));
bgroup.clear();
if(dir < 0) bgroup.emplace_back(*slopeit);
} else {
bgroup.emplace_back(*slopeit);
}
dir *= -1;
}
++b_it;
}
}
// while(it != Bref.end()) // This is step 3 and step 4 in one loop
// if(it->isTurningPoint()) {
// R = {R.last, it++};
// auto seq = mink(Q, R, orientation);
// // TODO step 6 (should be 5 shouldn't it?): linking edges from A
// // I don't get this step
// seqlist.insert(seqlist.end(), seq.begin(), seq.end());
// orientation = !orientation;
// } else ++it;
// if(seqlist.empty()) seqlist = mink(Q, {Bref.begin(), Bref.end()}, true);
// /////////////////////////////////////////////////////////////////////////
// Algorithm 2: breaking Minkowski sums into track line trips
// /////////////////////////////////////////////////////////////////////////
// /////////////////////////////////////////////////////////////////////////
// Algorithm 3: finding the boundary of the NFP from track line trips
// /////////////////////////////////////////////////////////////////////////
for(auto& seq : seqlist) {
std::cout << "seqlist size: " << seq.size() << std::endl;
for(auto& s : seq) {
std::cout << (s.dir > 0 ? "" : "-") << s.eref.get().label << ", ";
}
std::cout << std::endl;
}
auto& seq = seqlist.front();
RawShape rsh;
Vertex top_nfp;
std::vector<Edge> edgelist; edgelist.reserve(seq.size());
for(auto& s : seq) {
edgelist.emplace_back(s.eref.get().e);
}
__nfp::buildPolygon(edgelist, rsh, top_nfp);
return Result(rsh, top_nfp);
}
// Specializable NFP implementation class. Specialize it if you have a faster
// or better NFP implementation
template<class RawShape, NfpLevel nfptype>

View File

@ -789,60 +789,6 @@ TEST(GeometryAlgorithms, nfpConvexConvex) {
// testNfp<NfpLevel::BOTH_CONCAVE, 1000>(nfp_concave_testdata);
//}
TEST(GeometryAlgorithms, nfpConcaveConcave) {
using namespace libnest2d;
Item stationary = {
{
{207, 76},
{194, 117},
{206, 117},
{206, 104},
{218, 104},
{231, 117},
{231, 130},
{244, 130},
{230, 92},
{220, 92},
{220, 84},
{239, 76},
{207, 76}
},
{}
};
Item orbiter = {
{
{78, 76},
{90, 89},
{76, 124},
{101, 124},
{101, 100},
{141, 113},
{141, 124},
{168, 124},
{158, 115},
{158, 104},
{121, 88},
{121, 76},
{78, 76}
},
{}
};
Rectangle r1(10, 10);
Rectangle r2(20, 20);
auto result = nfp::nfpSimpleSimple(stationary.transformedShape(),
orbiter.transformedShape());
svg::SVGWriter<PolygonImpl>::Config conf;
conf.mm_in_coord_units = 1;
svg::SVGWriter<PolygonImpl> wr(conf);
wr.writeItem(Item(result.first));
wr.save("simplesimple.svg");
}
TEST(GeometryAlgorithms, pointOnPolygonContour) {
using namespace libnest2d;

View File

@ -445,10 +445,22 @@ void GLGizmoRotate::on_render(const BoundingBoxf3& box) const
#if ENABLE_EXTENDED_SELECTION
const BoundingBoxf3& box = selection.get_bounding_box();
#endif // ENABLE_EXTENDED_SELECTION
bool single_instance = selection.is_single_full_instance();
std::string axis;
switch (m_axis)
{
case X: { axis = "X: "; break; }
case Y: { axis = "Y: "; break; }
case Z: { axis = "Z: "; break; }
}
if ((single_instance && (m_hover_id == 0)) || m_dragging)
set_tooltip(axis + format((float)Geometry::rad2deg(m_angle), 4) + "°");
#else
if (m_dragging)
set_tooltip(format(m_angle * 180.0f / (float)PI, 4));
#endif // ENABLE_EXTENDED_SELECTION
else
{
m_center = box.center();