Connect thick polylines where applicable

This commit is contained in:
PavelMikus 2023-04-21 17:19:43 +02:00 committed by Pavel Mikuš
parent 2c12a7f164
commit 54eb19d589

View File

@ -5,6 +5,7 @@
#include "AABBTreeLines.hpp" #include "AABBTreeLines.hpp"
#include "ExPolygon.hpp" #include "ExPolygon.hpp"
#include "FillEnsuring.hpp" #include "FillEnsuring.hpp"
#include "KDTreeIndirect.hpp"
#include "Line.hpp" #include "Line.hpp"
#include "Point.hpp" #include "Point.hpp"
#include "Polygon.hpp" #include "Polygon.hpp"
@ -44,7 +45,8 @@ ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const
}; };
const coord_t scaled_spacing = scaled<coord_t>(this->spacing); const coord_t scaled_spacing = scaled<coord_t>(this->spacing);
double squared_distance_limit_reconnection = 4 * double(scaled_spacing) * double(scaled_spacing); double distance_limit_reconnection = 2 * double(scaled_spacing);
double squared_distance_limit_reconnection = distance_limit_reconnection * distance_limit_reconnection;
Polygons filled_area = to_polygons(surface->expolygon); Polygons filled_area = to_polygons(surface->expolygon);
double aligning_angle = -this->angle + PI * 0.5; double aligning_angle = -this->angle + PI * 0.5;
polygons_rotate(filled_area, aligning_angle); polygons_rotate(filled_area, aligning_angle);
@ -52,78 +54,29 @@ ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const
BoundingBox bb = get_extents(filled_area); BoundingBox bb = get_extents(filled_area);
const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing; const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing;
std::vector<Line> vertical_lines(2 * n_vlines + 1); std::vector<Line> vertical_lines(n_vlines);
coord_t y_min = bb.min.y(); coord_t y_min = bb.min.y();
coord_t y_max = bb.max.y(); coord_t y_max = bb.max.y();
for (size_t i = 0; i < n_vlines; i++) { for (size_t i = 0; i < n_vlines; i++) {
coord_t x0 = bb.min.x() + i * double(scaled_spacing) - scaled_spacing * 0.5; coord_t x = bb.min.x() + i * double(scaled_spacing);
coord_t x1 = bb.min.x() + i * double(scaled_spacing); vertical_lines[i].a = Point{x, y_min};
vertical_lines[i * 2].a = Point{x0, y_min}; vertical_lines[i].b = Point{x, y_max};
vertical_lines[i * 2].b = Point{x0, y_max};
vertical_lines[i * 2 + 1].a = Point{x1, y_min};
vertical_lines[i * 2 + 1].b = Point{x1, y_max};
} }
vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min}; vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min};
vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max}; vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max};
auto area_walls = AABBTreeLines::LinesDistancer<Line>{to_lines(internal_area)}; auto area_walls = AABBTreeLines::LinesDistancer<Line>{to_lines(intersection(filled_area, opening(filled_area, scale_(2), scale_(3))))};
std::vector<std::vector<std::pair<Vec<2, coord_t>, size_t>>> vertical_lines_intersections(vertical_lines.size());
for (int i = 0; i < vertical_lines.size(); i++) {
vertical_lines_intersections[i] = area_walls.intersections_with_line<true>(vertical_lines[i]);
}
std::vector<std::vector<Line>> polygon_sections(n_vlines); std::vector<std::vector<Line>> polygon_sections(n_vlines);
for (size_t i = 0; i < n_vlines; i++) { for (size_t i = 0; i < n_vlines; i++) {
const auto &central_intersections = vertical_lines_intersections[i * 2 + 1]; const auto intersections = area_walls.intersections_with_line<true>(vertical_lines[i]);
const auto &left_intersections = vertical_lines_intersections[i * 2];
const auto &right_intersections = vertical_lines_intersections[i * 2 + 2];
for (int intersection_idx = 0; intersection_idx < int(central_intersections.size()) - 1; intersection_idx++) { for (int intersection_idx = 0; intersection_idx < int(intersections.size()) - 1; intersection_idx++) {
const auto &a = central_intersections[intersection_idx]; const auto &a = intersections[intersection_idx];
const auto &b = central_intersections[intersection_idx + 1]; const auto &b = intersections[intersection_idx + 1];
if (area_walls.outside((a.first + b.first) / 2) < 0) { if (area_walls.outside((a.first + b.first) / 2) < 0) {
// central part is inside. Now check for reasonable side distances if (std::abs(a.first.y() - b.first.y()) > scaled_spacing) {
polygon_sections[i].emplace_back(a.first, b.first);
auto get_closest_intersection_squared_dist =
[](const std::pair<Vec<2, coord_t>, size_t> &point,
const std::vector<std::pair<Vec<2, coord_t>, size_t>> &sorted_intersections) {
if (sorted_intersections.empty()) {
return 0.0;
}
auto closest_higher = std::upper_bound(sorted_intersections.begin(), sorted_intersections.end(), point,
[](const std::pair<Vec<2, coord_t>, size_t> &left,
const std::pair<Vec<2, coord_t>, size_t> &right) {
return left.first.y() < right.first.y();
});
if (closest_higher == sorted_intersections.end()) {
return (point.first - sorted_intersections.back().first).cast<double>().squaredNorm();
}
double candidate_dist = (point.first - closest_higher->first).cast<double>().squaredNorm();
if (closest_higher != sorted_intersections.begin()) {
double closest_lower_dist = (point.first - (--closest_higher)->first).cast<double>().squaredNorm();
candidate_dist = std::min(candidate_dist, closest_lower_dist);
}
return candidate_dist;
};
Point section_a = a.first;
Point section_b = b.first;
double max_a_squared_dist = std::max(get_closest_intersection_squared_dist(a, left_intersections),
get_closest_intersection_squared_dist(a, right_intersections));
double max_b_squared_dist = std::max(get_closest_intersection_squared_dist(b, left_intersections),
get_closest_intersection_squared_dist(b, right_intersections));
if (max_a_squared_dist > 0.3 * squared_distance_limit_reconnection) {
section_a.y() += 4.0 * scaled_spacing;
}
if (max_b_squared_dist > 0.3 * squared_distance_limit_reconnection) {
section_b.y() -= 4.0 * scaled_spacing;
}
if (section_a.y() < section_b.y()) {
polygon_sections[i].emplace_back(section_a, section_b);
} }
} }
} }
@ -140,7 +93,7 @@ ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const
coord_t length_filter = scale_(4); coord_t length_filter = scale_(4);
size_t skips_allowed = 2; size_t skips_allowed = 2;
size_t min_removal_conut = 4; size_t min_removal_conut = 5;
for (int section_idx = 0; section_idx < polygon_sections.size(); section_idx++) { for (int section_idx = 0; section_idx < polygon_sections.size(); section_idx++) {
for (int line_idx = 0; line_idx < polygon_sections[section_idx].size(); line_idx++) { for (int line_idx = 0; line_idx < polygon_sections[section_idx].size(); line_idx++) {
if (const Line &line = polygon_sections[section_idx][line_idx]; line.a != line.b && line.length() < length_filter) { if (const Line &line = polygon_sections[section_idx][line_idx]; line.a != line.b && line.length() < length_filter) {
@ -233,8 +186,9 @@ ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const
continue; continue;
} }
if ((traced_path.last_point() - candidate->a).cast<double>().squaredNorm() < squared_distance_limit_reconnection) { if ((traced_path.last_point() - candidate->a).cast<double>().squaredNorm() < squared_distance_limit_reconnection) {
traced_path.points.back() += Point{0.0, scaled_spacing * 0.5};
traced_path.width.push_back(scaled_spacing); traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->a); traced_path.points.push_back(candidate->a + Point{0.0, scaled_spacing * 0.5});
traced_path.width.push_back(scaled_spacing); traced_path.width.push_back(scaled_spacing);
traced_path.width.push_back(scaled_spacing); traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->b); traced_path.points.push_back(candidate->b);
@ -243,8 +197,9 @@ ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const
segment_added = true; segment_added = true;
} else if ((traced_path.last_point() - candidate->b).cast<double>().squaredNorm() < } else if ((traced_path.last_point() - candidate->b).cast<double>().squaredNorm() <
squared_distance_limit_reconnection) { squared_distance_limit_reconnection) {
traced_path.points.back() -= Point{0.0, scaled_spacing * 0.5};
traced_path.width.push_back(scaled_spacing); traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->b); traced_path.points.push_back(candidate->b - Point{0.0, scaled_spacing * 0.5});
traced_path.width.push_back(scaled_spacing); traced_path.width.push_back(scaled_spacing);
traced_path.width.push_back(scaled_spacing); traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->a); traced_path.points.push_back(candidate->a);
@ -431,6 +386,64 @@ ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const
} }
// reconnect ThickPolylines // reconnect ThickPolylines
struct EndPoint
{
Vec2d position;
size_t polyline_idx;
size_t other_end_point_idx;
bool is_first;
bool used = false;
};
std::vector<EndPoint> connection_endpoints;
connection_endpoints.reserve(thick_polylines_out.size() * 2);
for (size_t pl_idx = 0; pl_idx < thick_polylines_out.size(); pl_idx++) {
size_t current_idx = connection_endpoints.size();
connection_endpoints.push_back({thick_polylines_out[pl_idx].first_point().cast<double>(), pl_idx, current_idx + 1, true});
connection_endpoints.push_back({thick_polylines_out[pl_idx].last_point().cast<double>(), pl_idx, current_idx, false});
}
auto coord_fn = [&connection_endpoints](size_t idx, size_t dim) { return connection_endpoints[idx].position[dim]; };
KDTreeIndirect<2, double, decltype(coord_fn)> endpoints_tree{coord_fn, connection_endpoints.size()};
for (size_t ep_idx = 0; ep_idx < connection_endpoints.size(); ep_idx++) {
EndPoint &ep = connection_endpoints[ep_idx];
if (!ep.used) {
std::vector<size_t> close_endpoints = find_nearby_points(endpoints_tree, ep.position, scaled_spacing);
for (size_t close_endpoint_idx : close_endpoints) {
EndPoint &ep2 = connection_endpoints[close_endpoint_idx];
if (ep2.used || ep2.polyline_idx == ep.polyline_idx) {
continue;
}
// connect ep and ep2;
ThickPolyline &tp1 = thick_polylines_out[ep.polyline_idx];
ThickPolyline &tp2 = thick_polylines_out[ep2.polyline_idx];
if (ep.is_first) {
tp1.reverse();
ep.is_first = false;
connection_endpoints[ep.other_end_point_idx].is_first = true;
}
if (!ep2.is_first) {
tp2.reverse();
ep2.is_first = true;
connection_endpoints[ep2.other_end_point_idx].is_first = false;
}
tp1.points.insert(tp1.points.end(), tp2.points.begin(), tp2.points.end());
tp1.width.push_back(tp1.width.back());
tp1.width.push_back(tp2.width.front());
tp1.width.insert(tp1.width.end(), tp2.width.begin(), tp2.width.end());
ep2.used = true;
ep.used = true;
connection_endpoints[ep2.other_end_point_idx].polyline_idx = ep.polyline_idx;
connection_endpoints[ep2.other_end_point_idx].other_end_point_idx = ep_idx;
connection_endpoints[ep.other_end_point_idx].other_end_point_idx = close_endpoint_idx;
tp2.clear();
break;
}
}
}
rotate_thick_polylines(thick_polylines_out, cos(-aligning_angle), sin(-aligning_angle)); rotate_thick_polylines(thick_polylines_out, cos(-aligning_angle), sin(-aligning_angle));
@ -439,3 +452,85 @@ ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const
} }
} // namespace Slic3r } // namespace Slic3r
// const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing;
// std::vector<Line> vertical_lines(2 * n_vlines + 1);
// coord_t y_min = bb.min.y();
// coord_t y_max = bb.max.y();
// for (size_t i = 0; i < n_vlines; i++) {
// coord_t x0 = bb.min.x() + i * double(scaled_spacing) - scaled_spacing * 0.5;
// coord_t x1 = bb.min.x() + i * double(scaled_spacing);
// vertical_lines[i * 2].a = Point{x0, y_min};
// vertical_lines[i * 2].b = Point{x0, y_max};
// vertical_lines[i * 2 + 1].a = Point{x1, y_min};
// vertical_lines[i * 2 + 1].b = Point{x1, y_max};
// }
// vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min};
// vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max};
// auto area_walls = AABBTreeLines::LinesDistancer<Line>{to_lines(internal_area)};
// std::vector<std::vector<std::pair<Vec<2, coord_t>, size_t>>> vertical_lines_intersections(vertical_lines.size());
// for (int i = 0; i < vertical_lines.size(); i++) {
// vertical_lines_intersections[i] = area_walls.intersections_with_line<true>(vertical_lines[i]);
// }
// std::vector<std::vector<Line>> polygon_sections(n_vlines);
// for (size_t i = 0; i < n_vlines; i++) {
// const auto &central_intersections = vertical_lines_intersections[i * 2 + 1];
// const auto &left_intersections = vertical_lines_intersections[i * 2];
// const auto &right_intersections = vertical_lines_intersections[i * 2 + 2];
// for (int intersection_idx = 0; intersection_idx < int(central_intersections.size()) - 1; intersection_idx++) {
// const auto &a = central_intersections[intersection_idx];
// const auto &b = central_intersections[intersection_idx + 1];
// if (area_walls.outside((a.first + b.first) / 2) < 0) {
// // central part is inside. Now check for reasonable side distances
// auto get_closest_intersection_squared_dist =
// [](const std::pair<Vec<2, coord_t>, size_t> &point,
// const std::vector<std::pair<Vec<2, coord_t>, size_t>> &sorted_intersections) {
// if (sorted_intersections.empty()) {
// return 0.0;
// }
// auto closest_higher = std::upper_bound(sorted_intersections.begin(), sorted_intersections.end(), point,
// [](const std::pair<Vec<2, coord_t>, size_t> &left,
// const std::pair<Vec<2, coord_t>, size_t> &right) {
// return left.first.y() < right.first.y();
// });
// if (closest_higher == sorted_intersections.end()) {
// return (point.first - sorted_intersections.back().first).cast<double>().squaredNorm();
// }
// double candidate_dist = (point.first - closest_higher->first).cast<double>().squaredNorm();
// if (closest_higher != sorted_intersections.begin()) {
// double closest_lower_dist = (point.first - (--closest_higher)->first).cast<double>().squaredNorm();
// candidate_dist = std::min(candidate_dist, closest_lower_dist);
// }
// return candidate_dist;
// };
// Point section_a = a.first;
// Point section_b = b.first;
// double max_a_squared_dist = std::max(get_closest_intersection_squared_dist(a, left_intersections),
// get_closest_intersection_squared_dist(a, right_intersections));
// double max_b_squared_dist = std::max(get_closest_intersection_squared_dist(b, left_intersections),
// get_closest_intersection_squared_dist(b, right_intersections));
// if (max_a_squared_dist > 0.3 * squared_distance_limit_reconnection) {
// section_a.y() += 4.0 * scaled_spacing;
// }
// if (max_b_squared_dist > 0.3 * squared_distance_limit_reconnection) {
// section_b.y() -= 4.0 * scaled_spacing;
// }
// if (section_a.y() < section_b.y()) {
// polygon_sections[i].emplace_back(section_a, section_b);
// }
// }
// }
// }