Initial port of Arachne from Cura.
This commit is contained in:
parent
4015a83acb
commit
556e2b71cc
62
src/libslic3r/Arachne/BeadingStrategy/BeadingStrategy.cpp
Normal file
62
src/libslic3r/Arachne/BeadingStrategy/BeadingStrategy.cpp
Normal file
@ -0,0 +1,62 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
#include "Point.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
BeadingStrategy::BeadingStrategy(coord_t optimal_width, coord_t default_transition_length, float transitioning_angle)
|
||||
: optimal_width(optimal_width)
|
||||
, default_transition_length(default_transition_length)
|
||||
, transitioning_angle(transitioning_angle)
|
||||
{
|
||||
name = "Unknown";
|
||||
}
|
||||
|
||||
coord_t BeadingStrategy::getTransitioningLength(coord_t lower_bead_count) const
|
||||
{
|
||||
if (lower_bead_count == 0)
|
||||
{
|
||||
return scaled<coord_t>(0.01);
|
||||
}
|
||||
return default_transition_length;
|
||||
}
|
||||
|
||||
float BeadingStrategy::getTransitionAnchorPos(coord_t lower_bead_count) const
|
||||
{
|
||||
coord_t lower_optimum = getOptimalThickness(lower_bead_count);
|
||||
coord_t transition_point = getTransitionThickness(lower_bead_count);
|
||||
coord_t upper_optimum = getOptimalThickness(lower_bead_count + 1);
|
||||
return 1.0 - float(transition_point - lower_optimum) / float(upper_optimum - lower_optimum);
|
||||
}
|
||||
|
||||
std::vector<coord_t> BeadingStrategy::getNonlinearThicknesses(coord_t lower_bead_count) const
|
||||
{
|
||||
return std::vector<coord_t>();
|
||||
}
|
||||
|
||||
std::string BeadingStrategy::toString() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
|
||||
coord_t BeadingStrategy::getDefaultTransitionLength() const
|
||||
{
|
||||
return default_transition_length;
|
||||
}
|
||||
|
||||
coord_t BeadingStrategy::getOptimalWidth() const
|
||||
{
|
||||
return optimal_width;
|
||||
}
|
||||
|
||||
double BeadingStrategy::getTransitioningAngle() const
|
||||
{
|
||||
return transitioning_angle;
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
112
src/libslic3r/Arachne/BeadingStrategy/BeadingStrategy.hpp
Normal file
112
src/libslic3r/Arachne/BeadingStrategy/BeadingStrategy.hpp
Normal file
@ -0,0 +1,112 @@
|
||||
// Copyright (c) 2021 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef BEADING_STRATEGY_H
|
||||
#define BEADING_STRATEGY_H
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "../../libslic3r.h"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
template<typename T> constexpr T pi_div(const T div) { return static_cast<T>(M_PI) / div; }
|
||||
|
||||
/*!
|
||||
* Mostly virtual base class template.
|
||||
*
|
||||
* Strategy for covering a given (constant) horizontal model thickness with a number of beads.
|
||||
*
|
||||
* The beads may have different widths.
|
||||
*
|
||||
* TODO: extend with printing order?
|
||||
*/
|
||||
class BeadingStrategy
|
||||
{
|
||||
public:
|
||||
/*!
|
||||
* The beading for a given horizontal model thickness.
|
||||
*/
|
||||
struct Beading
|
||||
{
|
||||
coord_t total_thickness;
|
||||
std::vector<coord_t> bead_widths; //! The line width of each bead from the outer inset inward
|
||||
std::vector<coord_t> toolpath_locations; //! The distance of the toolpath location of each bead from the outline
|
||||
coord_t left_over; //! The distance not covered by any bead; gap area.
|
||||
};
|
||||
|
||||
BeadingStrategy(coord_t optimal_width, coord_t default_transition_length, float transitioning_angle = pi_div(3));
|
||||
|
||||
virtual ~BeadingStrategy() {}
|
||||
|
||||
/*!
|
||||
* Retrieve the bead widths with which to cover a given thickness.
|
||||
*
|
||||
* Requirement: Given a constant \p bead_count the output of each bead width must change gradually along with the \p thickness.
|
||||
*
|
||||
* \note The \p bead_count might be different from the \ref BeadingStrategy::optimal_bead_count
|
||||
*/
|
||||
virtual Beading compute(coord_t thickness, coord_t bead_count) const = 0;
|
||||
|
||||
/*!
|
||||
* The ideal thickness for a given \param bead_count
|
||||
*/
|
||||
virtual coord_t getOptimalThickness(coord_t bead_count) const = 0;
|
||||
|
||||
/*!
|
||||
* The model thickness at which \ref BeadingStrategy::optimal_bead_count transitions from \p lower_bead_count to \p lower_bead_count + 1
|
||||
*/
|
||||
virtual coord_t getTransitionThickness(coord_t lower_bead_count) const = 0;
|
||||
|
||||
/*!
|
||||
* The number of beads should we ideally usefor a given model thickness
|
||||
*/
|
||||
virtual coord_t getOptimalBeadCount(coord_t thickness) const = 0;
|
||||
|
||||
/*!
|
||||
* The length of the transitioning region along the marked / significant regions of the skeleton.
|
||||
*
|
||||
* Transitions are used to smooth out the jumps in integer bead count; the jumps turn into ramps with some incline defined by their length.
|
||||
*/
|
||||
virtual coord_t getTransitioningLength(coord_t lower_bead_count) const;
|
||||
|
||||
/*!
|
||||
* The fraction of the transition length to put between the lower end of the transition and the point where the unsmoothed bead count jumps.
|
||||
*
|
||||
* Transitions are used to smooth out the jumps in integer bead count; the jumps turn into ramps which could be positioned relative to the jump location.
|
||||
*/
|
||||
virtual float getTransitionAnchorPos(coord_t lower_bead_count) const;
|
||||
|
||||
/*!
|
||||
* Get the locations in a bead count region where \ref BeadingStrategy::compute exhibits a bend in the widths.
|
||||
* Ordered from lower thickness to higher.
|
||||
*
|
||||
* This is used to insert extra support bones into the skeleton, so that the resulting beads in long trapezoids don't linearly change between the two ends.
|
||||
*/
|
||||
virtual std::vector<coord_t> getNonlinearThicknesses(coord_t lower_bead_count) const;
|
||||
|
||||
virtual std::string toString() const;
|
||||
|
||||
coord_t getOptimalWidth() const;
|
||||
coord_t getDefaultTransitionLength() const;
|
||||
double getTransitioningAngle() const;
|
||||
|
||||
protected:
|
||||
std::string name;
|
||||
|
||||
coord_t optimal_width; //! Optimal bead width, nominal width off the walls in 'ideal' circumstances.
|
||||
|
||||
coord_t default_transition_length; //! The length of the region to smoothly transfer between bead counts
|
||||
|
||||
/*!
|
||||
* The maximum angle between outline segments smaller than which we are going to add transitions
|
||||
* Equals 180 - the "limit bisector angle" from the paper
|
||||
*/
|
||||
double transitioning_angle;
|
||||
};
|
||||
|
||||
using BeadingStrategyPtr = std::unique_ptr<BeadingStrategy>;
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // BEADING_STRATEGY_H
|
@ -0,0 +1,97 @@
|
||||
//Copyright (c) 2021 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include "BeadingStrategyFactory.hpp"
|
||||
|
||||
#include "LimitedBeadingStrategy.hpp"
|
||||
#include "CenterDeviationBeadingStrategy.hpp"
|
||||
#include "WideningBeadingStrategy.hpp"
|
||||
#include "DistributedBeadingStrategy.hpp"
|
||||
#include "RedistributeBeadingStrategy.hpp"
|
||||
#include "OuterWallInsetBeadingStrategy.hpp"
|
||||
|
||||
#include <limits>
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
coord_t getWeightedAverage(const coord_t preferred_bead_width_outer, const coord_t preferred_bead_width_inner, const coord_t max_bead_count)
|
||||
{
|
||||
if(max_bead_count > preferred_bead_width_outer - preferred_bead_width_inner)
|
||||
{
|
||||
//The difference between outer and inner bead width would be spread out across so many lines that rounding errors would destroy the difference.
|
||||
//Also catches the case of max_bead_count being "infinite" (max integer).
|
||||
return (preferred_bead_width_outer + preferred_bead_width_inner) / 2;
|
||||
}
|
||||
if (max_bead_count > 2)
|
||||
{
|
||||
return ((preferred_bead_width_outer * 2) + preferred_bead_width_inner * (max_bead_count - 2)) / max_bead_count;
|
||||
}
|
||||
if (max_bead_count <= 0)
|
||||
{
|
||||
return preferred_bead_width_inner;
|
||||
}
|
||||
return preferred_bead_width_outer;
|
||||
}
|
||||
|
||||
BeadingStrategyPtr BeadingStrategyFactory::makeStrategy
|
||||
(
|
||||
const BeadingStrategyType type,
|
||||
const coord_t preferred_bead_width_outer,
|
||||
const coord_t preferred_bead_width_inner,
|
||||
const coord_t preferred_transition_length,
|
||||
const float transitioning_angle,
|
||||
const bool print_thin_walls,
|
||||
const coord_t min_bead_width,
|
||||
const coord_t min_feature_size,
|
||||
const double wall_split_middle_threshold,
|
||||
const double wall_add_middle_threshold,
|
||||
const coord_t max_bead_count,
|
||||
const coord_t outer_wall_offset,
|
||||
const int inward_distributed_center_wall_count,
|
||||
const double minimum_variable_line_width
|
||||
)
|
||||
{
|
||||
using std::make_unique;
|
||||
using std::move;
|
||||
const coord_t bar_preferred_wall_width = getWeightedAverage(preferred_bead_width_outer, preferred_bead_width_inner, max_bead_count);
|
||||
BeadingStrategyPtr ret;
|
||||
switch (type)
|
||||
{
|
||||
case BeadingStrategyType::Center:
|
||||
ret = make_unique<CenterDeviationBeadingStrategy>(bar_preferred_wall_width, transitioning_angle, wall_split_middle_threshold, wall_add_middle_threshold);
|
||||
break;
|
||||
case BeadingStrategyType::Distributed:
|
||||
ret = make_unique<DistributedBeadingStrategy>(bar_preferred_wall_width, preferred_transition_length, transitioning_angle, wall_split_middle_threshold, wall_add_middle_threshold, std::numeric_limits<int>::max());
|
||||
break;
|
||||
case BeadingStrategyType::InwardDistributed:
|
||||
ret = make_unique<DistributedBeadingStrategy>(bar_preferred_wall_width, preferred_transition_length, transitioning_angle, wall_split_middle_threshold, wall_add_middle_threshold, inward_distributed_center_wall_count);
|
||||
break;
|
||||
default:
|
||||
BOOST_LOG_TRIVIAL(error) << "Cannot make strategy!";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if(print_thin_walls)
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(debug) << "Applying the Widening Beading meta-strategy with minimum input width " << min_feature_size << " and minimum output width " << min_bead_width << ".";
|
||||
ret = make_unique<WideningBeadingStrategy>(move(ret), min_feature_size, min_bead_width);
|
||||
}
|
||||
if (max_bead_count > 0)
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(debug) << "Applying the Redistribute meta-strategy with outer-wall width = " << preferred_bead_width_outer << ", inner-wall width = " << preferred_bead_width_inner;
|
||||
ret = make_unique<RedistributeBeadingStrategy>(preferred_bead_width_outer, preferred_bead_width_inner, minimum_variable_line_width, move(ret));
|
||||
//Apply the LimitedBeadingStrategy last, since that adds a 0-width marker wall which other beading strategies shouldn't touch.
|
||||
BOOST_LOG_TRIVIAL(debug) << "Applying the Limited Beading meta-strategy with maximum bead count = " << max_bead_count << ".";
|
||||
ret = make_unique<LimitedBeadingStrategy>(max_bead_count, move(ret));
|
||||
}
|
||||
|
||||
if (outer_wall_offset > 0)
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(debug) << "Applying the OuterWallOffset meta-strategy with offset = " << outer_wall_offset << ".";
|
||||
ret = make_unique<OuterWallInsetBeadingStrategy>(outer_wall_offset, move(ret));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
} // namespace Slic3r::Arachne
|
@ -0,0 +1,36 @@
|
||||
// Copyright (c) 2021 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef BEADING_STRATEGY_FACTORY_H
|
||||
#define BEADING_STRATEGY_FACTORY_H
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
#include "../../Point.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
class BeadingStrategyFactory
|
||||
{
|
||||
public:
|
||||
static BeadingStrategyPtr makeStrategy
|
||||
(
|
||||
const BeadingStrategyType type,
|
||||
const coord_t preferred_bead_width_outer = scaled<coord_t>(0.0005),
|
||||
const coord_t preferred_bead_width_inner = scaled<coord_t>(0.0005),
|
||||
const coord_t preferred_transition_length = scaled<coord_t>(0.0004),
|
||||
const float transitioning_angle = M_PI / 4.0,
|
||||
const bool print_thin_walls = false,
|
||||
const coord_t min_bead_width = 0,
|
||||
const coord_t min_feature_size = 0,
|
||||
const double wall_split_middle_threshold = 0.5,
|
||||
const double wall_add_middle_threshold = 0.5,
|
||||
const coord_t max_bead_count = 0,
|
||||
const coord_t outer_wall_offset = 0,
|
||||
const int inward_distributed_center_wall_count = 2,
|
||||
const double minimum_variable_line_width = 0.5
|
||||
);
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // BEADING_STRATEGY_FACTORY_H
|
@ -0,0 +1,88 @@
|
||||
// Copyright (c) 2021 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
#include <algorithm>
|
||||
|
||||
#include "CenterDeviationBeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
CenterDeviationBeadingStrategy::CenterDeviationBeadingStrategy(const coord_t pref_bead_width,
|
||||
const double transitioning_angle,
|
||||
const double wall_split_middle_threshold,
|
||||
const double wall_add_middle_threshold)
|
||||
: BeadingStrategy(pref_bead_width, pref_bead_width / 2, transitioning_angle),
|
||||
minimum_line_width_split(pref_bead_width * wall_split_middle_threshold),
|
||||
minimum_line_width_add(pref_bead_width * wall_add_middle_threshold)
|
||||
{
|
||||
name = "CenterDeviationBeadingStrategy";
|
||||
}
|
||||
|
||||
CenterDeviationBeadingStrategy::Beading CenterDeviationBeadingStrategy::compute(coord_t thickness, coord_t bead_count) const
|
||||
{
|
||||
Beading ret;
|
||||
|
||||
ret.total_thickness = thickness;
|
||||
if (bead_count > 0)
|
||||
{
|
||||
// Set the bead widths
|
||||
ret.bead_widths = std::vector<coord_t>(static_cast<size_t>(bead_count), optimal_width);
|
||||
const coord_t optimal_thickness = getOptimalThickness(bead_count);
|
||||
const coord_t diff_thickness = thickness - optimal_thickness; //Amount of deviation. Either spread out over the middle 2 lines, or concentrated in the center line.
|
||||
const size_t center_bead_idx = ret.bead_widths.size() / 2;
|
||||
if (bead_count % 2 == 0) // Even lines
|
||||
{
|
||||
const coord_t inner_bead_widths = optimal_width + diff_thickness / 2;
|
||||
if (inner_bead_widths < minimum_line_width_add)
|
||||
{
|
||||
return compute(thickness, bead_count - 1);
|
||||
}
|
||||
ret.bead_widths[center_bead_idx - 1] = inner_bead_widths;
|
||||
ret.bead_widths[center_bead_idx] = inner_bead_widths;
|
||||
}
|
||||
else // Uneven lines
|
||||
{
|
||||
const coord_t inner_bead_widths = optimal_width + diff_thickness;
|
||||
if (inner_bead_widths < minimum_line_width_split)
|
||||
{
|
||||
return compute(thickness, bead_count - 1);
|
||||
}
|
||||
ret.bead_widths[center_bead_idx] = inner_bead_widths;
|
||||
}
|
||||
|
||||
// Set the center line location of the bead toolpaths.
|
||||
ret.toolpath_locations.resize(ret.bead_widths.size());
|
||||
ret.toolpath_locations.front() = ret.bead_widths.front() / 2;
|
||||
for (size_t bead_idx = 1; bead_idx < ret.bead_widths.size(); ++bead_idx)
|
||||
{
|
||||
ret.toolpath_locations[bead_idx] =
|
||||
ret.toolpath_locations[bead_idx - 1] + (ret.bead_widths[bead_idx] + ret.bead_widths[bead_idx - 1]) / 2;
|
||||
}
|
||||
ret.left_over = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret.left_over = thickness;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
coord_t CenterDeviationBeadingStrategy::getOptimalThickness(coord_t bead_count) const
|
||||
{
|
||||
return bead_count * optimal_width;
|
||||
}
|
||||
|
||||
coord_t CenterDeviationBeadingStrategy::getTransitionThickness(coord_t lower_bead_count) const
|
||||
{
|
||||
return lower_bead_count * optimal_width + (lower_bead_count % 2 == 1 ? minimum_line_width_split : minimum_line_width_add);
|
||||
}
|
||||
|
||||
coord_t CenterDeviationBeadingStrategy::getOptimalBeadCount(coord_t thickness) const
|
||||
{
|
||||
const coord_t naive_count = thickness / optimal_width; // How many lines we can fit in for sure.
|
||||
const coord_t remainder = thickness - naive_count * optimal_width; // Space left after fitting that many lines.
|
||||
const coord_t minimum_line_width = naive_count % 2 == 1 ? minimum_line_width_split : minimum_line_width_add;
|
||||
return naive_count + (remainder > minimum_line_width); // If there's enough space, fit an extra one.
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
@ -0,0 +1,42 @@
|
||||
// Copyright (c) 2021 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
|
||||
#ifndef CENTER_DEVIATION_BEADING_STRATEGY_H
|
||||
#define CENTER_DEVIATION_BEADING_STRATEGY_H
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* This beading strategy makes the deviation in the thickness of the part
|
||||
* entirely compensated by the innermost wall.
|
||||
*
|
||||
* The outermost walls all use the ideal width, as far as possible.
|
||||
*/
|
||||
class CenterDeviationBeadingStrategy : public BeadingStrategy
|
||||
{
|
||||
private:
|
||||
// For uneven numbers of lines: Minimum line width for which the middle line will be split into two lines.
|
||||
coord_t minimum_line_width_split;
|
||||
|
||||
// For even numbers of lines: Minimum line width for which a new middle line will be added between the two innermost lines.
|
||||
coord_t minimum_line_width_add;
|
||||
|
||||
public:
|
||||
CenterDeviationBeadingStrategy(coord_t pref_bead_width,
|
||||
double transitioning_angle,
|
||||
double wall_split_middle_threshold,
|
||||
double wall_add_middle_threshold);
|
||||
|
||||
~CenterDeviationBeadingStrategy() override{};
|
||||
Beading compute(coord_t thickness, coord_t bead_count) const override;
|
||||
coord_t getOptimalThickness(coord_t bead_count) const override;
|
||||
coord_t getTransitionThickness(coord_t lower_bead_count) const override;
|
||||
coord_t getOptimalBeadCount(coord_t thickness) const override;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // CENTER_DEVIATION_BEADING_STRATEGY_H
|
@ -0,0 +1,110 @@
|
||||
// Copyright (c) 2021 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
#include <numeric>
|
||||
#include "DistributedBeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
DistributedBeadingStrategy::DistributedBeadingStrategy(const coord_t optimal_width,
|
||||
const coord_t default_transition_length,
|
||||
const double transitioning_angle,
|
||||
const double wall_split_middle_threshold,
|
||||
const double wall_add_middle_threshold,
|
||||
const int distribution_radius)
|
||||
: BeadingStrategy(optimal_width, default_transition_length, transitioning_angle)
|
||||
, wall_split_middle_threshold(wall_split_middle_threshold)
|
||||
, wall_add_middle_threshold(wall_add_middle_threshold)
|
||||
{
|
||||
if(distribution_radius >= 2)
|
||||
{
|
||||
one_over_distribution_radius_squared = 1.0f / (distribution_radius - 1) * 1.0f / (distribution_radius - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
one_over_distribution_radius_squared = 1.0f / 1 * 1.0f / 1;
|
||||
}
|
||||
name = "DistributedBeadingStrategy";
|
||||
}
|
||||
|
||||
DistributedBeadingStrategy::Beading DistributedBeadingStrategy::compute(coord_t thickness, coord_t bead_count) const
|
||||
{
|
||||
Beading ret;
|
||||
|
||||
ret.total_thickness = thickness;
|
||||
if (bead_count > 2)
|
||||
{
|
||||
const coord_t to_be_divided = thickness - bead_count * optimal_width;
|
||||
const float middle = static_cast<float>(bead_count - 1) / 2;
|
||||
|
||||
const auto getWeight = [middle, this](coord_t bead_idx)
|
||||
{
|
||||
const float dev_from_middle = bead_idx - middle;
|
||||
return std::max(0.0f, 1.0f - one_over_distribution_radius_squared * dev_from_middle * dev_from_middle);
|
||||
};
|
||||
|
||||
std::vector<float> weights;
|
||||
weights.resize(bead_count);
|
||||
for (coord_t bead_idx = 0; bead_idx < bead_count; bead_idx++)
|
||||
{
|
||||
weights[bead_idx] = getWeight(bead_idx);
|
||||
}
|
||||
|
||||
const float total_weight = std::accumulate(weights.cbegin(), weights.cend(), 0.f);
|
||||
for (coord_t bead_idx = 0; bead_idx < bead_count; bead_idx++)
|
||||
{
|
||||
const float weight_fraction = weights[bead_idx] / total_weight;
|
||||
const coord_t splitup_left_over_weight = to_be_divided * weight_fraction;
|
||||
const coord_t width = optimal_width + splitup_left_over_weight;
|
||||
if (bead_idx == 0)
|
||||
{
|
||||
ret.toolpath_locations.emplace_back(width / 2);
|
||||
}
|
||||
else
|
||||
{
|
||||
ret.toolpath_locations.emplace_back(ret.toolpath_locations.back() + (ret.bead_widths.back() + width) / 2);
|
||||
}
|
||||
ret.bead_widths.emplace_back(width);
|
||||
}
|
||||
ret.left_over = 0;
|
||||
}
|
||||
else if (bead_count == 2)
|
||||
{
|
||||
const coord_t outer_width = thickness / 2;
|
||||
ret.bead_widths.emplace_back(outer_width);
|
||||
ret.bead_widths.emplace_back(outer_width);
|
||||
ret.toolpath_locations.emplace_back(outer_width / 2);
|
||||
ret.toolpath_locations.emplace_back(thickness - outer_width / 2);
|
||||
ret.left_over = 0;
|
||||
}
|
||||
else if (bead_count == 1)
|
||||
{
|
||||
const coord_t outer_width = thickness;
|
||||
ret.bead_widths.emplace_back(outer_width);
|
||||
ret.toolpath_locations.emplace_back(outer_width / 2);
|
||||
ret.left_over = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret.left_over = thickness;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
coord_t DistributedBeadingStrategy::getOptimalThickness(coord_t bead_count) const
|
||||
{
|
||||
return bead_count * optimal_width;
|
||||
}
|
||||
|
||||
coord_t DistributedBeadingStrategy::getTransitionThickness(coord_t lower_bead_count) const
|
||||
{
|
||||
return lower_bead_count * optimal_width + optimal_width * (lower_bead_count % 2 == 1 ? wall_split_middle_threshold : wall_add_middle_threshold);
|
||||
}
|
||||
|
||||
coord_t DistributedBeadingStrategy::getOptimalBeadCount(coord_t thickness) const
|
||||
{
|
||||
return (thickness + optimal_width / 2) / optimal_width;
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
@ -0,0 +1,48 @@
|
||||
// Copyright (c) 2021 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef DISTRIBUTED_BEADING_STRATEGY_H
|
||||
#define DISTRIBUTED_BEADING_STRATEGY_H
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* This beading strategy chooses a wall count that would make the line width
|
||||
* deviate the least from the optimal line width, and then distributes the lines
|
||||
* evenly among the thickness available.
|
||||
*/
|
||||
class DistributedBeadingStrategy : public BeadingStrategy
|
||||
{
|
||||
protected:
|
||||
// For uneven numbers of lines: Minimum factor of the optimal width for which the middle line will be split into two lines.
|
||||
double wall_split_middle_threshold;
|
||||
|
||||
// For even numbers of lines: Minimum factor of the optimal width for which a new middle line will be added between the two innermost lines.
|
||||
double wall_add_middle_threshold;
|
||||
|
||||
float one_over_distribution_radius_squared; // (1 / distribution_radius)^2
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \param distribution_radius the radius (in number of beads) over which to distribute the discrepancy between the feature size and the optimal thickness
|
||||
*/
|
||||
DistributedBeadingStrategy( const coord_t optimal_width,
|
||||
const coord_t default_transition_length,
|
||||
const double transitioning_angle,
|
||||
const double wall_split_middle_threshold,
|
||||
const double wall_add_middle_threshold,
|
||||
const int distribution_radius);
|
||||
|
||||
virtual ~DistributedBeadingStrategy() override {}
|
||||
|
||||
Beading compute(coord_t thickness, coord_t bead_count) const override;
|
||||
coord_t getOptimalThickness(coord_t bead_count) const override;
|
||||
coord_t getTransitionThickness(coord_t lower_bead_count) const override;
|
||||
coord_t getOptimalBeadCount(coord_t thickness) const override;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // DISTRIBUTED_BEADING_STRATEGY_H
|
136
src/libslic3r/Arachne/BeadingStrategy/LimitedBeadingStrategy.cpp
Normal file
136
src/libslic3r/Arachne/BeadingStrategy/LimitedBeadingStrategy.cpp
Normal file
@ -0,0 +1,136 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include <cassert>
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
#include "LimitedBeadingStrategy.hpp"
|
||||
#include "Point.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
std::string LimitedBeadingStrategy::toString() const
|
||||
{
|
||||
return std::string("LimitedBeadingStrategy+") + parent->toString();
|
||||
}
|
||||
|
||||
coord_t LimitedBeadingStrategy::getTransitioningLength(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitioningLength(lower_bead_count);
|
||||
}
|
||||
|
||||
float LimitedBeadingStrategy::getTransitionAnchorPos(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitionAnchorPos(lower_bead_count);
|
||||
}
|
||||
|
||||
LimitedBeadingStrategy::LimitedBeadingStrategy(const coord_t max_bead_count, BeadingStrategyPtr parent)
|
||||
: BeadingStrategy(parent->getOptimalWidth(), /*default_transition_length=*/-1, parent->getTransitioningAngle())
|
||||
, max_bead_count(max_bead_count)
|
||||
, parent(std::move(parent))
|
||||
{
|
||||
if (max_bead_count % 2 == 1)
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(warning) << "LimitedBeadingStrategy with odd bead count is odd indeed!";
|
||||
}
|
||||
}
|
||||
|
||||
LimitedBeadingStrategy::Beading LimitedBeadingStrategy::compute(coord_t thickness, coord_t bead_count) const
|
||||
{
|
||||
if (bead_count <= max_bead_count)
|
||||
{
|
||||
Beading ret = parent->compute(thickness, bead_count);
|
||||
bead_count = ret.toolpath_locations.size();
|
||||
|
||||
if (bead_count % 2 == 0 && bead_count == max_bead_count)
|
||||
{
|
||||
const coord_t innermost_toolpath_location = ret.toolpath_locations[max_bead_count / 2 - 1];
|
||||
const coord_t innermost_toolpath_width = ret.bead_widths[max_bead_count / 2 - 1];
|
||||
ret.toolpath_locations.insert(ret.toolpath_locations.begin() + max_bead_count / 2, innermost_toolpath_location + innermost_toolpath_width / 2);
|
||||
ret.bead_widths.insert(ret.bead_widths.begin() + max_bead_count / 2, 0);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
assert(bead_count == max_bead_count + 1);
|
||||
if(bead_count != max_bead_count + 1)
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(warning) << "Too many beads! " << bead_count << " != " << max_bead_count + 1;
|
||||
}
|
||||
|
||||
coord_t optimal_thickness = parent->getOptimalThickness(max_bead_count);
|
||||
Beading ret = parent->compute(optimal_thickness, max_bead_count);
|
||||
bead_count = ret.toolpath_locations.size();
|
||||
ret.left_over += thickness - ret.total_thickness;
|
||||
ret.total_thickness = thickness;
|
||||
|
||||
// Enforce symmetry
|
||||
if (bead_count % 2 == 1)
|
||||
{
|
||||
ret.toolpath_locations[bead_count / 2] = thickness / 2;
|
||||
ret.bead_widths[bead_count / 2] = thickness - optimal_thickness;
|
||||
}
|
||||
for (coord_t bead_idx = 0; bead_idx < (bead_count + 1) / 2; bead_idx++)
|
||||
{
|
||||
ret.toolpath_locations[bead_count - 1 - bead_idx] = thickness - ret.toolpath_locations[bead_idx];
|
||||
}
|
||||
|
||||
//Create a "fake" inner wall with 0 width to indicate the edge of the walled area.
|
||||
//This wall can then be used by other structures to e.g. fill the infill area adjacent to the variable-width walls.
|
||||
coord_t innermost_toolpath_location = ret.toolpath_locations[max_bead_count / 2 - 1];
|
||||
coord_t innermost_toolpath_width = ret.bead_widths[max_bead_count / 2 - 1];
|
||||
ret.toolpath_locations.insert(ret.toolpath_locations.begin() + max_bead_count / 2, innermost_toolpath_location + innermost_toolpath_width / 2);
|
||||
ret.bead_widths.insert(ret.bead_widths.begin() + max_bead_count / 2, 0);
|
||||
|
||||
//Symmetry on both sides. Symmetry is guaranteed since this code is stopped early if the bead_count <= max_bead_count, and never reaches this point then.
|
||||
const size_t opposite_bead = bead_count - (max_bead_count / 2 - 1);
|
||||
innermost_toolpath_location = ret.toolpath_locations[opposite_bead];
|
||||
innermost_toolpath_width = ret.bead_widths[opposite_bead];
|
||||
ret.toolpath_locations.insert(ret.toolpath_locations.begin() + opposite_bead, innermost_toolpath_location - innermost_toolpath_width / 2);
|
||||
ret.bead_widths.insert(ret.bead_widths.begin() + opposite_bead, 0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
coord_t LimitedBeadingStrategy::getOptimalThickness(coord_t bead_count) const
|
||||
{
|
||||
if (bead_count <= max_bead_count)
|
||||
{
|
||||
return parent->getOptimalThickness(bead_count);
|
||||
}
|
||||
assert(false);
|
||||
return scaled<coord_t>(1000.); // 1 meter (Cura was returning 10 meter)
|
||||
}
|
||||
|
||||
coord_t LimitedBeadingStrategy::getTransitionThickness(coord_t lower_bead_count) const
|
||||
{
|
||||
if (lower_bead_count < max_bead_count)
|
||||
{
|
||||
return parent->getTransitionThickness(lower_bead_count);
|
||||
}
|
||||
if (lower_bead_count == max_bead_count)
|
||||
{
|
||||
return parent->getOptimalThickness(lower_bead_count + 1) - scaled<coord_t>(0.01);
|
||||
}
|
||||
assert(false);
|
||||
return scaled<coord_t>(900.); // 0.9 meter;
|
||||
}
|
||||
|
||||
coord_t LimitedBeadingStrategy::getOptimalBeadCount(coord_t thickness) const
|
||||
{
|
||||
coord_t parent_bead_count = parent->getOptimalBeadCount(thickness);
|
||||
if (parent_bead_count <= max_bead_count)
|
||||
{
|
||||
return parent->getOptimalBeadCount(thickness);
|
||||
}
|
||||
else if (parent_bead_count == max_bead_count + 1)
|
||||
{
|
||||
if (thickness < parent->getOptimalThickness(max_bead_count + 1) - scaled<coord_t>(0.01))
|
||||
return max_bead_count;
|
||||
else
|
||||
return max_bead_count + 1;
|
||||
}
|
||||
else return max_bead_count + 1;
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
@ -0,0 +1,49 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef LIMITED_BEADING_STRATEGY_H
|
||||
#define LIMITED_BEADING_STRATEGY_H
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* This is a meta-strategy that can be applied on top of any other beading
|
||||
* strategy, which limits the thickness of the walls to the thickness that the
|
||||
* lines can reasonably print.
|
||||
*
|
||||
* The width of the wall is limited to the maximum number of contours times the
|
||||
* maximum width of each of these contours.
|
||||
*
|
||||
* If the width of the wall gets limited, this strategy outputs one additional
|
||||
* bead with 0 width. This bead is used to denote the limits of the walled area.
|
||||
* Other structures can then use this border to align their structures to, such
|
||||
* as to create correctly overlapping infill or skin, or to align the infill
|
||||
* pattern to any extra infill walls.
|
||||
*/
|
||||
class LimitedBeadingStrategy : public BeadingStrategy
|
||||
{
|
||||
public:
|
||||
LimitedBeadingStrategy(const coord_t max_bead_count, BeadingStrategyPtr parent);
|
||||
|
||||
virtual ~LimitedBeadingStrategy() override = default;
|
||||
|
||||
Beading compute(coord_t thickness, coord_t bead_count) const override;
|
||||
coord_t getOptimalThickness(coord_t bead_count) const override;
|
||||
coord_t getTransitionThickness(coord_t lower_bead_count) const override;
|
||||
coord_t getOptimalBeadCount(coord_t thickness) const override;
|
||||
virtual std::string toString() const override;
|
||||
|
||||
coord_t getTransitioningLength(coord_t lower_bead_count) const override;
|
||||
|
||||
float getTransitionAnchorPos(coord_t lower_bead_count) const override;
|
||||
|
||||
protected:
|
||||
const coord_t max_bead_count;
|
||||
const BeadingStrategyPtr parent;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // LIMITED_DISTRIBUTED_BEADING_STRATEGY_H
|
@ -0,0 +1,62 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include "OuterWallInsetBeadingStrategy.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
OuterWallInsetBeadingStrategy::OuterWallInsetBeadingStrategy(coord_t outer_wall_offset, BeadingStrategyPtr parent) :
|
||||
BeadingStrategy(parent->getOptimalWidth(), parent->getDefaultTransitionLength(), parent->getTransitioningAngle()),
|
||||
parent(std::move(parent)),
|
||||
outer_wall_offset(outer_wall_offset)
|
||||
{
|
||||
name = "OuterWallOfsetBeadingStrategy";
|
||||
}
|
||||
|
||||
|
||||
coord_t OuterWallInsetBeadingStrategy::getOptimalThickness(coord_t bead_count) const
|
||||
{
|
||||
return parent->getOptimalThickness(bead_count);
|
||||
}
|
||||
|
||||
coord_t OuterWallInsetBeadingStrategy::getTransitionThickness(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitionThickness(lower_bead_count);
|
||||
}
|
||||
|
||||
coord_t OuterWallInsetBeadingStrategy::getOptimalBeadCount(coord_t thickness) const
|
||||
{
|
||||
return parent->getOptimalBeadCount(thickness);
|
||||
}
|
||||
|
||||
coord_t OuterWallInsetBeadingStrategy::getTransitioningLength(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitioningLength(lower_bead_count);
|
||||
}
|
||||
|
||||
std::string OuterWallInsetBeadingStrategy::toString() const
|
||||
{
|
||||
return std::string("OuterWallOfsetBeadingStrategy+") + parent->toString();
|
||||
}
|
||||
|
||||
BeadingStrategy::Beading OuterWallInsetBeadingStrategy::compute(coord_t thickness, coord_t bead_count) const
|
||||
{
|
||||
Beading ret = parent->compute(thickness, bead_count);
|
||||
|
||||
// Actual count and thickness as represented by extant walls. Don't count any potential zero-width 'signaling' walls.
|
||||
bead_count = std::count_if(ret.bead_widths.begin(), ret.bead_widths.end(), [](const coord_t width) { return width > 0; });
|
||||
|
||||
// No need to apply any inset if there is just a single wall.
|
||||
if (bead_count < 2)
|
||||
{
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Actually move the outer wall inside. Ensure that the outer wall never goes beyond the middle line.
|
||||
ret.toolpath_locations[0] = std::min(ret.toolpath_locations[0] + outer_wall_offset, thickness / 2);
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
@ -0,0 +1,35 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef OUTER_WALL_INSET_BEADING_STRATEGY_H
|
||||
#define OUTER_WALL_INSET_BEADING_STRATEGY_H
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
/*
|
||||
* This is a meta strategy that allows for the outer wall to be inset towards the inside of the model.
|
||||
*/
|
||||
class OuterWallInsetBeadingStrategy : public BeadingStrategy
|
||||
{
|
||||
public:
|
||||
OuterWallInsetBeadingStrategy(coord_t outer_wall_offset, BeadingStrategyPtr parent);
|
||||
|
||||
virtual ~OuterWallInsetBeadingStrategy() = default;
|
||||
|
||||
Beading compute(coord_t thickness, coord_t bead_count) const override;
|
||||
|
||||
coord_t getOptimalThickness(coord_t bead_count) const override;
|
||||
coord_t getTransitionThickness(coord_t lower_bead_count) const override;
|
||||
coord_t getOptimalBeadCount(coord_t thickness) const override;
|
||||
coord_t getTransitioningLength(coord_t lower_bead_count) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
|
||||
private:
|
||||
BeadingStrategyPtr parent;
|
||||
coord_t outer_wall_offset;
|
||||
};
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // OUTER_WALL_INSET_BEADING_STRATEGY_H
|
@ -0,0 +1,180 @@
|
||||
//Copyright (c) 2021 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include "RedistributeBeadingStrategy.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
RedistributeBeadingStrategy::RedistributeBeadingStrategy( const coord_t optimal_width_outer,
|
||||
const coord_t optimal_width_inner,
|
||||
const double minimum_variable_line_width,
|
||||
BeadingStrategyPtr parent) :
|
||||
BeadingStrategy(parent->getOptimalWidth(), parent->getDefaultTransitionLength(), parent->getTransitioningAngle()),
|
||||
parent(std::move(parent)),
|
||||
optimal_width_outer(optimal_width_outer),
|
||||
optimal_width_inner(optimal_width_inner),
|
||||
minimum_variable_line_width(minimum_variable_line_width)
|
||||
{
|
||||
name = "RedistributeBeadingStrategy";
|
||||
}
|
||||
|
||||
coord_t RedistributeBeadingStrategy::getOptimalThickness(coord_t bead_count) const
|
||||
{
|
||||
const coord_t inner_bead_count = bead_count > 2 ? bead_count - 2 : 0;
|
||||
const coord_t outer_bead_count = bead_count - inner_bead_count;
|
||||
|
||||
return parent->getOptimalThickness(inner_bead_count) + optimal_width_outer * outer_bead_count;
|
||||
}
|
||||
|
||||
coord_t RedistributeBeadingStrategy::getTransitionThickness(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitionThickness(lower_bead_count);
|
||||
}
|
||||
|
||||
coord_t RedistributeBeadingStrategy::getOptimalBeadCount(coord_t thickness) const
|
||||
{
|
||||
return parent->getOptimalBeadCount(thickness);
|
||||
}
|
||||
|
||||
coord_t RedistributeBeadingStrategy::getTransitioningLength(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitioningLength(lower_bead_count);
|
||||
}
|
||||
|
||||
float RedistributeBeadingStrategy::getTransitionAnchorPos(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitionAnchorPos(lower_bead_count);
|
||||
}
|
||||
|
||||
std::string RedistributeBeadingStrategy::toString() const
|
||||
{
|
||||
return std::string("RedistributeBeadingStrategy+") + parent->toString();
|
||||
}
|
||||
|
||||
BeadingStrategy::Beading RedistributeBeadingStrategy::compute(coord_t thickness, coord_t bead_count) const
|
||||
{
|
||||
Beading ret;
|
||||
if (bead_count > 2)
|
||||
{
|
||||
const coord_t inner_transition_width = optimal_width_inner * minimum_variable_line_width;
|
||||
const coord_t outer_bead_width =
|
||||
getOptimalOuterBeadWidth(thickness, optimal_width_outer, inner_transition_width);
|
||||
|
||||
// Outer wall is locked in size and position for wall regions of 3 and higher which have at least a
|
||||
// thickness equal to two times the optimal outer width and the minimal inner wall width.
|
||||
const coord_t virtual_thickness = thickness - outer_bead_width * 2;
|
||||
const coord_t virtual_bead_count = bead_count - 2;
|
||||
|
||||
// Calculate the beads and widths of the inner walls only
|
||||
ret = parent->compute(virtual_thickness, virtual_bead_count);
|
||||
|
||||
// Insert the outer beads
|
||||
ret.bead_widths.insert(ret.bead_widths.begin(), outer_bead_width);
|
||||
ret.bead_widths.emplace_back(outer_bead_width);
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = parent->compute(thickness, bead_count);
|
||||
}
|
||||
|
||||
// Filter out beads that violate the minimum inner wall widths and recompute if necessary
|
||||
const coord_t outer_transition_width = optimal_width_inner * minimum_variable_line_width;
|
||||
const bool removed_inner_beads = validateInnerBeadWidths(ret, outer_transition_width);
|
||||
if (removed_inner_beads)
|
||||
{
|
||||
ret = compute(thickness, bead_count - 1);
|
||||
}
|
||||
|
||||
// Ensure that the positions of the beads are distributed over the thickness
|
||||
resetToolPathLocations(ret, thickness);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
coord_t RedistributeBeadingStrategy::getOptimalOuterBeadWidth(const coord_t thickness, const coord_t optimal_width_outer, const coord_t minimum_width_inner)
|
||||
{
|
||||
const coord_t total_outer_optimal_width = optimal_width_outer * 2;
|
||||
coord_t outer_bead_width = thickness / 2;
|
||||
if (total_outer_optimal_width < thickness)
|
||||
{
|
||||
if (total_outer_optimal_width + minimum_width_inner > thickness)
|
||||
{
|
||||
outer_bead_width -= minimum_width_inner / 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
outer_bead_width = optimal_width_outer;
|
||||
}
|
||||
}
|
||||
return outer_bead_width;
|
||||
}
|
||||
|
||||
void RedistributeBeadingStrategy::resetToolPathLocations(BeadingStrategy::Beading& beading, const coord_t thickness)
|
||||
{
|
||||
const size_t bead_count = beading.bead_widths.size();
|
||||
beading.toolpath_locations.resize(bead_count);
|
||||
|
||||
if (bead_count < 1)
|
||||
{
|
||||
beading.toolpath_locations.resize(0);
|
||||
beading.total_thickness = thickness;
|
||||
beading.left_over = thickness;
|
||||
return;
|
||||
}
|
||||
|
||||
// Update the first half of the toolpath-locations with the updated bead-widths (starting from 0, up to half):
|
||||
coord_t last_coord = 0;
|
||||
coord_t last_width = 0;
|
||||
for (size_t i_location = 0; i_location < bead_count / 2; ++i_location)
|
||||
{
|
||||
beading.toolpath_locations[i_location] = last_coord + (last_width + beading.bead_widths[i_location]) / 2;
|
||||
last_coord = beading.toolpath_locations[i_location];
|
||||
last_width = beading.bead_widths[i_location];
|
||||
}
|
||||
|
||||
// Handle the position of any middle wall (note that the width will already have been set correctly):
|
||||
if (bead_count % 2 == 1)
|
||||
{
|
||||
beading.toolpath_locations[bead_count / 2] = thickness / 2;
|
||||
}
|
||||
|
||||
// Update the last half of the toolpath-locations with the updated bead-widths (starting from thickness, down to half):
|
||||
last_coord = thickness;
|
||||
last_width = 0;
|
||||
for (size_t i_location = bead_count - 1; i_location >= bead_count - (bead_count / 2); --i_location)
|
||||
{
|
||||
beading.toolpath_locations[i_location] = last_coord - (last_width + beading.bead_widths[i_location]) / 2;
|
||||
last_coord = beading.toolpath_locations[i_location];
|
||||
last_width = beading.bead_widths[i_location];
|
||||
}
|
||||
|
||||
// Ensure correct total and left over thickness
|
||||
beading.total_thickness = thickness;
|
||||
beading.left_over = thickness - std::accumulate(beading.bead_widths.cbegin(), beading.bead_widths.cend(), static_cast<coord_t>(0));
|
||||
}
|
||||
|
||||
bool RedistributeBeadingStrategy::validateInnerBeadWidths(BeadingStrategy::Beading& beading, const coord_t minimum_width_inner)
|
||||
{
|
||||
// Filter out bead_widths that violate the transition width and recalculate if needed
|
||||
const size_t unfiltered_beads = beading.bead_widths.size();
|
||||
if(unfiltered_beads <= 2) //Outer walls are exempt. If there are 2 walls the range below will be empty. If there is 1 or 0 walls it would be invalid.
|
||||
{
|
||||
return false;
|
||||
}
|
||||
auto inner_begin = std::next(beading.bead_widths.begin());
|
||||
auto inner_end = std::prev(beading.bead_widths.end());
|
||||
beading.bead_widths.erase(
|
||||
std::remove_if(inner_begin, inner_end,
|
||||
[&minimum_width_inner](const coord_t width)
|
||||
{
|
||||
return width < minimum_width_inner;
|
||||
}),
|
||||
inner_end);
|
||||
return unfiltered_beads != beading.bead_widths.size();
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
@ -0,0 +1,98 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef REDISTRIBUTE_DISTRIBUTED_BEADING_STRATEGY_H
|
||||
#define REDISTRIBUTE_DISTRIBUTED_BEADING_STRATEGY_H
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
/*!
|
||||
* A meta-beading-strategy that takes outer and inner wall widths into account.
|
||||
*
|
||||
* The outer wall will try to keep a constant width by only applying the beading strategy on the inner walls. This
|
||||
* ensures that this outer wall doesn't react to changes happening to inner walls. It will limit print artifacts on
|
||||
* the surface of the print. Although this strategy technically deviates from the original philosophy of the paper.
|
||||
* It will generally results in better prints because of a smoother motion and less variation in extrusion width in
|
||||
* the outer walls.
|
||||
*
|
||||
* If the thickness of the model is less then two times the optimal outer wall width and once the minimum inner wall
|
||||
* width it will keep the minimum inner wall at a minimum constant and vary the outer wall widths symmetrical. Until
|
||||
* The thickness of the model is that of at least twice the optimal outer wall width it will then use two
|
||||
* symmetrical outer walls only. Until it transitions into a single outer wall. These last scenario's are always
|
||||
* symmetrical in nature, disregarding the user specified strategy.
|
||||
*/
|
||||
class RedistributeBeadingStrategy : public BeadingStrategy
|
||||
{
|
||||
public:
|
||||
/*!
|
||||
* /param optimal_width_outer Outer wall width, guaranteed to be the actual (save rounding errors) at a
|
||||
* bead count if the parent strategies' optimum bead width is a weighted
|
||||
* average of the outer and inner walls at that bead count.
|
||||
* /param optimal_width_outer Inner wall width, guaranteed to be the actual (save rounding errors) at a
|
||||
* bead count if the parent strategies' optimum bead width is a weighted
|
||||
* average of the outer and inner walls at that bead count.
|
||||
* /param minimum_variable_line_width Minimum factor that the variable line might deviate from the optimal width.
|
||||
*/
|
||||
RedistributeBeadingStrategy(const coord_t optimal_width_outer,
|
||||
const coord_t optimal_width_inner,
|
||||
const double minimum_variable_line_width,
|
||||
BeadingStrategyPtr parent);
|
||||
|
||||
virtual ~RedistributeBeadingStrategy() override = default;
|
||||
|
||||
Beading compute(coord_t thickness, coord_t bead_count) const override;
|
||||
|
||||
coord_t getOptimalThickness(coord_t bead_count) const override;
|
||||
coord_t getTransitionThickness(coord_t lower_bead_count) const override;
|
||||
coord_t getOptimalBeadCount(coord_t thickness) const override;
|
||||
coord_t getTransitioningLength(coord_t lower_bead_count) const override;
|
||||
float getTransitionAnchorPos(coord_t lower_bead_count) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
|
||||
protected:
|
||||
/*!
|
||||
* Determine the outer bead width.
|
||||
*
|
||||
* According to the following logic:
|
||||
* - If the thickness of the model is more then twice the optimal outer bead width and the minimum inner bead
|
||||
* width it will return the optimal outer bead width.
|
||||
* - If the thickness is less then twice the optimal outer bead width and the minimum inner bead width, but
|
||||
* more them twice the optimal outer bead with it will return the optimal bead width minus half the inner bead
|
||||
* width.
|
||||
* - If the thickness is less then twice the optimal outer bead width it will return half the thickness as
|
||||
* outer bead width
|
||||
*
|
||||
* \param thickness Thickness of the total beads.
|
||||
* \param optimal_width_outer User specified optimal outer bead width.
|
||||
* \param minimum_width_inner Inner bead width times the minimum variable line width.
|
||||
* \return The outer bead width.
|
||||
*/
|
||||
static coord_t getOptimalOuterBeadWidth(coord_t thickness, coord_t optimal_width_outer, coord_t minimum_width_inner);
|
||||
|
||||
/*!
|
||||
* Moves the beads towards the outer edges of thickness and ensures that the outer walls are locked in location
|
||||
* \param beading The beading instance.
|
||||
* \param thickness The thickness of the bead.
|
||||
*/
|
||||
static void resetToolPathLocations(Beading& beading, coord_t thickness);
|
||||
|
||||
/*!
|
||||
* Filters and validates the beads, to ensure that all inner beads are at least the minimum bead width.
|
||||
*
|
||||
* \param beading The beading instance.
|
||||
* \param minimum_width_inner Inner bead width times the minimum variable line width.
|
||||
* \return true if beads are removed.
|
||||
*/
|
||||
static bool validateInnerBeadWidths(Beading& beading, coord_t minimum_width_inner);
|
||||
|
||||
BeadingStrategyPtr parent;
|
||||
coord_t optimal_width_outer;
|
||||
coord_t optimal_width_inner;
|
||||
double minimum_variable_line_width;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // INWARD_DISTRIBUTED_BEADING_STRATEGY_H
|
@ -0,0 +1,89 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include "WideningBeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
WideningBeadingStrategy::WideningBeadingStrategy(BeadingStrategyPtr parent, const coord_t min_input_width, const coord_t min_output_width)
|
||||
: BeadingStrategy(parent->getOptimalWidth(), /*default_transition_length=*/-1, parent->getTransitioningAngle())
|
||||
, parent(std::move(parent))
|
||||
, min_input_width(min_input_width)
|
||||
, min_output_width(min_output_width)
|
||||
{
|
||||
}
|
||||
|
||||
std::string WideningBeadingStrategy::toString() const
|
||||
{
|
||||
return std::string("Widening+") + parent->toString();
|
||||
}
|
||||
|
||||
WideningBeadingStrategy::Beading WideningBeadingStrategy::compute(coord_t thickness, coord_t bead_count) const
|
||||
{
|
||||
if (thickness < optimal_width)
|
||||
{
|
||||
Beading ret;
|
||||
ret.total_thickness = thickness;
|
||||
if (thickness >= min_input_width)
|
||||
{
|
||||
ret.bead_widths.emplace_back(std::max(thickness, min_output_width));
|
||||
ret.toolpath_locations.emplace_back(thickness / 2);
|
||||
}
|
||||
else
|
||||
{
|
||||
ret.left_over = thickness;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
else
|
||||
{
|
||||
return parent->compute(thickness, bead_count);
|
||||
}
|
||||
}
|
||||
|
||||
coord_t WideningBeadingStrategy::getOptimalThickness(coord_t bead_count) const
|
||||
{
|
||||
return parent->getOptimalThickness(bead_count);
|
||||
}
|
||||
|
||||
coord_t WideningBeadingStrategy::getTransitionThickness(coord_t lower_bead_count) const
|
||||
{
|
||||
if (lower_bead_count == 0)
|
||||
{
|
||||
return min_input_width;
|
||||
}
|
||||
else
|
||||
{
|
||||
return parent->getTransitionThickness(lower_bead_count);
|
||||
}
|
||||
}
|
||||
|
||||
coord_t WideningBeadingStrategy::getOptimalBeadCount(coord_t thickness) const
|
||||
{
|
||||
if (thickness < min_input_width) return 0;
|
||||
coord_t ret = parent->getOptimalBeadCount(thickness);
|
||||
if (thickness >= min_input_width && ret < 1) return 1;
|
||||
return ret;
|
||||
}
|
||||
|
||||
coord_t WideningBeadingStrategy::getTransitioningLength(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitioningLength(lower_bead_count);
|
||||
}
|
||||
|
||||
float WideningBeadingStrategy::getTransitionAnchorPos(coord_t lower_bead_count) const
|
||||
{
|
||||
return parent->getTransitionAnchorPos(lower_bead_count);
|
||||
}
|
||||
|
||||
std::vector<coord_t> WideningBeadingStrategy::getNonlinearThicknesses(coord_t lower_bead_count) const
|
||||
{
|
||||
std::vector<coord_t> ret;
|
||||
ret.emplace_back(min_output_width);
|
||||
std::vector<coord_t> pret = parent->getNonlinearThicknesses(lower_bead_count);
|
||||
ret.insert(ret.end(), pret.begin(), pret.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
@ -0,0 +1,46 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef WIDENING_BEADING_STRATEGY_H
|
||||
#define WIDENING_BEADING_STRATEGY_H
|
||||
|
||||
#include "BeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* This is a meta-strategy that can be applied on any other beading strategy. If
|
||||
* the part is thinner than a single line, this strategy adjusts the part so
|
||||
* that it becomes the minimum thickness of one line.
|
||||
*
|
||||
* This way, tiny pieces that are smaller than a single line will still be
|
||||
* printed.
|
||||
*/
|
||||
class WideningBeadingStrategy : public BeadingStrategy
|
||||
{
|
||||
public:
|
||||
/*!
|
||||
* Takes responsibility for deleting \param parent
|
||||
*/
|
||||
WideningBeadingStrategy(BeadingStrategyPtr parent, const coord_t min_input_width, const coord_t min_output_width);
|
||||
|
||||
virtual ~WideningBeadingStrategy() override = default;
|
||||
|
||||
virtual Beading compute(coord_t thickness, coord_t bead_count) const override;
|
||||
virtual coord_t getOptimalThickness(coord_t bead_count) const override;
|
||||
virtual coord_t getTransitionThickness(coord_t lower_bead_count) const override;
|
||||
virtual coord_t getOptimalBeadCount(coord_t thickness) const override;
|
||||
virtual coord_t getTransitioningLength(coord_t lower_bead_count) const override;
|
||||
virtual float getTransitionAnchorPos(coord_t lower_bead_count) const override;
|
||||
virtual std::vector<coord_t> getNonlinearThicknesses(coord_t lower_bead_count) const override;
|
||||
virtual std::string toString() const override;
|
||||
|
||||
protected:
|
||||
BeadingStrategyPtr parent;
|
||||
const coord_t min_input_width;
|
||||
const coord_t min_output_width;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // WIDENING_BEADING_STRATEGY_H
|
2091
src/libslic3r/Arachne/SkeletalTrapezoidation.cpp
Normal file
2091
src/libslic3r/Arachne/SkeletalTrapezoidation.cpp
Normal file
File diff suppressed because it is too large
Load Diff
597
src/libslic3r/Arachne/SkeletalTrapezoidation.hpp
Normal file
597
src/libslic3r/Arachne/SkeletalTrapezoidation.hpp
Normal file
@ -0,0 +1,597 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef SKELETAL_TRAPEZOIDATION_H
|
||||
#define SKELETAL_TRAPEZOIDATION_H
|
||||
|
||||
#include <boost/polygon/voronoi.hpp>
|
||||
|
||||
#include <memory> // smart pointers
|
||||
#include <unordered_map>
|
||||
#include <utility> // pair
|
||||
|
||||
#include "utils/HalfEdgeGraph.hpp"
|
||||
#include "utils/PolygonsSegmentIndex.hpp"
|
||||
#include "utils/ExtrusionJunction.hpp"
|
||||
#include "utils/ExtrusionLine.hpp"
|
||||
#include "SkeletalTrapezoidationEdge.hpp"
|
||||
#include "SkeletalTrapezoidationJoint.hpp"
|
||||
#include "libslic3r/Arachne/BeadingStrategy/BeadingStrategy.hpp"
|
||||
#include "SkeletalTrapezoidationGraph.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* Main class of the dynamic beading strategies.
|
||||
*
|
||||
* The input polygon region is decomposed into trapezoids and represented as a half-edge data-structure.
|
||||
*
|
||||
* We determine which edges are 'central' accordinding to the transitioning_angle of the beading strategy,
|
||||
* and determine the bead count for these central regions and apply them outward when generating toolpaths. [oversimplified]
|
||||
*
|
||||
* The method can be visually explained as generating the 3D union of cones surface on the outline polygons,
|
||||
* and changing the heights along central regions of that surface so that they are flat.
|
||||
* For more info, please consult the paper "A framework for adaptive width control of dense contour-parallel toolpaths in fused
|
||||
deposition modeling" by Kuipers et al.
|
||||
* This visual explanation aid explains the use of "upward", "lower" etc,
|
||||
* i.e. the radial distance and/or the bead count are used as heights of this visualization, there is no coordinate called 'Z'.
|
||||
*
|
||||
* TODO: split this class into two:
|
||||
* 1. Class for generating the decomposition and aux functions for performing updates
|
||||
* 2. Class for editing the structure for our purposes.
|
||||
*/
|
||||
class SkeletalTrapezoidation
|
||||
{
|
||||
using pos_t = double;
|
||||
using vd_t = boost::polygon::voronoi_diagram<pos_t>;
|
||||
using graph_t = SkeletalTrapezoidationGraph;
|
||||
using edge_t = STHalfEdge;
|
||||
using node_t = STHalfEdgeNode;
|
||||
using Beading = BeadingStrategy::Beading;
|
||||
using BeadingPropagation = SkeletalTrapezoidationJoint::BeadingPropagation;
|
||||
using TransitionMiddle = SkeletalTrapezoidationEdge::TransitionMiddle;
|
||||
using TransitionEnd = SkeletalTrapezoidationEdge::TransitionEnd;
|
||||
|
||||
template<typename T>
|
||||
using ptr_vector_t = std::vector<std::shared_ptr<T>>;
|
||||
|
||||
double transitioning_angle; //!< How pointy a region should be before we apply the method. Equals 180* - limit_bisector_angle
|
||||
coord_t discretization_step_size; //!< approximate size of segments when parabolic VD edges get discretized (and vertex-vertex edges)
|
||||
coord_t transition_filter_dist; //!< Filter transition mids (i.e. anchors) closer together than this
|
||||
coord_t beading_propagation_transition_dist; //!< When there are different beadings propagated from below and from above, use this transitioning distance
|
||||
static constexpr coord_t central_filter_dist = scaled<coord_t>(0.02); //!< Filter areas marked as 'central' smaller than this
|
||||
static constexpr coord_t snap_dist = scaled<coord_t>(0.02); //!< Generic arithmatic inaccuracy. Only used to determine whether a transition really needs to insert an extra edge.
|
||||
|
||||
/*!
|
||||
* The strategy to use to fill a certain shape with lines.
|
||||
*
|
||||
* Various BeadingStrategies are available that differ in which lines get to
|
||||
* print at their optimal width, where the play is being compensated, and
|
||||
* how the joints are handled where we transition to different numbers of
|
||||
* lines.
|
||||
*/
|
||||
const BeadingStrategy& beading_strategy;
|
||||
|
||||
public:
|
||||
using Segment = PolygonsSegmentIndex;
|
||||
|
||||
/*!
|
||||
* Construct a new trapezoidation problem to solve.
|
||||
* \param polys The shapes to fill with walls.
|
||||
* \param beading_strategy The strategy to use to fill these shapes.
|
||||
* \param transitioning_angle Where we transition to a different number of
|
||||
* walls, how steep should this transition be? A lower angle means that the
|
||||
* transition will be longer.
|
||||
* \param discretization_step_size Since g-code can't represent smooth
|
||||
* transitions in line width, the line width must change with discretized
|
||||
* steps. This indicates how long the line segments between those steps will
|
||||
* be.
|
||||
* \param transition_filter_dist The minimum length of transitions.
|
||||
* Transitions shorter than this will be considered for dissolution.
|
||||
* \param beading_propagation_transition_dist When there are different
|
||||
* beadings propagated from below and from above, use this transitioning
|
||||
* distance.
|
||||
*/
|
||||
SkeletalTrapezoidation(const Polygons& polys,
|
||||
const BeadingStrategy& beading_strategy,
|
||||
double transitioning_angle
|
||||
, coord_t discretization_step_size = scaled<coord_t>(0.0008)
|
||||
, coord_t transition_filter_dist = scaled<coord_t>(0.001)
|
||||
, coord_t beading_propagation_transition_dist = scaled<coord_t>(0.0004));
|
||||
|
||||
/*!
|
||||
* A skeletal graph through the polygons that we need to fill with beads.
|
||||
*
|
||||
* The skeletal graph represents the medial axes through each part of the
|
||||
* polygons, and the lines from these medial axes towards each vertex of the
|
||||
* polygons. The graph can be used to see what the width is of a polygon in
|
||||
* each place and where the width transitions.
|
||||
*/
|
||||
graph_t graph;
|
||||
|
||||
/*!
|
||||
* Generate the paths that the printer must extrude, to print the outlines
|
||||
* in the input polygons.
|
||||
* \param filter_outermost_central_edges Some edges are "central" but still
|
||||
* touch the outside of the polygon. If enabled, don't treat these as
|
||||
* "central" but as if it's a obtuse corner. As a result, sharp corners will
|
||||
* no longer end in a single line but will just loop.
|
||||
*/
|
||||
void generateToolpaths(VariableWidthPaths& generated_toolpaths, bool filter_outermost_central_edges = false);
|
||||
|
||||
protected:
|
||||
/*!
|
||||
* Auxiliary for referencing one transition along an edge which may contain multiple transitions
|
||||
*/
|
||||
struct TransitionMidRef
|
||||
{
|
||||
edge_t* edge;
|
||||
std::list<TransitionMiddle>::iterator transition_it;
|
||||
TransitionMidRef(edge_t* edge, std::list<TransitionMiddle>::iterator transition_it)
|
||||
: edge(edge)
|
||||
, transition_it(transition_it)
|
||||
{}
|
||||
};
|
||||
|
||||
/*!
|
||||
* Compute the skeletal trapezoidation decomposition of the input shape.
|
||||
*
|
||||
* Compute the Voronoi Diagram (VD) and transfer all inside edges into our half-edge (HE) datastructure.
|
||||
*
|
||||
* The algorithm is currently a bit overcomplicated, because the discretization of parabolic edges is performed at the same time as all edges are being transfered,
|
||||
* which means that there is no one-to-one mapping from VD edges to HE edges.
|
||||
* Instead we map from a VD edge to the last HE edge.
|
||||
* This could be cimplified by recording the edges which should be discretized and discretizing the mafterwards.
|
||||
*
|
||||
* Another complication arises because the VD uses floating logic, which can result in zero-length segments after rounding to integers.
|
||||
* We therefore collapse edges and their whole cells afterwards.
|
||||
*/
|
||||
void constructFromPolygons(const Polygons& polys);
|
||||
|
||||
/*!
|
||||
* mapping each voronoi VD edge to the corresponding halfedge HE edge
|
||||
* In case the result segment is discretized, we map the VD edge to the *last* HE edge
|
||||
*/
|
||||
std::unordered_map<vd_t::edge_type*, edge_t*> vd_edge_to_he_edge;
|
||||
std::unordered_map<vd_t::vertex_type*, node_t*> vd_node_to_he_node;
|
||||
node_t& makeNode(vd_t::vertex_type& vd_node, Point p); //!< Get the node which the VD node maps to, or create a new mapping if there wasn't any yet.
|
||||
|
||||
/*!
|
||||
* (Eventual) returned 'polylines per index' result (from generateToolpaths):
|
||||
*/
|
||||
VariableWidthPaths* p_generated_toolpaths;
|
||||
|
||||
/*!
|
||||
* Transfer an edge from the VD to the HE and perform discretization of parabolic edges (and vertex-vertex edges)
|
||||
* \p prev_edge serves as input and output. May be null as input.
|
||||
*/
|
||||
void transferEdge(Point from, Point to, vd_t::edge_type& vd_edge, edge_t*& prev_edge, Point& start_source_point, Point& end_source_point, const std::vector<Segment>& segments);
|
||||
|
||||
/*!
|
||||
* Discretize a Voronoi edge that represents the medial axis of a vertex-
|
||||
* line region or vertex-vertex region into small segments that can be
|
||||
* considered to have a straight medial axis and a linear line width
|
||||
* transition.
|
||||
*
|
||||
* The medial axis between a point and a line is a parabola. The rest of the
|
||||
* algorithm doesn't want to have to deal with parabola, so this discretises
|
||||
* the parabola into straight line segments. This is necessary if there is a
|
||||
* sharp inner corner (acts as a point) that comes close to a straight edge.
|
||||
*
|
||||
* The medial axis between a point and a point is a straight line segment.
|
||||
* However the distance from the medial axis to either of those points draws
|
||||
* a parabola as you go along the medial axis. That means that the resulting
|
||||
* line width along the medial axis would not be linearly increasing or
|
||||
* linearly decreasing, but needs to take the shape of a parabola. Instead,
|
||||
* we'll break this edge up into tiny line segments that can approximate the
|
||||
* parabola with tiny linear increases or decreases in line width.
|
||||
* \param segment The variable-width Voronoi edge to discretize.
|
||||
* \param points All vertices of the original Polygons to fill with beads.
|
||||
* \param segments All line segments of the original Polygons to fill with
|
||||
* beads.
|
||||
* \return A number of coordinates along the edge where the edge is broken
|
||||
* up into discrete pieces.
|
||||
*/
|
||||
std::vector<Point> discretize(const vd_t::edge_type& segment, const std::vector<Segment>& segments);
|
||||
|
||||
/*!
|
||||
* Compute the range of line segments that surround a cell of the skeletal
|
||||
* graph that belongs to a point on the medial axis.
|
||||
*
|
||||
* This should only be used on cells that belong to a corner in the skeletal
|
||||
* graph, e.g. triangular cells, not trapezoid cells.
|
||||
*
|
||||
* The resulting line segments is just the first and the last segment. They
|
||||
* are linked to the neighboring segments, so you can iterate over the
|
||||
* segments until you reach the last segment.
|
||||
* \param cell The cell to compute the range of line segments for.
|
||||
* \param[out] start_source_point The start point of the source segment of
|
||||
* this cell.
|
||||
* \param[out] end_source_point The end point of the source segment of this
|
||||
* cell.
|
||||
* \param[out] starting_vd_edge The edge of the Voronoi diagram where the
|
||||
* loop around the cell starts.
|
||||
* \param[out] ending_vd_edge The edge of the Voronoi diagram where the loop
|
||||
* around the cell ends.
|
||||
* \param points All vertices of the input Polygons.
|
||||
* \param segments All edges of the input Polygons.
|
||||
* /return Whether the cell is inside of the polygon. If it's outside of the
|
||||
* polygon we should skip processing it altogether.
|
||||
*/
|
||||
bool computePointCellRange(vd_t::cell_type& cell, Point& start_source_point, Point& end_source_point, vd_t::edge_type*& starting_vd_edge, vd_t::edge_type*& ending_vd_edge, const std::vector<Segment>& segments);
|
||||
|
||||
/*!
|
||||
* Compute the range of line segments that surround a cell of the skeletal
|
||||
* graph that belongs to a line segment of the medial axis.
|
||||
*
|
||||
* This should only be used on cells that belong to a central line segment
|
||||
* of the skeletal graph, e.g. trapezoid cells, not triangular cells.
|
||||
*
|
||||
* The resulting line segments is just the first and the last segment. They
|
||||
* are linked to the neighboring segments, so you can iterate over the
|
||||
* segments until you reach the last segment.
|
||||
* \param cell The cell to compute the range of line segments for.
|
||||
* \param[out] start_source_point The start point of the source segment of
|
||||
* this cell.
|
||||
* \param[out] end_source_point The end point of the source segment of this
|
||||
* cell.
|
||||
* \param[out] starting_vd_edge The edge of the Voronoi diagram where the
|
||||
* loop around the cell starts.
|
||||
* \param[out] ending_vd_edge The edge of the Voronoi diagram where the loop
|
||||
* around the cell ends.
|
||||
* \param points All vertices of the input Polygons.
|
||||
* \param segments All edges of the input Polygons.
|
||||
* /return Whether the cell is inside of the polygon. If it's outside of the
|
||||
* polygon we should skip processing it altogether.
|
||||
*/
|
||||
void computeSegmentCellRange(vd_t::cell_type& cell, Point& start_source_point, Point& end_source_point, vd_t::edge_type*& starting_vd_edge, vd_t::edge_type*& ending_vd_edge, const std::vector<Segment>& segments);
|
||||
|
||||
/*!
|
||||
* For VD cells associated with an input polygon vertex, we need to separate the node at the end and start of the cell into two
|
||||
* That way we can reach both the quad_start and the quad_end from the [incident_edge] of the two new nodes
|
||||
* Otherwise if node.incident_edge = quad_start you couldnt reach quad_end.twin by normal iteration (i.e. it = it.twin.next)
|
||||
*/
|
||||
void separatePointyQuadEndNodes();
|
||||
|
||||
|
||||
// ^ init | v transitioning
|
||||
|
||||
void updateIsCentral(); // Update the "is_central" flag for each edge based on the transitioning_angle
|
||||
|
||||
/*!
|
||||
* Filter out small central areas.
|
||||
*
|
||||
* Only used to get rid of small edges which get marked as central because
|
||||
* of rounding errors because the region is so small.
|
||||
*/
|
||||
void filterCentral(coord_t max_length);
|
||||
|
||||
/*!
|
||||
* Filter central areas connected to starting_edge recursively.
|
||||
* \return Whether we should unmark this section marked as central, on the
|
||||
* way back out of the recursion.
|
||||
*/
|
||||
bool filterCentral(edge_t* starting_edge, coord_t traveled_dist, coord_t max_length);
|
||||
|
||||
/*!
|
||||
* Unmark the outermost edges directly connected to the outline, as not
|
||||
* being central.
|
||||
*
|
||||
* Only used to emulate some related literature.
|
||||
*
|
||||
* The paper shows that this function is bad for the stability of the framework.
|
||||
*/
|
||||
void filterOuterCentral();
|
||||
|
||||
/*!
|
||||
* Set bead count in central regions based on the optimal_bead_count of the
|
||||
* beading strategy.
|
||||
*/
|
||||
void updateBeadCount();
|
||||
|
||||
/*!
|
||||
* Add central regions and set bead counts where there is an end of the
|
||||
* central area and when traveling upward we get to another region with the
|
||||
* same bead count.
|
||||
*/
|
||||
void filterNoncentralRegions();
|
||||
|
||||
/*!
|
||||
* Add central regions and set bead counts for a particular edge and all of
|
||||
* its adjacent edges.
|
||||
*
|
||||
* Recursive subroutine for \ref filterNoncentralRegions().
|
||||
* \return Whether to set the bead count on the way back
|
||||
*/
|
||||
bool filterNoncentralRegions(edge_t* to_edge, coord_t bead_count, coord_t traveled_dist, coord_t max_dist);
|
||||
|
||||
/*!
|
||||
* Generate middle points of all transitions on edges.
|
||||
*
|
||||
* The transition middle points are saved in the graph itself. They are also
|
||||
* returned via the output parameter.
|
||||
* \param[out] edge_transitions A list of transitions that were generated.
|
||||
*/
|
||||
void generateTransitionMids(ptr_vector_t<std::list<TransitionMiddle>>& edge_transitions);
|
||||
|
||||
/*!
|
||||
* Removes some transition middle points.
|
||||
*
|
||||
* Transitions can be removed if there are multiple intersecting transitions
|
||||
* that are too close together. If transitions have opposite effects, both
|
||||
* are removed.
|
||||
*/
|
||||
void filterTransitionMids();
|
||||
|
||||
/*!
|
||||
* Merge transitions that are too close together.
|
||||
* \param edge_to_start Edge pointing to the node from which to start
|
||||
* traveling in all directions except along \p edge_to_start .
|
||||
* \param origin_transition The transition for which we are checking nearby
|
||||
* transitions.
|
||||
* \param traveled_dist The distance traveled before we came to
|
||||
* \p edge_to_start.to .
|
||||
* \param going_up Whether we are traveling in the upward direction as seen
|
||||
* from the \p origin_transition. If this doesn't align with the direction
|
||||
* according to the R diff on a consecutive edge we know there was a local
|
||||
* optimum.
|
||||
* \return Whether the origin transition should be dissolved.
|
||||
*/
|
||||
std::list<TransitionMidRef> dissolveNearbyTransitions(edge_t* edge_to_start, TransitionMiddle& origin_transition, coord_t traveled_dist, coord_t max_dist, bool going_up);
|
||||
|
||||
/*!
|
||||
* Spread a certain bead count over a region in the graph.
|
||||
* \param edge_to_start One edge of the region to spread the bead count in.
|
||||
* \param from_bead_count All edges with this bead count will be changed.
|
||||
* \param to_bead_count The new bead count for those edges.
|
||||
*/
|
||||
void dissolveBeadCountRegion(edge_t* edge_to_start, coord_t from_bead_count, coord_t to_bead_count);
|
||||
|
||||
/*!
|
||||
* Change the bead count if the given edge is at the end of a central
|
||||
* region.
|
||||
*
|
||||
* This is necessary to provide a transitioning bead count to the edges of a
|
||||
* central region to transition more smoothly from a high bead count in the
|
||||
* central region to a lower bead count at the edge.
|
||||
* \param edge_to_start One edge from a zone that needs to be filtered.
|
||||
* \param traveled_dist The distance along the edges we've traveled so far.
|
||||
* \param max_distance Don't filter beyond this range.
|
||||
* \param replacing_bead_count The new bead count for this region.
|
||||
* \return ``true`` if the bead count of this edge was changed.
|
||||
*/
|
||||
bool filterEndOfCentralTransition(edge_t* edge_to_start, coord_t traveled_dist, coord_t max_dist, coord_t replacing_bead_count);
|
||||
|
||||
/*!
|
||||
* Generate the endpoints of all transitions for all edges in the graph.
|
||||
* \param[out] edge_transition_ends The resulting transition endpoints.
|
||||
*/
|
||||
void generateAllTransitionEnds(ptr_vector_t<std::list<TransitionEnd>>& edge_transition_ends);
|
||||
|
||||
/*!
|
||||
* Also set the rest values at nodes in between the transition ends
|
||||
*/
|
||||
void applyTransitions(ptr_vector_t<std::list<TransitionEnd>>& edge_transition_ends);
|
||||
|
||||
/*!
|
||||
* Create extra edges along all edges, where it needs to transition from one
|
||||
* bead count to another.
|
||||
*
|
||||
* For example, if an edge of the graph goes from a bead count of 6 to a
|
||||
* bead count of 1, it needs to generate 5 places where the beads around
|
||||
* this line transition to a lower bead count. These are the "ribs". They
|
||||
* reach from the edge to the border of the polygon. Where the beads hit
|
||||
* those ribs the beads know to make a transition.
|
||||
*/
|
||||
void generateTransitioningRibs();
|
||||
|
||||
/*!
|
||||
* Generate the endpoints of a specific transition midpoint.
|
||||
* \param edge The edge to create transitions on.
|
||||
* \param mid_R The radius of the transition middle point.
|
||||
* \param transition_lower_bead_count The bead count at the lower end of the
|
||||
* transition.
|
||||
* \param[out] edge_transition_ends A list of endpoints to add the new
|
||||
* endpoints to.
|
||||
*/
|
||||
void generateTransitionEnds(edge_t& edge, coord_t mid_R, coord_t transition_lower_bead_count, ptr_vector_t<std::list<TransitionEnd>>& edge_transition_ends);
|
||||
|
||||
/*!
|
||||
* Compute a single endpoint of a transition.
|
||||
* \param edge The edge to generate the endpoint for.
|
||||
* \param start_pos The position where the transition starts.
|
||||
* \param end_pos The position where the transition ends on the other side.
|
||||
* \param transition_half_length The distance to the transition middle
|
||||
* point.
|
||||
* \param start_rest The gap between the start of the transition and the
|
||||
* starting endpoint, as ratio of the inner bead width at the high end of
|
||||
* the transition.
|
||||
* \param end_rest The gap between the end of the transition and the ending
|
||||
* endpoint, as ratio of the inner bead width at the high end of the
|
||||
* transition.
|
||||
* \param transition_lower_bead_count The bead count at the lower end of the
|
||||
* transition.
|
||||
* \param[out] edge_transition_ends The list to put the resulting endpoints
|
||||
* in.
|
||||
* \return Whether the given edge is going downward (i.e. towards a thinner
|
||||
* region of the polygon).
|
||||
*/
|
||||
bool generateTransitionEnd(edge_t& edge, coord_t start_pos, coord_t end_pos, coord_t transition_half_length, double start_rest, double end_rest, coord_t transition_lower_bead_count, ptr_vector_t<std::list<TransitionEnd>>& edge_transition_ends);
|
||||
|
||||
/*!
|
||||
* Determines whether an edge is going downwards or upwards in the graph.
|
||||
*
|
||||
* An edge is said to go "downwards" if it's going towards a narrower part
|
||||
* of the polygon. The notion of "downwards" comes from the conical
|
||||
* representation of the graph, where the polygon is filled with a cone of
|
||||
* maximum radius.
|
||||
*
|
||||
* This function works by recursively checking adjacent edges until the edge
|
||||
* is reached.
|
||||
* \param outgoing The edge to check.
|
||||
* \param traveled_dist The distance traversed so far.
|
||||
* \param transition_half_length The radius of the transition width.
|
||||
* \param lower_bead_count The bead count at the lower end of the edge.
|
||||
* \return ``true`` if this edge is going down, or ``false`` if it's going
|
||||
* up.
|
||||
*/
|
||||
bool isGoingDown(edge_t* outgoing, coord_t traveled_dist, coord_t transition_half_length, coord_t lower_bead_count) const;
|
||||
|
||||
/*!
|
||||
* Determines whether this edge marks the end of the central region.
|
||||
* \param edge The edge to check.
|
||||
* \return ``true`` if this edge goes from a central region to a non-central
|
||||
* region, or ``false`` in every other case (central to central, non-central
|
||||
* to non-central, non-central to central, or end-of-the-line).
|
||||
*/
|
||||
bool isEndOfCentral(const edge_t& edge) const;
|
||||
|
||||
/*!
|
||||
* Create extra ribs in the graph where the graph contains a parabolic arc
|
||||
* or a straight between two inner corners.
|
||||
*
|
||||
* There might be transitions there as the beads go through a narrow
|
||||
* bottleneck in the polygon.
|
||||
*/
|
||||
void generateExtraRibs();
|
||||
|
||||
// ^ transitioning ^
|
||||
|
||||
/*!
|
||||
* It's useful to know when the paths get back to the consumer, to (what part of) a polygon the paths 'belong'.
|
||||
* A single polygon without a hole is one region, a polygon with (a) hole(s) has 2 regions.
|
||||
*/
|
||||
void markRegions();
|
||||
|
||||
// v toolpath generation v
|
||||
|
||||
/*!
|
||||
* \param[out] segments the generated segments
|
||||
*/
|
||||
void generateSegments();
|
||||
|
||||
/*!
|
||||
* From a quad (a group of linked edges in one cell of the Voronoi), find
|
||||
* the edge that is furthest away from the border of the polygon.
|
||||
* \param quad_start_edge The first edge of the quad.
|
||||
* \return The edge of the quad that is furthest away from the border.
|
||||
*/
|
||||
edge_t* getQuadMaxRedgeTo(edge_t* quad_start_edge);
|
||||
|
||||
/*!
|
||||
* Propagate beading information from nodes that are closer to the edge
|
||||
* (low radius R) to nodes that are farther from the edge (high R).
|
||||
*
|
||||
* only propagate from nodes with beading info upward to nodes without beading info
|
||||
*
|
||||
* Edges are sorted by their radius, so that we can do a depth-first walk
|
||||
* without employing a recursive algorithm.
|
||||
*
|
||||
* In upward propagated beadings we store the distance traveled, so that we can merge these beadings with the downward propagated beadings in \ref propagateBeadingsDownward(.)
|
||||
*
|
||||
* \param upward_quad_mids all upward halfedges of the inner skeletal edges (not directly connected to the outline) sorted on their highest [distance_to_boundary]. Higher dist first.
|
||||
*/
|
||||
void propagateBeadingsUpward(std::vector<edge_t*>& upward_quad_mids, ptr_vector_t<BeadingPropagation>& node_beadings);
|
||||
|
||||
/*!
|
||||
* propagate beading info from higher R nodes to lower R nodes
|
||||
*
|
||||
* merge with upward propagated beadings if they are encountered
|
||||
*
|
||||
* don't transfer to nodes which lie on the outline polygon
|
||||
*
|
||||
* edges are sorted so that we can do a depth-first walk without employing a recursive algorithm
|
||||
*
|
||||
* \param upward_quad_mids all upward halfedges of the inner skeletal edges (not directly connected to the outline) sorted on their highest [distance_to_boundary]. Higher dist first.
|
||||
*/
|
||||
void propagateBeadingsDownward(std::vector<edge_t*>& upward_quad_mids, ptr_vector_t<BeadingPropagation>& node_beadings);
|
||||
|
||||
/*!
|
||||
* Subroutine of \ref propagateBeadingsDownward(std::vector<edge_t*>&, ptr_vector_t<BeadingPropagation>&)
|
||||
*/
|
||||
void propagateBeadingsDownward(edge_t* edge_to_peak, ptr_vector_t<BeadingPropagation>& node_beadings);
|
||||
|
||||
/*!
|
||||
* Find a beading in between two other beadings.
|
||||
*
|
||||
* This creates a new beading. With this we can find the coordinates of the
|
||||
* endpoints of the actual line segments to draw.
|
||||
*
|
||||
* The parameters \p left and \p right are not actually always left or right
|
||||
* but just arbitrary directions to visually indicate the difference.
|
||||
* \param left One of the beadings to interpolate between.
|
||||
* \param ratio_left_to_whole The position within the two beadings to sample
|
||||
* an interpolation. Should be a ratio between 0 and 1.
|
||||
* \param right One of the beadings to interpolate between.
|
||||
* \param switching_radius The bead radius at which we switch from the left
|
||||
* beading to the merged beading, if the beadings have a different number of
|
||||
* beads.
|
||||
* \return The beading at the interpolated location.
|
||||
*/
|
||||
Beading interpolate(const Beading& left, double ratio_left_to_whole, const Beading& right, coord_t switching_radius) const;
|
||||
|
||||
/*!
|
||||
* Subroutine of \ref interpolate(const Beading&, Ratio, const Beading&, coord_t)
|
||||
*
|
||||
* This creates a new Beading between two beadings, assuming that both have
|
||||
* the same number of beads.
|
||||
* \param left One of the beadings to interpolate between.
|
||||
* \param ratio_left_to_whole The position within the two beadings to sample
|
||||
* an interpolation. Should be a ratio between 0 and 1.
|
||||
* \param right One of the beadings to interpolate between.
|
||||
* \return The beading at the interpolated location.
|
||||
*/
|
||||
Beading interpolate(const Beading& left, double ratio_left_to_whole, const Beading& right) const;
|
||||
|
||||
/*!
|
||||
* Get the beading at a certain node of the skeletal graph, or create one if
|
||||
* it doesn't have one yet.
|
||||
*
|
||||
* This is a lazy get.
|
||||
* \param node The node to get the beading from.
|
||||
* \param node_beadings A list of all beadings for nodes.
|
||||
* \return The beading of that node.
|
||||
*/
|
||||
std::shared_ptr<BeadingPropagation> getOrCreateBeading(node_t* node, ptr_vector_t<BeadingPropagation>& node_beadings);
|
||||
|
||||
/*!
|
||||
* In case we cannot find the beading of a node, get a beading from the
|
||||
* nearest node.
|
||||
* \param node The node to attempt to get a beading from. The actual node
|
||||
* that the returned beading is from may be a different, nearby node.
|
||||
* \param max_dist The maximum distance to search for.
|
||||
* \return A beading for the node, or ``nullptr`` if there is no node nearby
|
||||
* with a beading.
|
||||
*/
|
||||
std::shared_ptr<BeadingPropagation> getNearestBeading(node_t* node, coord_t max_dist);
|
||||
|
||||
/*!
|
||||
* generate junctions for each bone
|
||||
* \param edge_to_junctions junctions ordered high R to low R
|
||||
*/
|
||||
void generateJunctions(ptr_vector_t<BeadingPropagation>& node_beadings, ptr_vector_t<LineJunctions>& edge_junctions);
|
||||
|
||||
/*!
|
||||
* add a new toolpath segment, defined between two extrusion-juntions
|
||||
*/
|
||||
void addToolpathSegment(const ExtrusionJunction& from, const ExtrusionJunction& to, bool is_odd, bool force_new_path);
|
||||
|
||||
/*!
|
||||
* connect junctions in each quad
|
||||
*/
|
||||
void connectJunctions(ptr_vector_t<LineJunctions>& edge_junctions);
|
||||
|
||||
/*!
|
||||
* Genrate small segments for local maxima where the beading would only result in a single bead
|
||||
*/
|
||||
void generateLocalMaximaSingleBeads();
|
||||
|
||||
/*!
|
||||
* Extract region information from the junctions, for easier access to that info directly from the lines.
|
||||
*/
|
||||
void liftRegionInfoToLines();
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // VORONOI_QUADRILATERALIZATION_H
|
142
src/libslic3r/Arachne/SkeletalTrapezoidationEdge.hpp
Normal file
142
src/libslic3r/Arachne/SkeletalTrapezoidationEdge.hpp
Normal file
@ -0,0 +1,142 @@
|
||||
//Copyright (c) 2021 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef SKELETAL_TRAPEZOIDATION_EDGE_H
|
||||
#define SKELETAL_TRAPEZOIDATION_EDGE_H
|
||||
|
||||
#include <memory> // smart pointers
|
||||
#include <list>
|
||||
#include <vector>
|
||||
|
||||
#include "utils/ExtrusionJunction.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
class SkeletalTrapezoidationEdge
|
||||
{
|
||||
private:
|
||||
enum class Central { UNKNOWN = -1, NO, YES };
|
||||
|
||||
public:
|
||||
/*!
|
||||
* Representing the location along an edge where the anchor position of a transition should be placed.
|
||||
*/
|
||||
struct TransitionMiddle
|
||||
{
|
||||
coord_t pos; // Position along edge as measure from edge.from.p
|
||||
int lower_bead_count;
|
||||
TransitionMiddle(coord_t pos, int lower_bead_count)
|
||||
: pos(pos), lower_bead_count(lower_bead_count)
|
||||
{}
|
||||
};
|
||||
|
||||
/*!
|
||||
* Represents the location along an edge where the lower or upper end of a transition should be placed.
|
||||
*/
|
||||
struct TransitionEnd
|
||||
{
|
||||
coord_t pos; // Position along edge as measure from edge.from.p, where the edge is always the half edge oriented from lower to higher R
|
||||
int lower_bead_count;
|
||||
bool is_lower_end; // Whether this is the ed of the transition with lower bead count
|
||||
TransitionEnd(coord_t pos, int lower_bead_count, bool is_lower_end)
|
||||
: pos(pos), lower_bead_count(lower_bead_count), is_lower_end(is_lower_end)
|
||||
{}
|
||||
};
|
||||
|
||||
enum class EdgeType
|
||||
{
|
||||
NORMAL = 0, // from voronoi diagram
|
||||
EXTRA_VD = 1, // introduced to voronoi diagram in order to make the gMAT
|
||||
TRANSITION_END = 2 // introduced to voronoi diagram in order to make the gMAT
|
||||
};
|
||||
EdgeType type;
|
||||
|
||||
SkeletalTrapezoidationEdge()
|
||||
: SkeletalTrapezoidationEdge(EdgeType::NORMAL)
|
||||
{}
|
||||
SkeletalTrapezoidationEdge(const EdgeType& type)
|
||||
: type(type)
|
||||
, is_central(Central::UNKNOWN)
|
||||
, region(0)
|
||||
{}
|
||||
|
||||
bool isCentral() const
|
||||
{
|
||||
assert(is_central != Central::UNKNOWN);
|
||||
return is_central == Central::YES;
|
||||
}
|
||||
void setIsCentral(bool b)
|
||||
{
|
||||
is_central = b ? Central::YES : Central::NO;
|
||||
}
|
||||
bool centralIsSet() const
|
||||
{
|
||||
return is_central != Central::UNKNOWN;
|
||||
}
|
||||
|
||||
size_t getRegion() const
|
||||
{
|
||||
assert(region != 0);
|
||||
return region;
|
||||
}
|
||||
void setRegion(const size_t& r)
|
||||
{
|
||||
assert(region == 0);
|
||||
region = r;
|
||||
}
|
||||
bool regionIsSet() const
|
||||
{
|
||||
return region > 0;
|
||||
}
|
||||
|
||||
bool hasTransitions(bool ignore_empty = false) const
|
||||
{
|
||||
return transitions.use_count() > 0 && (ignore_empty || ! transitions.lock()->empty());
|
||||
}
|
||||
void setTransitions(std::shared_ptr<std::list<TransitionMiddle>> storage)
|
||||
{
|
||||
transitions = storage;
|
||||
}
|
||||
std::shared_ptr<std::list<TransitionMiddle>> getTransitions()
|
||||
{
|
||||
return transitions.lock();
|
||||
}
|
||||
|
||||
bool hasTransitionEnds(bool ignore_empty = false) const
|
||||
{
|
||||
return transition_ends.use_count() > 0 && (ignore_empty || ! transition_ends.lock()->empty());
|
||||
}
|
||||
void setTransitionEnds(std::shared_ptr<std::list<TransitionEnd>> storage)
|
||||
{
|
||||
transition_ends = storage;
|
||||
}
|
||||
std::shared_ptr<std::list<TransitionEnd>> getTransitionEnds()
|
||||
{
|
||||
return transition_ends.lock();
|
||||
}
|
||||
|
||||
bool hasExtrusionJunctions(bool ignore_empty = false) const
|
||||
{
|
||||
return extrusion_junctions.use_count() > 0 && (ignore_empty || ! extrusion_junctions.lock()->empty());
|
||||
}
|
||||
void setExtrusionJunctions(std::shared_ptr<LineJunctions> storage)
|
||||
{
|
||||
extrusion_junctions = storage;
|
||||
}
|
||||
std::shared_ptr<LineJunctions> getExtrusionJunctions()
|
||||
{
|
||||
return extrusion_junctions.lock();
|
||||
}
|
||||
|
||||
private:
|
||||
Central is_central; //! whether the edge is significant; whether the source segments have a sharp angle; -1 is unknown
|
||||
size_t region; //! what 'region' this edge is in ... if the originating polygon has no holes, there's one region -- useful for later algorithms that need to know where the paths came from
|
||||
|
||||
std::weak_ptr<std::list<TransitionMiddle>> transitions;
|
||||
std::weak_ptr<std::list<TransitionEnd>> transition_ends;
|
||||
std::weak_ptr<LineJunctions> extrusion_junctions;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // SKELETAL_TRAPEZOIDATION_EDGE_H
|
496
src/libslic3r/Arachne/SkeletalTrapezoidationGraph.cpp
Normal file
496
src/libslic3r/Arachne/SkeletalTrapezoidationGraph.cpp
Normal file
@ -0,0 +1,496 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include "SkeletalTrapezoidationGraph.hpp"
|
||||
#include <unordered_map>
|
||||
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
#include "utils/linearAlg2D.hpp"
|
||||
#include "../Line.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
STHalfEdge::STHalfEdge(SkeletalTrapezoidationEdge data) : HalfEdge(data) {}
|
||||
|
||||
bool STHalfEdge::canGoUp(bool strict) const
|
||||
{
|
||||
if (to->data.distance_to_boundary > from->data.distance_to_boundary)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if (to->data.distance_to_boundary < from->data.distance_to_boundary || strict)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// Edge is between equidistqant verts; recurse!
|
||||
for (edge_t* outgoing = next; outgoing != twin; outgoing = outgoing->twin->next)
|
||||
{
|
||||
if (outgoing->canGoUp())
|
||||
{
|
||||
return true;
|
||||
}
|
||||
assert(outgoing->twin); if (!outgoing->twin) return false;
|
||||
assert(outgoing->twin->next); if (!outgoing->twin->next) return true; // This point is on the boundary?! Should never occur
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool STHalfEdge::isUpward() const
|
||||
{
|
||||
if (to->data.distance_to_boundary > from->data.distance_to_boundary)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if (to->data.distance_to_boundary < from->data.distance_to_boundary)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// Equidistant edge case:
|
||||
std::optional<coord_t> forward_up_dist = this->distToGoUp();
|
||||
std::optional<coord_t> backward_up_dist = twin->distToGoUp();
|
||||
if (forward_up_dist && backward_up_dist)
|
||||
{
|
||||
return forward_up_dist < backward_up_dist;
|
||||
}
|
||||
|
||||
if (forward_up_dist)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
if (backward_up_dist)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
return to->p < from->p; // Arbitrary ordering, which returns the opposite for the twin edge
|
||||
}
|
||||
|
||||
std::optional<coord_t> STHalfEdge::distToGoUp() const
|
||||
{
|
||||
if (to->data.distance_to_boundary > from->data.distance_to_boundary)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
if (to->data.distance_to_boundary < from->data.distance_to_boundary)
|
||||
{
|
||||
return std::optional<coord_t>();
|
||||
}
|
||||
|
||||
// Edge is between equidistqant verts; recurse!
|
||||
std::optional<coord_t> ret;
|
||||
for (edge_t* outgoing = next; outgoing != twin; outgoing = outgoing->twin->next)
|
||||
{
|
||||
std::optional<coord_t> dist_to_up = outgoing->distToGoUp();
|
||||
if (dist_to_up)
|
||||
{
|
||||
if (ret)
|
||||
{
|
||||
ret = std::min(*ret, *dist_to_up);
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = dist_to_up;
|
||||
}
|
||||
}
|
||||
assert(outgoing->twin); if (!outgoing->twin) return std::optional<coord_t>();
|
||||
assert(outgoing->twin->next); if (!outgoing->twin->next) return 0; // This point is on the boundary?! Should never occur
|
||||
}
|
||||
if (ret)
|
||||
{
|
||||
ret = *ret + (to->p - from->p).cast<int64_t>().norm();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
STHalfEdge* STHalfEdge::getNextUnconnected()
|
||||
{
|
||||
edge_t* result = static_cast<STHalfEdge*>(this);
|
||||
while (result->next)
|
||||
{
|
||||
result = result->next;
|
||||
if (result == this)
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
return result->twin;
|
||||
}
|
||||
|
||||
STHalfEdgeNode::STHalfEdgeNode(SkeletalTrapezoidationJoint data, Point p) : HalfEdgeNode(data, p) {}
|
||||
|
||||
bool STHalfEdgeNode::isMultiIntersection()
|
||||
{
|
||||
int odd_path_count = 0;
|
||||
edge_t* outgoing = this->incident_edge;
|
||||
do
|
||||
{
|
||||
if (outgoing->data.isCentral())
|
||||
{
|
||||
odd_path_count++;
|
||||
}
|
||||
} while (outgoing = outgoing->twin->next, outgoing != this->incident_edge);
|
||||
return odd_path_count > 2;
|
||||
}
|
||||
|
||||
bool STHalfEdgeNode::isCentral() const
|
||||
{
|
||||
edge_t* edge = incident_edge;
|
||||
do
|
||||
{
|
||||
if (edge->data.isCentral())
|
||||
{
|
||||
return true;
|
||||
}
|
||||
assert(edge->twin); if (!edge->twin) return false;
|
||||
} while (edge = edge->twin->next, edge != incident_edge);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool STHalfEdgeNode::isLocalMaximum(bool strict) const
|
||||
{
|
||||
if (data.distance_to_boundary == 0)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
edge_t* edge = incident_edge;
|
||||
do
|
||||
{
|
||||
if (edge->canGoUp(strict))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
assert(edge->twin); if (!edge->twin) return false;
|
||||
|
||||
if (!edge->twin->next)
|
||||
{ // This point is on the boundary
|
||||
return false;
|
||||
}
|
||||
} while (edge = edge->twin->next, edge != incident_edge);
|
||||
return true;
|
||||
}
|
||||
|
||||
void SkeletalTrapezoidationGraph::fixNodeDuplication()
|
||||
{
|
||||
for (auto node_it = nodes.begin(); node_it != nodes.end();)
|
||||
{
|
||||
node_t* replacing_node = nullptr;
|
||||
for (edge_t* outgoing = node_it->incident_edge; outgoing != node_it->incident_edge; outgoing = outgoing->twin->next)
|
||||
{
|
||||
assert(outgoing);
|
||||
if (outgoing->from != &*node_it)
|
||||
{
|
||||
replacing_node = outgoing->from;
|
||||
}
|
||||
if (outgoing->twin->to != &*node_it)
|
||||
{
|
||||
replacing_node = outgoing->twin->to;
|
||||
}
|
||||
}
|
||||
if (replacing_node)
|
||||
{
|
||||
for (edge_t* outgoing = node_it->incident_edge; outgoing != node_it->incident_edge; outgoing = outgoing->twin->next)
|
||||
{
|
||||
outgoing->twin->to = replacing_node;
|
||||
outgoing->from = replacing_node;
|
||||
}
|
||||
node_it = nodes.erase(node_it);
|
||||
}
|
||||
else
|
||||
{
|
||||
++node_it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SkeletalTrapezoidationGraph::collapseSmallEdges(coord_t snap_dist)
|
||||
{
|
||||
std::unordered_map<edge_t*, std::list<edge_t>::iterator> edge_locator;
|
||||
std::unordered_map<node_t*, std::list<node_t>::iterator> node_locator;
|
||||
|
||||
for (auto edge_it = edges.begin(); edge_it != edges.end(); ++edge_it)
|
||||
{
|
||||
edge_locator.emplace(&*edge_it, edge_it);
|
||||
}
|
||||
|
||||
for (auto node_it = nodes.begin(); node_it != nodes.end(); ++node_it)
|
||||
{
|
||||
node_locator.emplace(&*node_it, node_it);
|
||||
}
|
||||
|
||||
auto safelyRemoveEdge = [this, &edge_locator](edge_t* to_be_removed, std::list<edge_t>::iterator& current_edge_it, bool& edge_it_is_updated)
|
||||
{
|
||||
if (current_edge_it != edges.end()
|
||||
&& to_be_removed == &*current_edge_it)
|
||||
{
|
||||
current_edge_it = edges.erase(current_edge_it);
|
||||
edge_it_is_updated = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
edges.erase(edge_locator[to_be_removed]);
|
||||
}
|
||||
};
|
||||
|
||||
auto should_collapse = [snap_dist](node_t* a, node_t* b)
|
||||
{
|
||||
return shorter_then(a->p - b->p, snap_dist);
|
||||
};
|
||||
|
||||
for (auto edge_it = edges.begin(); edge_it != edges.end();)
|
||||
{
|
||||
if (edge_it->prev)
|
||||
{
|
||||
edge_it++;
|
||||
continue;
|
||||
}
|
||||
|
||||
edge_t* quad_start = &*edge_it;
|
||||
edge_t* quad_end = quad_start; while (quad_end->next) quad_end = quad_end->next;
|
||||
edge_t* quad_mid = (quad_start->next == quad_end)? nullptr : quad_start->next;
|
||||
|
||||
bool edge_it_is_updated = false;
|
||||
if (quad_mid && should_collapse(quad_mid->from, quad_mid->to))
|
||||
{
|
||||
assert(quad_mid->twin);
|
||||
if(!quad_mid->twin)
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(warning) << "Encountered quad edge without a twin.";
|
||||
continue; //Prevent accessing unallocated memory.
|
||||
}
|
||||
int count = 0;
|
||||
for (edge_t* edge_from_3 = quad_end; edge_from_3 && edge_from_3 != quad_mid->twin; edge_from_3 = edge_from_3->twin->next)
|
||||
{
|
||||
edge_from_3->from = quad_mid->from;
|
||||
edge_from_3->twin->to = quad_mid->from;
|
||||
if (count > 50)
|
||||
{
|
||||
std::cerr << edge_from_3->from->p << " - " << edge_from_3->to->p << '\n';
|
||||
}
|
||||
if (++count > 1000)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// o-o > collapse top
|
||||
// | |
|
||||
// | |
|
||||
// | |
|
||||
// o o
|
||||
if (quad_mid->from->incident_edge == quad_mid)
|
||||
{
|
||||
if (quad_mid->twin->next)
|
||||
{
|
||||
quad_mid->from->incident_edge = quad_mid->twin->next;
|
||||
}
|
||||
else
|
||||
{
|
||||
quad_mid->from->incident_edge = quad_mid->prev->twin;
|
||||
}
|
||||
}
|
||||
|
||||
nodes.erase(node_locator[quad_mid->to]);
|
||||
|
||||
quad_mid->prev->next = quad_mid->next;
|
||||
quad_mid->next->prev = quad_mid->prev;
|
||||
quad_mid->twin->next->prev = quad_mid->twin->prev;
|
||||
quad_mid->twin->prev->next = quad_mid->twin->next;
|
||||
|
||||
safelyRemoveEdge(quad_mid->twin, edge_it, edge_it_is_updated);
|
||||
safelyRemoveEdge(quad_mid, edge_it, edge_it_is_updated);
|
||||
}
|
||||
|
||||
// o-o
|
||||
// | | > collapse sides
|
||||
// o o
|
||||
if ( should_collapse(quad_start->from, quad_end->to) && should_collapse(quad_start->to, quad_end->from))
|
||||
{ // Collapse start and end edges and remove whole cell
|
||||
|
||||
quad_start->twin->to = quad_end->to;
|
||||
quad_end->to->incident_edge = quad_end->twin;
|
||||
if (quad_end->from->incident_edge == quad_end)
|
||||
{
|
||||
if (quad_end->twin->next)
|
||||
{
|
||||
quad_end->from->incident_edge = quad_end->twin->next;
|
||||
}
|
||||
else
|
||||
{
|
||||
quad_end->from->incident_edge = quad_end->prev->twin;
|
||||
}
|
||||
}
|
||||
nodes.erase(node_locator[quad_start->from]);
|
||||
|
||||
quad_start->twin->twin = quad_end->twin;
|
||||
quad_end->twin->twin = quad_start->twin;
|
||||
safelyRemoveEdge(quad_start, edge_it, edge_it_is_updated);
|
||||
safelyRemoveEdge(quad_end, edge_it, edge_it_is_updated);
|
||||
}
|
||||
// If only one side had collapsable length then the cell on the other side of that edge has to collapse
|
||||
// if we would collapse that one edge then that would change the quad_start and/or quad_end of neighboring cells
|
||||
// this is to do with the constraint that !prev == !twin.next
|
||||
|
||||
if (!edge_it_is_updated)
|
||||
{
|
||||
edge_it++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SkeletalTrapezoidationGraph::makeRib(edge_t*& prev_edge, Point start_source_point, Point end_source_point, bool is_next_to_start_or_end)
|
||||
{
|
||||
Point p;
|
||||
Line(start_source_point, end_source_point).distance_to_infinite_squared(prev_edge->to->p, &p);
|
||||
coord_t dist = (prev_edge->to->p - p).cast<int64_t>().norm();
|
||||
prev_edge->to->data.distance_to_boundary = dist;
|
||||
assert(dist >= 0);
|
||||
|
||||
nodes.emplace_front(SkeletalTrapezoidationJoint(), p);
|
||||
node_t* node = &nodes.front();
|
||||
node->data.distance_to_boundary = 0;
|
||||
|
||||
edges.emplace_front(SkeletalTrapezoidationEdge(SkeletalTrapezoidationEdge::EdgeType::EXTRA_VD));
|
||||
edge_t* forth_edge = &edges.front();
|
||||
edges.emplace_front(SkeletalTrapezoidationEdge(SkeletalTrapezoidationEdge::EdgeType::EXTRA_VD));
|
||||
edge_t* back_edge = &edges.front();
|
||||
|
||||
prev_edge->next = forth_edge;
|
||||
forth_edge->prev = prev_edge;
|
||||
forth_edge->from = prev_edge->to;
|
||||
forth_edge->to = node;
|
||||
forth_edge->twin = back_edge;
|
||||
back_edge->twin = forth_edge;
|
||||
back_edge->from = node;
|
||||
back_edge->to = prev_edge->to;
|
||||
node->incident_edge = back_edge;
|
||||
|
||||
prev_edge = back_edge;
|
||||
}
|
||||
|
||||
std::pair<SkeletalTrapezoidationGraph::edge_t*, SkeletalTrapezoidationGraph::edge_t*> SkeletalTrapezoidationGraph::insertRib(edge_t& edge, node_t* mid_node)
|
||||
{
|
||||
edge_t* edge_before = edge.prev;
|
||||
edge_t* edge_after = edge.next;
|
||||
node_t* node_before = edge.from;
|
||||
node_t* node_after = edge.to;
|
||||
|
||||
Point p = mid_node->p;
|
||||
|
||||
const Line source_segment = getSource(edge);
|
||||
Point px;
|
||||
source_segment.distance_to_squared(p, &px);
|
||||
coord_t dist = (p - px).cast<int64_t>().norm();
|
||||
assert(dist > 0);
|
||||
mid_node->data.distance_to_boundary = dist;
|
||||
mid_node->data.transition_ratio = 0; // Both transition end should have rest = 0, because at the ends a whole number of beads fits without rest
|
||||
|
||||
nodes.emplace_back(SkeletalTrapezoidationJoint(), px);
|
||||
node_t* source_node = &nodes.back();
|
||||
source_node->data.distance_to_boundary = 0;
|
||||
|
||||
edge_t* first = &edge;
|
||||
edges.emplace_back(SkeletalTrapezoidationEdge());
|
||||
edge_t* second = &edges.back();
|
||||
edges.emplace_back(SkeletalTrapezoidationEdge(SkeletalTrapezoidationEdge::EdgeType::TRANSITION_END));
|
||||
edge_t* outward_edge = &edges.back();
|
||||
edges.emplace_back(SkeletalTrapezoidationEdge(SkeletalTrapezoidationEdge::EdgeType::TRANSITION_END));
|
||||
edge_t* inward_edge = &edges.back();
|
||||
|
||||
if (edge_before)
|
||||
{
|
||||
edge_before->next = first;
|
||||
}
|
||||
first->next = outward_edge;
|
||||
outward_edge->next = nullptr;
|
||||
inward_edge->next = second;
|
||||
second->next = edge_after;
|
||||
|
||||
if (edge_after)
|
||||
{
|
||||
edge_after->prev = second;
|
||||
}
|
||||
second->prev = inward_edge;
|
||||
inward_edge->prev = nullptr;
|
||||
outward_edge->prev = first;
|
||||
first->prev = edge_before;
|
||||
|
||||
first->to = mid_node;
|
||||
outward_edge->to = source_node;
|
||||
inward_edge->to = mid_node;
|
||||
second->to = node_after;
|
||||
|
||||
first->from = node_before;
|
||||
outward_edge->from = mid_node;
|
||||
inward_edge->from = source_node;
|
||||
second->from = mid_node;
|
||||
|
||||
node_before->incident_edge = first;
|
||||
mid_node->incident_edge = outward_edge;
|
||||
source_node->incident_edge = inward_edge;
|
||||
if (edge_after)
|
||||
{
|
||||
node_after->incident_edge = edge_after;
|
||||
}
|
||||
|
||||
first->data.setIsCentral(true);
|
||||
outward_edge->data.setIsCentral(false); // TODO verify this is always the case.
|
||||
inward_edge->data.setIsCentral(false);
|
||||
second->data.setIsCentral(true);
|
||||
|
||||
outward_edge->twin = inward_edge;
|
||||
inward_edge->twin = outward_edge;
|
||||
|
||||
first->twin = nullptr; // we don't know these yet!
|
||||
second->twin = nullptr;
|
||||
|
||||
assert(second->prev->from->data.distance_to_boundary == 0);
|
||||
|
||||
return std::make_pair(first, second);
|
||||
}
|
||||
|
||||
SkeletalTrapezoidationGraph::edge_t* SkeletalTrapezoidationGraph::insertNode(edge_t* edge, Point mid, coord_t mide_node_bead_count)
|
||||
{
|
||||
edge_t* last_edge_replacing_input = edge;
|
||||
|
||||
nodes.emplace_back(SkeletalTrapezoidationJoint(), mid);
|
||||
node_t* mid_node = &nodes.back();
|
||||
|
||||
edge_t* twin = last_edge_replacing_input->twin;
|
||||
last_edge_replacing_input->twin = nullptr;
|
||||
twin->twin = nullptr;
|
||||
std::pair<edge_t*, edge_t*> left_pair = insertRib(*last_edge_replacing_input, mid_node);
|
||||
std::pair<edge_t*, edge_t*> right_pair = insertRib(*twin, mid_node);
|
||||
edge_t* first_edge_replacing_input = left_pair.first;
|
||||
last_edge_replacing_input = left_pair.second;
|
||||
edge_t* first_edge_replacing_twin = right_pair.first;
|
||||
edge_t* last_edge_replacing_twin = right_pair.second;
|
||||
|
||||
first_edge_replacing_input->twin = last_edge_replacing_twin;
|
||||
last_edge_replacing_twin->twin = first_edge_replacing_input;
|
||||
last_edge_replacing_input->twin = first_edge_replacing_twin;
|
||||
first_edge_replacing_twin->twin = last_edge_replacing_input;
|
||||
|
||||
mid_node->data.bead_count = mide_node_bead_count;
|
||||
|
||||
return last_edge_replacing_input;
|
||||
}
|
||||
|
||||
Line SkeletalTrapezoidationGraph::getSource(const edge_t &edge) const
|
||||
{
|
||||
const edge_t *from_edge = &edge;
|
||||
while (from_edge->prev)
|
||||
from_edge = from_edge->prev;
|
||||
|
||||
const edge_t *to_edge = &edge;
|
||||
while (to_edge->next)
|
||||
to_edge = to_edge->next;
|
||||
|
||||
return Line(from_edge->from->p, to_edge->to->p);
|
||||
}
|
||||
|
||||
}
|
106
src/libslic3r/Arachne/SkeletalTrapezoidationGraph.hpp
Normal file
106
src/libslic3r/Arachne/SkeletalTrapezoidationGraph.hpp
Normal file
@ -0,0 +1,106 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef SKELETAL_TRAPEZOIDATION_GRAPH_H
|
||||
#define SKELETAL_TRAPEZOIDATION_GRAPH_H
|
||||
|
||||
#include <optional>
|
||||
|
||||
#include "utils/HalfEdgeGraph.hpp"
|
||||
#include "SkeletalTrapezoidationEdge.hpp"
|
||||
#include "SkeletalTrapezoidationJoint.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
class STHalfEdgeNode;
|
||||
|
||||
class STHalfEdge : public HalfEdge<SkeletalTrapezoidationJoint, SkeletalTrapezoidationEdge, STHalfEdgeNode, STHalfEdge>
|
||||
{
|
||||
using edge_t = STHalfEdge;
|
||||
using node_t = STHalfEdgeNode;
|
||||
public:
|
||||
STHalfEdge(SkeletalTrapezoidationEdge data);
|
||||
|
||||
/*!
|
||||
* Check (recursively) whether there is any upward edge from the distance_to_boundary of the from of the \param edge
|
||||
*
|
||||
* \param strict Whether equidistant edges can count as a local maximum
|
||||
*/
|
||||
bool canGoUp(bool strict = false) const;
|
||||
|
||||
/*!
|
||||
* Check whether the edge goes from a lower to a higher distance_to_boundary.
|
||||
* Effectively deals with equidistant edges by looking beyond this edge.
|
||||
*/
|
||||
bool isUpward() const;
|
||||
|
||||
/*!
|
||||
* Calculate the traversed distance until we meet an upward edge.
|
||||
* Useful for calling on edges between equidistant points.
|
||||
*
|
||||
* If we can go up then the distance includes the length of the \param edge
|
||||
*/
|
||||
std::optional<coord_t> distToGoUp() const;
|
||||
|
||||
STHalfEdge* getNextUnconnected();
|
||||
};
|
||||
|
||||
class STHalfEdgeNode : public HalfEdgeNode<SkeletalTrapezoidationJoint, SkeletalTrapezoidationEdge, STHalfEdgeNode, STHalfEdge>
|
||||
{
|
||||
using edge_t = STHalfEdge;
|
||||
using node_t = STHalfEdgeNode;
|
||||
public:
|
||||
STHalfEdgeNode(SkeletalTrapezoidationJoint data, Point p);
|
||||
|
||||
bool isMultiIntersection();
|
||||
|
||||
bool isCentral() const;
|
||||
|
||||
/*!
|
||||
* Check whether this node has a locally maximal distance_to_boundary
|
||||
*
|
||||
* \param strict Whether equidistant edges can count as a local maximum
|
||||
*/
|
||||
bool isLocalMaximum(bool strict = false) const;
|
||||
};
|
||||
|
||||
class SkeletalTrapezoidationGraph: public HalfEdgeGraph<SkeletalTrapezoidationJoint, SkeletalTrapezoidationEdge, STHalfEdgeNode, STHalfEdge>
|
||||
{
|
||||
using edge_t = STHalfEdge;
|
||||
using node_t = STHalfEdgeNode;
|
||||
public:
|
||||
void fixNodeDuplication();
|
||||
|
||||
/*!
|
||||
* If an edge is too small, collapse it and its twin and fix the surrounding edges to ensure a consistent graph.
|
||||
*
|
||||
* Don't collapse support edges, unless we can collapse the whole quad.
|
||||
*
|
||||
* o-,
|
||||
* | "-o
|
||||
* | | > Don't collapse this edge only.
|
||||
* o o
|
||||
*/
|
||||
void collapseSmallEdges(coord_t snap_dist = 5000);
|
||||
|
||||
void makeRib(edge_t*& prev_edge, Point start_source_point, Point end_source_point, bool is_next_to_start_or_end);
|
||||
|
||||
/*!
|
||||
* Insert a node into the graph and connect it to the input polygon using ribs
|
||||
*
|
||||
* \return the last edge which replaced [edge], which points to the same [to] node
|
||||
*/
|
||||
edge_t* insertNode(edge_t* edge, Point mid, coord_t mide_node_bead_count);
|
||||
|
||||
/*!
|
||||
* Return the first and last edge of the edges replacing \p edge pointing to the same node
|
||||
*/
|
||||
std::pair<edge_t*, edge_t*> insertRib(edge_t& edge, node_t* mid_node);
|
||||
|
||||
protected:
|
||||
Line getSource(const edge_t& edge) const;
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
60
src/libslic3r/Arachne/SkeletalTrapezoidationJoint.hpp
Normal file
60
src/libslic3r/Arachne/SkeletalTrapezoidationJoint.hpp
Normal file
@ -0,0 +1,60 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef SKELETAL_TRAPEZOIDATION_JOINT_H
|
||||
#define SKELETAL_TRAPEZOIDATION_JOINT_H
|
||||
|
||||
#include <memory> // smart pointers
|
||||
|
||||
#include "libslic3r/Arachne/BeadingStrategy/BeadingStrategy.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
class SkeletalTrapezoidationJoint
|
||||
{
|
||||
using Beading = BeadingStrategy::Beading;
|
||||
public:
|
||||
struct BeadingPropagation
|
||||
{
|
||||
Beading beading;
|
||||
coord_t dist_to_bottom_source;
|
||||
coord_t dist_from_top_source;
|
||||
bool is_upward_propagated_only;
|
||||
BeadingPropagation(const Beading& beading)
|
||||
: beading(beading)
|
||||
, dist_to_bottom_source(0)
|
||||
, dist_from_top_source(0)
|
||||
, is_upward_propagated_only(false)
|
||||
{}
|
||||
};
|
||||
|
||||
coord_t distance_to_boundary;
|
||||
coord_t bead_count;
|
||||
float transition_ratio; //! The distance near the skeleton to leave free because this joint is in the middle of a transition, as a fraction of the inner bead width of the bead at the higher transition.
|
||||
SkeletalTrapezoidationJoint()
|
||||
: distance_to_boundary(-1)
|
||||
, bead_count(-1)
|
||||
, transition_ratio(0)
|
||||
{}
|
||||
|
||||
bool hasBeading() const
|
||||
{
|
||||
return beading.use_count() > 0;
|
||||
}
|
||||
void setBeading(std::shared_ptr<BeadingPropagation> storage)
|
||||
{
|
||||
beading = storage;
|
||||
}
|
||||
std::shared_ptr<BeadingPropagation> getBeading()
|
||||
{
|
||||
return beading.lock();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
std::weak_ptr<BeadingPropagation> beading;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // SKELETAL_TRAPEZOIDATION_JOINT_H
|
864
src/libslic3r/Arachne/WallToolPaths.cpp
Normal file
864
src/libslic3r/Arachne/WallToolPaths.cpp
Normal file
@ -0,0 +1,864 @@
|
||||
// Copyright (c) 2020 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include <algorithm> //For std::partition_copy and std::min_element.
|
||||
#include <unordered_set>
|
||||
|
||||
#include "WallToolPaths.hpp"
|
||||
|
||||
#include "SkeletalTrapezoidation.hpp"
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "Arachne/utils/linearAlg2D.hpp"
|
||||
#include "EdgeGrid.hpp"
|
||||
#include "utils/SparseLineGrid.hpp"
|
||||
#include "Geometry.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
WallToolPaths::WallToolPaths(const Polygons& outline, const coord_t nominal_bead_width, const size_t inset_count, const coord_t wall_0_inset,
|
||||
const PrintConfig &print_config)
|
||||
: outline(outline)
|
||||
, bead_width_0(nominal_bead_width)
|
||||
, bead_width_x(nominal_bead_width)
|
||||
, inset_count(inset_count)
|
||||
, wall_0_inset(wall_0_inset)
|
||||
, strategy_type(print_config.beading_strategy_type.value)
|
||||
, print_thin_walls(Slic3r::Arachne::fill_outline_gaps)
|
||||
, min_feature_size(scaled<coord_t>(print_config.min_feature_size.value))
|
||||
, min_bead_width(scaled<coord_t>(print_config.min_bead_width.value))
|
||||
, small_area_length(static_cast<double>(nominal_bead_width) / 2.)
|
||||
, toolpaths_generated(false)
|
||||
, print_config(print_config)
|
||||
{
|
||||
}
|
||||
|
||||
WallToolPaths::WallToolPaths(const Polygons& outline, const coord_t bead_width_0, const coord_t bead_width_x,
|
||||
const size_t inset_count, const coord_t wall_0_inset, const PrintConfig &print_config)
|
||||
: outline(outline)
|
||||
, bead_width_0(bead_width_0)
|
||||
, bead_width_x(bead_width_x)
|
||||
, inset_count(inset_count)
|
||||
, wall_0_inset(wall_0_inset)
|
||||
, strategy_type(print_config.beading_strategy_type.value)
|
||||
, print_thin_walls(Slic3r::Arachne::fill_outline_gaps)
|
||||
, min_feature_size(scaled<coord_t>(print_config.min_feature_size.value))
|
||||
, min_bead_width(scaled<coord_t>(print_config.min_bead_width.value))
|
||||
, small_area_length(static_cast<double>(bead_width_0) / 2.)
|
||||
, toolpaths_generated(false)
|
||||
, print_config(print_config)
|
||||
{
|
||||
}
|
||||
|
||||
void simplify(Polygon &thiss, const int64_t smallest_line_segment_squared, const int64_t allowed_error_distance_squared)
|
||||
{
|
||||
if (thiss.size() < 3)
|
||||
{
|
||||
thiss.points.clear();
|
||||
return;
|
||||
}
|
||||
if (thiss.size() == 3)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
Polygon new_path;
|
||||
Point previous = thiss.points.back();
|
||||
Point previous_previous = thiss.points.at(thiss.points.size() - 2);
|
||||
Point current = thiss.points.at(0);
|
||||
|
||||
/* When removing a vertex, we check the height of the triangle of the area
|
||||
being removed from the original polygon by the simplification. However,
|
||||
when consecutively removing multiple vertices the height of the previously
|
||||
removed vertices w.r.t. the shortcut path changes.
|
||||
In order to not recompute the new height value of previously removed
|
||||
vertices we compute the height of a representative triangle, which covers
|
||||
the same amount of area as the area being cut off. We use the Shoelace
|
||||
formula to accumulate the area under the removed segments. This works by
|
||||
computing the area in a 'fan' where each of the blades of the fan go from
|
||||
the origin to one of the segments. While removing vertices the area in
|
||||
this fan accumulates. By subtracting the area of the blade connected to
|
||||
the short-cutting segment we obtain the total area of the cutoff region.
|
||||
From this area we compute the height of the representative triangle using
|
||||
the standard formula for a triangle area: A = .5*b*h
|
||||
*/
|
||||
int64_t accumulated_area_removed = int64_t(previous.x()) * int64_t(current.y()) - int64_t(previous.y()) * int64_t(current.x()); // Twice the Shoelace formula for area of polygon per line segment.
|
||||
|
||||
for (size_t point_idx = 0; point_idx < thiss.points.size(); point_idx++)
|
||||
{
|
||||
current = thiss.points.at(point_idx % thiss.points.size());
|
||||
|
||||
//Check if the accumulated area doesn't exceed the maximum.
|
||||
Point next;
|
||||
if (point_idx + 1 < thiss.points.size())
|
||||
{
|
||||
next = thiss.points.at(point_idx + 1);
|
||||
}
|
||||
else if (point_idx + 1 == thiss.points.size() && new_path.size() > 1)
|
||||
{ // don't spill over if the [next] vertex will then be equal to [previous]
|
||||
next = new_path[0]; //Spill over to new polygon for checking removed area.
|
||||
}
|
||||
else
|
||||
{
|
||||
next = thiss.points.at((point_idx + 1) % thiss.points.size());
|
||||
}
|
||||
const int64_t removed_area_next = int64_t(current.x()) * int64_t(next.y()) - int64_t(current.y()) * int64_t(next.x()); // Twice the Shoelace formula for area of polygon per line segment.
|
||||
const int64_t negative_area_closing = int64_t(next.x()) * int64_t(previous.y()) - int64_t(next.y()) * int64_t(previous.x()); // area between the origin and the short-cutting segment
|
||||
accumulated_area_removed += removed_area_next;
|
||||
|
||||
const int64_t length2 = (current - previous).cast<int64_t>().squaredNorm();
|
||||
if (length2 < scaled<int64_t>(25.))
|
||||
{
|
||||
// We're allowed to always delete segments of less than 5 micron.
|
||||
continue;
|
||||
}
|
||||
|
||||
const int64_t area_removed_so_far = accumulated_area_removed + negative_area_closing; // close the shortcut area polygon
|
||||
const int64_t base_length_2 = (next - previous).cast<int64_t>().squaredNorm();
|
||||
|
||||
if (base_length_2 == 0) //Two line segments form a line back and forth with no area.
|
||||
{
|
||||
continue; //Remove the vertex.
|
||||
}
|
||||
//We want to check if the height of the triangle formed by previous, current and next vertices is less than allowed_error_distance_squared.
|
||||
//1/2 L = A [actual area is half of the computed shoelace value] // Shoelace formula is .5*(...) , but we simplify the computation and take out the .5
|
||||
//A = 1/2 * b * h [triangle area formula]
|
||||
//L = b * h [apply above two and take out the 1/2]
|
||||
//h = L / b [divide by b]
|
||||
//h^2 = (L / b)^2 [square it]
|
||||
//h^2 = L^2 / b^2 [factor the divisor]
|
||||
const int64_t height_2 = double(area_removed_so_far) * double(area_removed_so_far) / double(base_length_2);
|
||||
if ((height_2 <= Slic3r::sqr(scaled<coord_t>(0.005)) //Almost exactly colinear (barring rounding errors).
|
||||
&& Line::distance_to_infinite(current, previous, next) <= scaled<double>(0.005))) // make sure that height_2 is not small because of cancellation of positive and negative areas
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (length2 < smallest_line_segment_squared
|
||||
&& height_2 <= allowed_error_distance_squared) // removing the vertex doesn't introduce too much error.)
|
||||
{
|
||||
const int64_t next_length2 = (current - next).cast<int64_t>().squaredNorm();
|
||||
if (next_length2 > smallest_line_segment_squared)
|
||||
{
|
||||
// Special case; The next line is long. If we were to remove this, it could happen that we get quite noticeable artifacts.
|
||||
// We should instead move this point to a location where both edges are kept and then remove the previous point that we wanted to keep.
|
||||
// By taking the intersection of these two lines, we get a point that preserves the direction (so it makes the corner a bit more pointy).
|
||||
// We just need to be sure that the intersection point does not introduce an artifact itself.
|
||||
Point intersection_point;
|
||||
bool has_intersection = Line(previous_previous, previous).intersection_infinite(Line(current, next), &intersection_point);
|
||||
if (!has_intersection
|
||||
|| Line::distance_to_infinite_squared(intersection_point, previous, current) > double(allowed_error_distance_squared)
|
||||
|| (intersection_point - previous).cast<int64_t>().squaredNorm() > smallest_line_segment_squared // The intersection point is way too far from the 'previous'
|
||||
|| (intersection_point - next).cast<int64_t>().squaredNorm() > smallest_line_segment_squared) // and 'next' points, so it shouldn't replace 'current'
|
||||
{
|
||||
// We can't find a better spot for it, but the size of the line is more than 5 micron.
|
||||
// So the only thing we can do here is leave it in...
|
||||
}
|
||||
else
|
||||
{
|
||||
// New point seems like a valid one.
|
||||
current = intersection_point;
|
||||
// If there was a previous point added, remove it.
|
||||
if(!new_path.empty())
|
||||
{
|
||||
new_path.points.pop_back();
|
||||
previous = previous_previous;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
continue; //Remove the vertex.
|
||||
}
|
||||
}
|
||||
//Don't remove the vertex.
|
||||
accumulated_area_removed = removed_area_next; // so that in the next iteration it's the area between the origin, [previous] and [current]
|
||||
previous_previous = previous;
|
||||
previous = current; //Note that "previous" is only updated if we don't remove the vertex.
|
||||
new_path.points.push_back(current);
|
||||
}
|
||||
|
||||
thiss = new_path;
|
||||
}
|
||||
|
||||
/*!
|
||||
* Removes vertices of the polygons to make sure that they are not too high
|
||||
* resolution.
|
||||
*
|
||||
* This removes points which are connected to line segments that are shorter
|
||||
* than the `smallest_line_segment`, unless that would introduce a deviation
|
||||
* in the contour of more than `allowed_error_distance`.
|
||||
*
|
||||
* Criteria:
|
||||
* 1. Never remove a vertex if either of the connceted segments is larger than \p smallest_line_segment
|
||||
* 2. Never remove a vertex if the distance between that vertex and the final resulting polygon would be higher than \p allowed_error_distance
|
||||
* 3. The direction of segments longer than \p smallest_line_segment always
|
||||
* remains unaltered (but their end points may change if it is connected to
|
||||
* a small segment)
|
||||
*
|
||||
* Simplify uses a heuristic and doesn't neccesarily remove all removable
|
||||
* vertices under the above criteria, but simplify may never violate these
|
||||
* criteria. Unless the segments or the distance is smaller than the
|
||||
* rounding error of 5 micron.
|
||||
*
|
||||
* Vertices which introduce an error of less than 5 microns are removed
|
||||
* anyway, even if the segments are longer than the smallest line segment.
|
||||
* This makes sure that (practically) colinear line segments are joined into
|
||||
* a single line segment.
|
||||
* \param smallest_line_segment Maximal length of removed line segments.
|
||||
* \param allowed_error_distance If removing a vertex introduces a deviation
|
||||
* from the original path that is more than this distance, the vertex may
|
||||
* not be removed.
|
||||
*/
|
||||
void simplify(Polygons &thiss, const int64_t smallest_line_segment = scaled<coord_t>(0.01), const int64_t allowed_error_distance = scaled<coord_t>(0.005))
|
||||
{
|
||||
const int64_t allowed_error_distance_squared = int64_t(allowed_error_distance) * int64_t(allowed_error_distance);
|
||||
const int64_t smallest_line_segment_squared = int64_t(smallest_line_segment) * int64_t(smallest_line_segment);
|
||||
for (size_t p = 0; p < thiss.size(); p++)
|
||||
{
|
||||
simplify(thiss[p], smallest_line_segment_squared, allowed_error_distance_squared);
|
||||
if (thiss[p].size() < 3)
|
||||
{
|
||||
thiss.erase(thiss.begin() + p);
|
||||
p--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* Locator to extract a line segment out of a \ref PolygonsPointIndex
|
||||
*/
|
||||
struct PolygonsPointIndexSegmentLocator
|
||||
{
|
||||
std::pair<Point, Point> operator()(const PolygonsPointIndex &val) const
|
||||
{
|
||||
const Polygon &poly = (*val.polygons)[val.poly_idx];
|
||||
const Point start = poly[val.point_idx];
|
||||
unsigned int next_point_idx = (val.point_idx + 1) % poly.size();
|
||||
const Point end = poly[next_point_idx];
|
||||
return std::pair<Point, Point>(start, end);
|
||||
}
|
||||
};
|
||||
|
||||
typedef SparseLineGrid<PolygonsPointIndex, PolygonsPointIndexSegmentLocator> LocToLineGrid;
|
||||
std::unique_ptr<LocToLineGrid> createLocToLineGrid(const Polygons &polygons, int square_size)
|
||||
{
|
||||
unsigned int n_points = 0;
|
||||
for (const auto &poly : polygons)
|
||||
n_points += poly.size();
|
||||
|
||||
auto ret = std::make_unique<LocToLineGrid>(square_size, n_points);
|
||||
|
||||
for (unsigned int poly_idx = 0; poly_idx < polygons.size(); poly_idx++)
|
||||
for (unsigned int point_idx = 0; point_idx < polygons[poly_idx].size(); point_idx++)
|
||||
ret->insert(PolygonsPointIndex(&polygons, poly_idx, point_idx));
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Note: Also tries to solve for near-self intersections, when epsilon >= 1
|
||||
*/
|
||||
void fixSelfIntersections(const coord_t epsilon, Polygons &thiss)
|
||||
{
|
||||
if (epsilon < 1) {
|
||||
ClipperLib::SimplifyPolygons(ClipperUtils::PolygonsProvider(thiss));
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t half_epsilon = (epsilon + 1) / 2;
|
||||
|
||||
// Points too close to line segments should be moved a little away from those line segments, but less than epsilon,
|
||||
// so at least half-epsilon distance between points can still be guaranteed.
|
||||
constexpr coord_t grid_size = scaled<coord_t>(2.);
|
||||
auto query_grid = createLocToLineGrid(thiss, grid_size);
|
||||
|
||||
const auto move_dist = std::max<int64_t>(2L, half_epsilon - 2);
|
||||
const int64_t half_epsilon_sqrd = half_epsilon * half_epsilon;
|
||||
|
||||
const size_t n = thiss.size();
|
||||
for (size_t poly_idx = 0; poly_idx < n; poly_idx++) {
|
||||
const size_t pathlen = thiss[poly_idx].size();
|
||||
for (size_t point_idx = 0; point_idx < pathlen; ++point_idx) {
|
||||
Point &pt = thiss[poly_idx][point_idx];
|
||||
for (const auto &line : query_grid->getNearby(pt, epsilon)) {
|
||||
const size_t line_next_idx = (line.point_idx + 1) % thiss[line.poly_idx].size();
|
||||
if (poly_idx == line.poly_idx && (point_idx == line.point_idx || point_idx == line_next_idx))
|
||||
continue;
|
||||
|
||||
const Line segment(thiss[line.poly_idx][line.point_idx], thiss[line.poly_idx][line_next_idx]);
|
||||
Point segment_closest_point;
|
||||
segment.distance_to_squared(pt, &segment_closest_point);
|
||||
|
||||
if (half_epsilon_sqrd >= (pt - segment_closest_point).cast<int64_t>().squaredNorm()) {
|
||||
const Point &other = thiss[poly_idx][(point_idx + 1) % pathlen];
|
||||
const Vec2i64 vec = (LinearAlg2D::pointIsLeftOfLine(other, segment.a, segment.b) > 0 ? segment.b - segment.a : segment.a - segment.b).cast<int64_t>();
|
||||
assert(Slic3r::sqr(double(vec.x())) < double(std::numeric_limits<int64_t>::max()));
|
||||
assert(Slic3r::sqr(double(vec.y())) < double(std::numeric_limits<int64_t>::max()));
|
||||
const int64_t len = vec.norm();
|
||||
pt.x() += (-vec.y() * move_dist) / len;
|
||||
pt.y() += (vec.x() * move_dist) / len;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ClipperLib::SimplifyPolygons(ClipperUtils::PolygonsProvider(thiss));
|
||||
}
|
||||
|
||||
/*!
|
||||
* Removes overlapping consecutive line segments which don't delimit a positive area.
|
||||
*/
|
||||
void removeDegenerateVerts(Polygons &thiss)
|
||||
{
|
||||
for (unsigned int poly_idx = 0; poly_idx < thiss.size(); poly_idx++) {
|
||||
Polygon &poly = thiss[poly_idx];
|
||||
Polygon result;
|
||||
|
||||
auto isDegenerate = [](const Point &last, const Point &now, const Point &next) {
|
||||
Vec2i64 last_line = (now - last).cast<int64_t>();
|
||||
Vec2i64 next_line = (next - now).cast<int64_t>();
|
||||
return last_line.dot(next_line) == -1 * last_line.norm() * next_line.norm();
|
||||
};
|
||||
bool isChanged = false;
|
||||
for (unsigned int idx = 0; idx < poly.size(); idx++) {
|
||||
const Point &last = (result.size() == 0) ? poly.back() : result.back();
|
||||
if (idx + 1 == poly.size() && result.size() == 0) { break; }
|
||||
Point &next = (idx + 1 == poly.size()) ? result[0] : poly[idx + 1];
|
||||
if (isDegenerate(last, poly[idx], next)) { // lines are in the opposite direction
|
||||
// don't add vert to the result
|
||||
isChanged = true;
|
||||
while (result.size() > 1 && isDegenerate(result[result.size() - 2], result.back(), next)) { result.points.pop_back(); }
|
||||
} else {
|
||||
result.points.emplace_back(poly[idx]);
|
||||
}
|
||||
}
|
||||
|
||||
if (isChanged) {
|
||||
if (result.size() > 2) {
|
||||
poly = result;
|
||||
} else {
|
||||
thiss.erase(thiss.begin() + poly_idx);
|
||||
poly_idx--; // effectively the next iteration has the same poly_idx (referring to a new poly which is not yet processed)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void removeSmallAreas(Polygons &thiss, const double min_area_size, const bool remove_holes)
|
||||
{
|
||||
auto to_path = [](const Polygon &poly) -> ClipperLib::Path {
|
||||
ClipperLib::Path out;
|
||||
for (const Point &pt : poly.points)
|
||||
out.emplace_back(ClipperLib::cInt(pt.x()), ClipperLib::cInt(pt.y()));
|
||||
return out;
|
||||
};
|
||||
|
||||
auto new_end = thiss.end();
|
||||
if(remove_holes)
|
||||
{
|
||||
for(auto it = thiss.begin(); it < new_end; it++)
|
||||
{
|
||||
// All polygons smaller than target are removed by replacing them with a polygon from the back of the vector
|
||||
if(fabs(ClipperLib::Area(to_path(*it))) < min_area_size)
|
||||
{
|
||||
new_end--;
|
||||
*it = std::move(*new_end);
|
||||
it--; // wind back the iterator such that the polygon just swaped in is checked next
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// For each polygon, computes the signed area, move small outlines at the end of the vector and keep pointer on small holes
|
||||
std::vector<Polygon> small_holes;
|
||||
for(auto it = thiss.begin(); it < new_end; it++) {
|
||||
double area = ClipperLib::Area(to_path(*it));
|
||||
if (fabs(area) < min_area_size)
|
||||
{
|
||||
if(area >= 0)
|
||||
{
|
||||
new_end--;
|
||||
if(it < new_end) {
|
||||
std::swap(*new_end, *it);
|
||||
it--;
|
||||
}
|
||||
else
|
||||
{ // Don't self-swap the last Path
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
small_holes.push_back(*it);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Removes small holes that have their first point inside one of the removed outlines
|
||||
// Iterating in reverse ensures that unprocessed small holes won't be moved
|
||||
const auto removed_outlines_start = new_end;
|
||||
for(auto hole_it = small_holes.rbegin(); hole_it < small_holes.rend(); hole_it++)
|
||||
{
|
||||
for(auto outline_it = removed_outlines_start; outline_it < thiss.end() ; outline_it++)
|
||||
{
|
||||
if(Polygon(*outline_it).contains(*hole_it->begin())) {
|
||||
new_end--;
|
||||
*hole_it = std::move(*new_end);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
thiss.resize(new_end-thiss.begin());
|
||||
}
|
||||
|
||||
void removeColinearEdges(Polygon &poly, const double max_deviation_angle)
|
||||
{
|
||||
// TODO: Can be made more efficient (for example, use pointer-types for process-/skip-indices, so we can swap them without copy).
|
||||
size_t num_removed_in_iteration = 0;
|
||||
do {
|
||||
num_removed_in_iteration = 0;
|
||||
std::vector<bool> process_indices(poly.points.size(), true);
|
||||
|
||||
bool go = true;
|
||||
while (go) {
|
||||
go = false;
|
||||
|
||||
const auto &rpath = poly;
|
||||
const size_t pathlen = rpath.size();
|
||||
if (pathlen <= 3)
|
||||
return;
|
||||
|
||||
std::vector<bool> skip_indices(poly.points.size(), false);
|
||||
|
||||
Polygon new_path;
|
||||
for (size_t point_idx = 0; point_idx < pathlen; ++point_idx) {
|
||||
// Don't iterate directly over process-indices, but do it this way, because there are points _in_ process-indices that should nonetheless
|
||||
// be skipped:
|
||||
if (!process_indices[point_idx]) {
|
||||
new_path.points.push_back(rpath[point_idx]);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Should skip the last point for this iteration if the old first was removed (which can be seen from the fact that the new first was skipped):
|
||||
if (point_idx == (pathlen - 1) && skip_indices[0]) {
|
||||
skip_indices[new_path.size()] = true;
|
||||
go = true;
|
||||
new_path.points.push_back(rpath[point_idx]);
|
||||
break;
|
||||
}
|
||||
|
||||
const Point &prev = rpath[(point_idx - 1 + pathlen) % pathlen];
|
||||
const Point &pt = rpath[point_idx];
|
||||
const Point &next = rpath[(point_idx + 1) % pathlen];
|
||||
|
||||
float angle = LinearAlg2D::getAngleLeft(prev, pt, next); // [0 : 2 * pi]
|
||||
if (angle >= float(M_PI)) { angle -= float(M_PI); } // map [pi : 2 * pi] to [0 : pi]
|
||||
|
||||
// Check if the angle is within limits for the point to 'make sense', given the maximum deviation.
|
||||
// If the angle indicates near-parallel segments ignore the point 'pt'
|
||||
if (angle > max_deviation_angle && angle < M_PI - max_deviation_angle) {
|
||||
new_path.points.push_back(pt);
|
||||
} else if (point_idx != (pathlen - 1)) {
|
||||
// Skip the next point, since the current one was removed:
|
||||
skip_indices[new_path.size()] = true;
|
||||
go = true;
|
||||
new_path.points.push_back(next);
|
||||
++point_idx;
|
||||
}
|
||||
}
|
||||
poly = new_path;
|
||||
num_removed_in_iteration += pathlen - poly.points.size();
|
||||
|
||||
process_indices.clear();
|
||||
process_indices.insert(process_indices.end(), skip_indices.begin(), skip_indices.end());
|
||||
}
|
||||
} while (num_removed_in_iteration > 0);
|
||||
}
|
||||
|
||||
void removeColinearEdges(Polygons &thiss, const double max_deviation_angle = 0.0005)
|
||||
{
|
||||
for (int p = 0; p < int(thiss.size()); p++) {
|
||||
removeColinearEdges(thiss[p], max_deviation_angle);
|
||||
if (thiss[p].size() < 3) {
|
||||
thiss.erase(thiss.begin() + p);
|
||||
p--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const VariableWidthPaths& WallToolPaths::generate()
|
||||
{
|
||||
const coord_t smallest_segment = Slic3r::Arachne::meshfix_maximum_resolution;
|
||||
const coord_t allowed_distance = Slic3r::Arachne::meshfix_maximum_deviation;
|
||||
const coord_t epsilon_offset = (allowed_distance / 2) - 1;
|
||||
const double transitioning_angle = Geometry::deg2rad(this->print_config.wall_transition_angle.value);
|
||||
constexpr coord_t discretization_step_size = scaled<coord_t>(0.8);
|
||||
|
||||
// Simplify outline for boost::voronoi consumption. Absolutely no self intersections or near-self intersections allowed:
|
||||
// TODO: Open question: Does this indeed fix all (or all-but-one-in-a-million) cases for manifold but otherwise possibly complex polygons?
|
||||
Polygons prepared_outline = offset(offset(offset(outline, -epsilon_offset), epsilon_offset * 2), -epsilon_offset);
|
||||
simplify(prepared_outline, smallest_segment, allowed_distance);
|
||||
fixSelfIntersections(epsilon_offset, prepared_outline);
|
||||
removeDegenerateVerts(prepared_outline);
|
||||
removeColinearEdges(prepared_outline, 0.005);
|
||||
// Removing collinear edges may introduce self intersections, so we need to fix them again
|
||||
fixSelfIntersections(epsilon_offset, prepared_outline);
|
||||
removeDegenerateVerts(prepared_outline);
|
||||
removeSmallAreas(prepared_outline, small_area_length * small_area_length, false);
|
||||
|
||||
if (area(prepared_outline) > 0)
|
||||
{
|
||||
const coord_t wall_transition_length = scaled<coord_t>(this->print_config.wall_transition_length.value);
|
||||
const double wall_split_middle_threshold = this->print_config.wall_split_middle_threshold.value / 100.; // For an uneven nr. of lines: When to split the middle wall into two.
|
||||
const double wall_add_middle_threshold = this->print_config.wall_add_middle_threshold.value / 100.; // For an even nr. of lines: When to add a new middle in between the innermost two walls.
|
||||
const int wall_distribution_count = this->print_config.wall_distribution_count.value;
|
||||
const size_t max_bead_count = (inset_count < std::numeric_limits<coord_t>::max() / 2) ? 2 * inset_count : std::numeric_limits<coord_t>::max();
|
||||
const auto beading_strat = BeadingStrategyFactory::makeStrategy
|
||||
(
|
||||
strategy_type,
|
||||
bead_width_0,
|
||||
bead_width_x,
|
||||
wall_transition_length,
|
||||
transitioning_angle,
|
||||
print_thin_walls,
|
||||
min_bead_width,
|
||||
min_feature_size,
|
||||
wall_split_middle_threshold,
|
||||
wall_add_middle_threshold,
|
||||
max_bead_count,
|
||||
wall_0_inset,
|
||||
wall_distribution_count
|
||||
);
|
||||
const coord_t transition_filter_dist = scaled<coord_t>(this->print_config.wall_transition_filter_distance.value);
|
||||
SkeletalTrapezoidation wall_maker
|
||||
(
|
||||
prepared_outline,
|
||||
*beading_strat,
|
||||
beading_strat->getTransitioningAngle(),
|
||||
discretization_step_size,
|
||||
transition_filter_dist,
|
||||
wall_transition_length
|
||||
);
|
||||
wall_maker.generateToolpaths(toolpaths);
|
||||
computeInnerContour();
|
||||
}
|
||||
simplifyToolPaths(toolpaths);
|
||||
|
||||
removeEmptyToolPaths(toolpaths);
|
||||
assert(std::is_sorted(toolpaths.cbegin(), toolpaths.cend(),
|
||||
[](const VariableWidthLines& l, const VariableWidthLines& r)
|
||||
{
|
||||
return l.front().inset_idx < r.front().inset_idx;
|
||||
}) && "WallToolPaths should be sorted from the outer 0th to inner_walls");
|
||||
toolpaths_generated = true;
|
||||
return toolpaths;
|
||||
}
|
||||
|
||||
void WallToolPaths::simplifyToolPaths(VariableWidthPaths& toolpaths/*, const Settings& settings*/)
|
||||
{
|
||||
for (size_t toolpaths_idx = 0; toolpaths_idx < toolpaths.size(); ++toolpaths_idx)
|
||||
{
|
||||
const int64_t maximum_resolution = Slic3r::Arachne::meshfix_maximum_resolution;
|
||||
const int64_t maximum_deviation = Slic3r::Arachne::meshfix_maximum_deviation;
|
||||
const int64_t maximum_extrusion_area_deviation = Slic3r::Arachne::meshfix_maximum_extrusion_area_deviation; // unit: μm²
|
||||
for (auto& line : toolpaths[toolpaths_idx])
|
||||
{
|
||||
line.simplify(maximum_resolution * maximum_resolution, maximum_deviation * maximum_deviation, maximum_extrusion_area_deviation);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const VariableWidthPaths& WallToolPaths::getToolPaths()
|
||||
{
|
||||
if (!toolpaths_generated)
|
||||
{
|
||||
return generate();
|
||||
}
|
||||
return toolpaths;
|
||||
}
|
||||
|
||||
void WallToolPaths::computeInnerContour()
|
||||
{
|
||||
//We'll remove all 0-width paths from the original toolpaths and store them separately as polygons.
|
||||
VariableWidthPaths actual_toolpaths;
|
||||
actual_toolpaths.reserve(toolpaths.size()); //A bit too much, but the correct order of magnitude.
|
||||
VariableWidthPaths contour_paths;
|
||||
contour_paths.reserve(toolpaths.size() / inset_count);
|
||||
std::partition_copy(toolpaths.begin(), toolpaths.end(), std::back_inserter(actual_toolpaths), std::back_inserter(contour_paths),
|
||||
[](const VariableWidthLines& path)
|
||||
{
|
||||
for(const ExtrusionLine& line : path)
|
||||
{
|
||||
for(const ExtrusionJunction& junction : line.junctions)
|
||||
{
|
||||
return junction.w != 0; //On the first actual junction, decide: If it's got 0 width, this is a contour. Otherwise it is an actual toolpath.
|
||||
}
|
||||
}
|
||||
return true; //No junctions with any vertices? Classify it as a toolpath then.
|
||||
});
|
||||
if (! actual_toolpaths.empty())
|
||||
{
|
||||
toolpaths = std::move(actual_toolpaths); //Filtered out the 0-width paths.
|
||||
}
|
||||
else
|
||||
{
|
||||
toolpaths.clear();
|
||||
}
|
||||
|
||||
//Now convert the contour_paths to Polygons to denote the inner contour of the walled areas.
|
||||
inner_contour.clear();
|
||||
|
||||
//We're going to have to stitch these paths since not all walls may be closed contours.
|
||||
//Since these walls have 0 width they should theoretically be closed. But there may be rounding errors.
|
||||
const coord_t minimum_line_width = bead_width_0 / 2;
|
||||
stitchContours(contour_paths, minimum_line_width, inner_contour);
|
||||
|
||||
//The output walls from the skeletal trapezoidation have no known winding order, especially if they are joined together from polylines.
|
||||
//They can be in any direction, clockwise or counter-clockwise, regardless of whether the shapes are positive or negative.
|
||||
//To get a correct shape, we need to make the outside contour positive and any holes inside negative.
|
||||
//This can be done by applying the even-odd rule to the shape. This rule is not sensitive to the winding order of the polygon.
|
||||
//The even-odd rule would be incorrect if the polygon self-intersects, but that should never be generated by the skeletal trapezoidation.
|
||||
inner_contour = union_(inner_contour);
|
||||
}
|
||||
|
||||
const Polygons& WallToolPaths::getInnerContour()
|
||||
{
|
||||
if (!toolpaths_generated && inset_count > 0)
|
||||
{
|
||||
generate();
|
||||
}
|
||||
else if(inset_count == 0)
|
||||
{
|
||||
return outline;
|
||||
}
|
||||
return inner_contour;
|
||||
}
|
||||
|
||||
bool WallToolPaths::removeEmptyToolPaths(VariableWidthPaths& toolpaths)
|
||||
{
|
||||
toolpaths.erase(std::remove_if(toolpaths.begin(), toolpaths.end(), [](const VariableWidthLines& lines)
|
||||
{
|
||||
return lines.empty();
|
||||
}), toolpaths.end());
|
||||
return toolpaths.empty();
|
||||
}
|
||||
|
||||
void WallToolPaths::stitchContours(const VariableWidthPaths& input, const coord_t stitch_distance, Polygons& output)
|
||||
{
|
||||
// Create a bucket grid to find endpoints that are close together.
|
||||
struct ExtrusionLineStartLocator
|
||||
{
|
||||
const Point *operator()(const ExtrusionLine *line) { return &line->junctions.front().p; }
|
||||
};
|
||||
struct ExtrusionLineEndLocator
|
||||
{
|
||||
const Point *operator()(const ExtrusionLine *line) { return &line->junctions.back().p; }
|
||||
};
|
||||
|
||||
// Only find endpoints closer than minimum_line_width, so we can't ever accidentally make crossing contours.
|
||||
ClosestPointInRadiusLookup<const ExtrusionLine*, ExtrusionLineStartLocator> line_starts(coord_t(stitch_distance * std::sqrt(2.)));
|
||||
ClosestPointInRadiusLookup<const ExtrusionLine*, ExtrusionLineEndLocator> line_ends(coord_t(stitch_distance * std::sqrt(2.)));
|
||||
|
||||
auto get_search_bbox = [](const Point &pt, const coord_t radius) -> BoundingBox {
|
||||
const Point min_grid((pt - Point(radius, radius)) / radius);
|
||||
const Point max_grid((pt + Point(radius, radius)) / radius);
|
||||
return {min_grid * radius, (max_grid + Point(1, 1)) * radius - Point(1, 1)};
|
||||
};
|
||||
|
||||
for (const VariableWidthLines &path : input) {
|
||||
for (const ExtrusionLine &line : path) {
|
||||
line_starts.insert(&line);
|
||||
line_ends.insert(&line);
|
||||
}
|
||||
}
|
||||
//Then go through all lines and construct chains of polylines if the endpoints are nearby.
|
||||
std::unordered_set<const ExtrusionLine*> processed_lines; //Track which lines were already processed to not process them twice.
|
||||
for(const VariableWidthLines& path : input)
|
||||
{
|
||||
for(const ExtrusionLine& line : path)
|
||||
{
|
||||
if(processed_lines.find(&line) != processed_lines.end()) //We already added this line before. It got added as a nearby line.
|
||||
{
|
||||
continue;
|
||||
}
|
||||
//We'll create a chain of polylines that get joined together. We can add polylines on both ends!
|
||||
std::deque<const ExtrusionLine*> chain;
|
||||
std::deque<bool> is_reversed; //Lines could need to be inserted in reverse. Must coincide with the `chain` deque.
|
||||
const ExtrusionLine* nearest = &line; //At every iteration, add the polyline that joins together most closely.
|
||||
bool nearest_reverse = false; //Whether the next line to insert must be inserted in reverse.
|
||||
bool nearest_before = false; //Whether the next line to insert must be inserted in the front of the chain.
|
||||
while(nearest)
|
||||
{
|
||||
if(processed_lines.find(nearest) != processed_lines.end())
|
||||
{
|
||||
break; //Looping. This contour is already processed.
|
||||
}
|
||||
processed_lines.insert(nearest);
|
||||
if(nearest_before)
|
||||
{
|
||||
chain.push_front(nearest);
|
||||
is_reversed.push_front(nearest_reverse);
|
||||
}
|
||||
else
|
||||
{
|
||||
chain.push_back(nearest);
|
||||
is_reversed.push_back(nearest_reverse);
|
||||
}
|
||||
|
||||
//Find any nearby lines to attach. Look on both ends of our current chain and find both ends of polylines.
|
||||
const Point chain_start = is_reversed.front() ? chain.front()->junctions.back().p : chain.front()->junctions.front().p;
|
||||
const Point chain_end = is_reversed.back() ? chain.back()->junctions.front().p : chain.back()->junctions.back().p;
|
||||
|
||||
std::vector<std::pair<const ExtrusionLine *const *, double>> starts_near_start = line_starts.find_all(chain_start);
|
||||
std::vector<std::pair<const ExtrusionLine *const *, double>> ends_near_start = line_ends.find_all(chain_start);
|
||||
std::vector<std::pair<const ExtrusionLine *const *, double>> starts_near_end = line_starts.find_all(chain_end);
|
||||
std::vector<std::pair<const ExtrusionLine *const *, double>> ends_near_end = line_ends.find_all(chain_end);
|
||||
|
||||
nearest = nullptr;
|
||||
int64_t nearest_dist2 = std::numeric_limits<int64_t>::max();
|
||||
for (const auto &candidate_ptr : starts_near_start) {
|
||||
const ExtrusionLine* candidate = *candidate_ptr.first;
|
||||
if(processed_lines.find(candidate) != processed_lines.end())
|
||||
continue; //Already processed this line before. It's linked to something else.
|
||||
|
||||
if (const int64_t dist2 = (candidate->junctions.front().p - chain_start).cast<int64_t>().squaredNorm(); dist2 < nearest_dist2) {
|
||||
nearest = candidate;
|
||||
nearest_dist2 = dist2;
|
||||
nearest_reverse = true;
|
||||
nearest_before = true;
|
||||
}
|
||||
}
|
||||
for (const auto &candidate_ptr : ends_near_start) {
|
||||
const ExtrusionLine* candidate = *candidate_ptr.first;
|
||||
if(processed_lines.find(candidate) != processed_lines.end())
|
||||
continue;
|
||||
|
||||
if (const int64_t dist2 = (candidate->junctions.back().p - chain_start).cast<int64_t>().squaredNorm(); dist2 < nearest_dist2) {
|
||||
nearest = candidate;
|
||||
nearest_dist2 = dist2;
|
||||
nearest_reverse = false;
|
||||
nearest_before = true;
|
||||
}
|
||||
}
|
||||
for (const auto &candidate_ptr : starts_near_end) {
|
||||
const ExtrusionLine* candidate = *candidate_ptr.first;
|
||||
if(processed_lines.find(candidate) != processed_lines.end())
|
||||
continue; //Already processed this line before. It's linked to something else.
|
||||
|
||||
if (const int64_t dist2 = (candidate->junctions.front().p - chain_start).cast<int64_t>().squaredNorm(); dist2 < nearest_dist2) {
|
||||
nearest = candidate;
|
||||
nearest_dist2 = dist2;
|
||||
nearest_reverse = false;
|
||||
nearest_before = false;
|
||||
}
|
||||
}
|
||||
for (const auto &candidate_ptr : ends_near_end) {
|
||||
const ExtrusionLine* candidate = *candidate_ptr.first;
|
||||
if (processed_lines.find(candidate) != processed_lines.end())
|
||||
continue;
|
||||
|
||||
if (const int64_t dist2 = (candidate->junctions.back().p - chain_start).cast<int64_t>().squaredNorm(); dist2 < nearest_dist2) {
|
||||
nearest = candidate;
|
||||
nearest_dist2 = dist2;
|
||||
nearest_reverse = true;
|
||||
nearest_before = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Now serialize the entire chain into one polygon.
|
||||
output.emplace_back();
|
||||
for (size_t i = 0; i < chain.size(); ++i) {
|
||||
if(!is_reversed[i])
|
||||
for (const ExtrusionJunction& junction : chain[i]->junctions)
|
||||
output.back().points.emplace_back(junction.p);
|
||||
else
|
||||
for (auto junction = chain[i]->junctions.rbegin(); junction != chain[i]->junctions.rend(); ++junction)
|
||||
output.back().points.emplace_back(junction->p);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t getOuterRegionId(const Arachne::VariableWidthPaths& toolpaths, size_t& out_max_region_id)
|
||||
{
|
||||
// Polygons show up here one by one, so there are always only a) the outer lines and b) the lines that are part of the holes.
|
||||
// Therefore, the outer-regions' lines will always have the region-id that is larger then all of the other ones.
|
||||
|
||||
// First, build the bounding boxes:
|
||||
std::map<size_t, BoundingBox> region_ids_to_bboxes; // Use a sorted map, ordered by region_id, so that we can find the largest region_id quickly.
|
||||
for (const Arachne::VariableWidthLines &path : toolpaths) {
|
||||
for (const Arachne::ExtrusionLine &line : path) {
|
||||
BoundingBox &aabb =
|
||||
region_ids_to_bboxes[line.region_id]; // Empty AABBs are default initialized when region_ids are encountered for the first time.
|
||||
for (const auto &junction : line.junctions) aabb.merge(junction.p);
|
||||
}
|
||||
}
|
||||
|
||||
// Then, the largest of these will be the one that's needed for the outer region, the others' all belong to hole regions:
|
||||
BoundingBox outer_bbox;
|
||||
size_t outer_region_id = 0; // Region-ID 0 is reserved for 'None'.
|
||||
for (const auto ®ion_id_bbox_pair : region_ids_to_bboxes) {
|
||||
if (region_id_bbox_pair.second.contains(outer_bbox)) {
|
||||
outer_bbox = region_id_bbox_pair.second;
|
||||
outer_region_id = region_id_bbox_pair.first;
|
||||
}
|
||||
}
|
||||
|
||||
// Maximum Region-ID (using the ordering of the map)
|
||||
out_max_region_id = region_ids_to_bboxes.empty() ? 0 : region_ids_to_bboxes.rbegin()->first;
|
||||
return outer_region_id;
|
||||
}
|
||||
|
||||
Arachne::BinJunctions variableWidthPathToBinJunctions(const Arachne::VariableWidthPaths& toolpaths, const bool pack_regions_by_inset, const bool center_last, std::set<size_t>* p_bins_with_index_zero_insets)
|
||||
{
|
||||
// Find the largest inset-index:
|
||||
size_t max_inset_index = 0;
|
||||
for (const Arachne::VariableWidthLines &path : toolpaths)
|
||||
max_inset_index = std::max(path.front().inset_idx, max_inset_index);
|
||||
|
||||
// Find which regions are associated with the outer-outer walls (which region is the one the rest is holes inside of):
|
||||
size_t max_region_id = 0;
|
||||
const size_t outer_region_id = getOuterRegionId(toolpaths, max_region_id);
|
||||
|
||||
//Since we're (optionally!) splitting off in the outer and inner regions, it may need twice as many bins as inset-indices.
|
||||
//Add two extra bins for the center-paths, if they need to be stored separately. One bin for inner and one for outer walls.
|
||||
const size_t max_bin = (pack_regions_by_inset ? (max_region_id * 2) + 2 : (max_inset_index + 1) * 2) + center_last * 2;
|
||||
Arachne::BinJunctions insets(max_bin + 1);
|
||||
for (const Arachne::VariableWidthLines &path : toolpaths) {
|
||||
if (path.empty()) // Don't bother printing these.
|
||||
continue;
|
||||
|
||||
const size_t inset_index = path.front().inset_idx;
|
||||
|
||||
// Convert list of extrusion lines to vectors of extrusion junctions, and add those to the binned insets.
|
||||
for (const Arachne::ExtrusionLine &line : path) {
|
||||
// Sort into the right bin, ...
|
||||
size_t bin_index;
|
||||
const bool in_hole_region = line.region_id != outer_region_id && line.region_id != 0;
|
||||
if (center_last && line.is_odd) {
|
||||
bin_index = inset_index > 0;
|
||||
} else if (pack_regions_by_inset) {
|
||||
bin_index = std::min(inset_index, static_cast<size_t>(1)) + 2 * (in_hole_region ? line.region_id : 0) + center_last * 2;
|
||||
} else {
|
||||
bin_index = inset_index + (in_hole_region ? (max_inset_index + 1) : 0) + center_last * 2;
|
||||
}
|
||||
insets[bin_index].emplace_back(line.junctions.begin(), line.junctions.end());
|
||||
|
||||
// Collect all bins that have zero-inset indices in them, if needed:
|
||||
if (inset_index == 0 && p_bins_with_index_zero_insets != nullptr)
|
||||
p_bins_with_index_zero_insets->insert(bin_index);
|
||||
}
|
||||
}
|
||||
return insets;
|
||||
}
|
||||
|
||||
BinJunctions WallToolPaths::getBinJunctions(std::set<size_t> &bins_with_index_zero_insets)
|
||||
{
|
||||
if (!toolpaths_generated)
|
||||
generate();
|
||||
|
||||
return variableWidthPathToBinJunctions(toolpaths, true, true, &bins_with_index_zero_insets);
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
130
src/libslic3r/Arachne/WallToolPaths.hpp
Normal file
130
src/libslic3r/Arachne/WallToolPaths.hpp
Normal file
@ -0,0 +1,130 @@
|
||||
// Copyright (c) 2020 Ultimaker B.V.
|
||||
// CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef CURAENGINE_WALLTOOLPATHS_H
|
||||
#define CURAENGINE_WALLTOOLPATHS_H
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "BeadingStrategy/BeadingStrategyFactory.hpp"
|
||||
#include "utils/ExtrusionLine.hpp"
|
||||
#include "../Polygon.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
constexpr bool fill_outline_gaps = true;
|
||||
constexpr coord_t meshfix_maximum_resolution = scaled<coord_t>(0.5);
|
||||
constexpr coord_t meshfix_maximum_deviation = scaled<coord_t>(0.025);
|
||||
constexpr coord_t meshfix_maximum_extrusion_area_deviation = scaled<coord_t>(2.);
|
||||
|
||||
class WallToolPaths
|
||||
{
|
||||
public:
|
||||
/*!
|
||||
* A class that creates the toolpaths given an outline, nominal bead width and maximum amount of walls
|
||||
* \param outline An outline of the area in which the ToolPaths are to be generated
|
||||
* \param nominal_bead_width The nominal bead width used in the generation of the toolpaths
|
||||
* \param inset_count The maximum number of parallel extrusion lines that make up the wall
|
||||
* \param wall_0_inset How far to inset the outer wall, to make it adhere better to other walls.
|
||||
*/
|
||||
WallToolPaths(const Polygons& outline, const coord_t nominal_bead_width, const size_t inset_count, const coord_t wall_0_inset, const PrintConfig &print_config);
|
||||
|
||||
/*!
|
||||
* A class that creates the toolpaths given an outline, nominal bead width and maximum amount of walls
|
||||
* \param outline An outline of the area in which the ToolPaths are to be generated
|
||||
* \param bead_width_0 The bead width of the first wall used in the generation of the toolpaths
|
||||
* \param bead_width_x The bead width of the inner walls used in the generation of the toolpaths
|
||||
* \param inset_count The maximum number of parallel extrusion lines that make up the wall
|
||||
* \param wall_0_inset How far to inset the outer wall, to make it adhere better to other walls.
|
||||
*/
|
||||
WallToolPaths(const Polygons& outline, const coord_t bead_width_0, const coord_t bead_width_x, const size_t inset_count, const coord_t wall_0_inset, const PrintConfig &print_config);
|
||||
|
||||
/*!
|
||||
* Generates the Toolpaths
|
||||
* \return A reference to the newly create ToolPaths
|
||||
*/
|
||||
const VariableWidthPaths& generate();
|
||||
|
||||
/*!
|
||||
* Gets the toolpaths, if this called before \p generate() it will first generate the Toolpaths
|
||||
* \return a reference to the toolpaths
|
||||
*/
|
||||
const VariableWidthPaths& getToolPaths();
|
||||
|
||||
BinJunctions getBinJunctions(std::set<size_t> &bins_with_index_zero_insets);
|
||||
|
||||
/*!
|
||||
* Compute the inner contour of the walls. This contour indicates where the walled area ends and its infill begins.
|
||||
* The inside can then be filled, e.g. with skin/infill for the walls of a part, or with a pattern in the case of
|
||||
* infill with extra infill walls.
|
||||
*/
|
||||
void computeInnerContour();
|
||||
|
||||
/*!
|
||||
* Gets the inner contour of the area which is inside of the generated tool
|
||||
* paths.
|
||||
*
|
||||
* If the walls haven't been generated yet, this will lazily call the
|
||||
* \p generate() function to generate the walls with variable width.
|
||||
* The resulting polygon will snugly match the inside of the variable-width
|
||||
* walls where the walls get limited by the LimitedBeadingStrategy to a
|
||||
* maximum wall count.
|
||||
* If there are no walls, the outline will be returned.
|
||||
* \return The inner contour of the generated walls.
|
||||
*/
|
||||
const Polygons& getInnerContour();
|
||||
|
||||
/*!
|
||||
* Removes empty paths from the toolpaths
|
||||
* \param toolpaths the VariableWidthPaths generated with \p generate()
|
||||
* \return true if there are still paths left. If all toolpaths were removed it returns false
|
||||
*/
|
||||
static bool removeEmptyToolPaths(VariableWidthPaths& toolpaths);
|
||||
|
||||
/*!
|
||||
* Stitches toolpaths together to form contours.
|
||||
*
|
||||
* All toolpaths are used. Paths that are not closed will get closed in the
|
||||
* output by virtue of becoming polygons. As such, the input is expected to
|
||||
* consist of almost completely closed contours, which may be split up into
|
||||
* different polylines.
|
||||
* This function combines those polylines into the polygons they are
|
||||
* probably intended to depict.
|
||||
* \param input The paths to stitch together.
|
||||
* \param stitch_distance Any endpoints closer than this distance can be
|
||||
* stitched together. An additional line segment will bridge the gap.
|
||||
* \param output Where to store the output polygons.
|
||||
*/
|
||||
static void stitchContours(const VariableWidthPaths& input, const coord_t stitch_distance, Polygons& output) ;
|
||||
|
||||
protected:
|
||||
/*!
|
||||
* Simplifies the variable-width toolpaths by calling the simplify on every line in the toolpath using the provided
|
||||
* settings.
|
||||
* \param settings The settings as provided by the user
|
||||
* \return
|
||||
*/
|
||||
static void simplifyToolPaths(VariableWidthPaths& toolpaths/*, const Settings& settings*/);
|
||||
|
||||
private:
|
||||
const Polygons& outline; //<! A reference to the outline polygon that is the designated area
|
||||
coord_t bead_width_0; //<! The nominal or first extrusion line width with which libArachne generates its walls
|
||||
coord_t bead_width_x; //<! The subsequently extrusion line width with which libArachne generates its walls if WallToolPaths was called with the nominal_bead_width Constructor this is the same as bead_width_0
|
||||
size_t inset_count; //<! The maximum number of walls to generate
|
||||
coord_t wall_0_inset; //<! How far to inset the outer wall. Should only be applied when printing the actual walls, not extra infill/skin/support walls.
|
||||
BeadingStrategyType strategy_type; //<! The wall generating strategy
|
||||
bool print_thin_walls; //<! Whether to enable the widening beading meta-strategy for thin features
|
||||
coord_t min_feature_size; //<! The minimum size of the features that can be widened by the widening beading meta-strategy. Features thinner than that will not be printed
|
||||
coord_t min_bead_width; //<! The minimum bead size to use when widening thin model features with the widening beading meta-strategy
|
||||
double small_area_length; //<! The length of the small features which are to be filtered out, this is squared into a surface
|
||||
bool toolpaths_generated; //<! Are the toolpaths generated
|
||||
VariableWidthPaths toolpaths; //<! The generated toolpaths
|
||||
Polygons inner_contour; //<! The inner contour of the generated toolpaths
|
||||
const PrintConfig &print_config;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
|
||||
#endif // CURAENGINE_WALLTOOLPATHS_H
|
23
src/libslic3r/Arachne/utils/ExtrusionJunction.cpp
Normal file
23
src/libslic3r/Arachne/utils/ExtrusionJunction.cpp
Normal file
@ -0,0 +1,23 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include "ExtrusionJunction.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
bool ExtrusionJunction::operator ==(const ExtrusionJunction& other) const
|
||||
{
|
||||
return p == other.p
|
||||
&& w == other.w
|
||||
&& perimeter_index == other.perimeter_index;
|
||||
}
|
||||
|
||||
ExtrusionJunction::ExtrusionJunction(const Point p, const coord_t w, const coord_t perimeter_index, const size_t region_id)
|
||||
: p(p),
|
||||
w(w),
|
||||
perimeter_index(perimeter_index),
|
||||
region_id(region_id)
|
||||
{}
|
||||
|
||||
}
|
68
src/libslic3r/Arachne/utils/ExtrusionJunction.hpp
Normal file
68
src/libslic3r/Arachne/utils/ExtrusionJunction.hpp
Normal file
@ -0,0 +1,68 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
|
||||
#ifndef UTILS_EXTRUSION_JUNCTION_H
|
||||
#define UTILS_EXTRUSION_JUNCTION_H
|
||||
|
||||
#include "../../Point.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* This struct represents one vertex in an extruded path.
|
||||
*
|
||||
* It contains information on how wide the extruded path must be at this point,
|
||||
* and which perimeter it represents.
|
||||
*/
|
||||
struct ExtrusionJunction
|
||||
{
|
||||
/*!
|
||||
* The position of the centreline of the path when it reaches this junction.
|
||||
* This is the position that should end up in the g-code eventually.
|
||||
*/
|
||||
Point p;
|
||||
|
||||
/*!
|
||||
* The width of the extruded path at this junction.
|
||||
*/
|
||||
coord_t w;
|
||||
|
||||
/*!
|
||||
* Which perimeter this junction is part of.
|
||||
*
|
||||
* Perimeters are counted from the outside inwards. The outer wall has index
|
||||
* 0.
|
||||
*/
|
||||
size_t perimeter_index;
|
||||
|
||||
/*!
|
||||
* Which region this juntion is part of. A solid polygon without holes has only one region.
|
||||
* A polygon with holes has 2. Disconnected parts of the polygon are also separate regions.
|
||||
* Will be 0 if no region was given.
|
||||
*/
|
||||
size_t region_id;
|
||||
|
||||
ExtrusionJunction(const Point p, const coord_t w, const coord_t perimeter_index, const size_t region_id = 0);
|
||||
|
||||
bool operator==(const ExtrusionJunction& other) const;
|
||||
};
|
||||
|
||||
inline Point operator-(const ExtrusionJunction& a, const ExtrusionJunction& b)
|
||||
{
|
||||
return a.p - b.p;
|
||||
}
|
||||
|
||||
// Identity function, used to be able to make templated algorithms that do their operations on 'point-like' input.
|
||||
inline const Point& make_point(const ExtrusionJunction& ej)
|
||||
{
|
||||
return ej.p;
|
||||
}
|
||||
|
||||
using LineJunctions = std::vector<ExtrusionJunction>; //<! Vector of Lines
|
||||
using PathJunctions = std::vector<LineJunctions>; //<! Vector of paths
|
||||
using BinJunctions = std::vector<PathJunctions>; //<! Vector of insets (bins)
|
||||
|
||||
}
|
||||
#endif // UTILS_EXTRUSION_JUNCTION_H
|
241
src/libslic3r/Arachne/utils/ExtrusionLine.cpp
Normal file
241
src/libslic3r/Arachne/utils/ExtrusionLine.cpp
Normal file
@ -0,0 +1,241 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "ExtrusionLine.hpp"
|
||||
#include "linearAlg2D.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
ExtrusionLine::ExtrusionLine(const size_t inset_idx, const bool is_odd, const size_t region_id)
|
||||
: inset_idx(inset_idx)
|
||||
, is_odd(is_odd)
|
||||
, region_id(region_id)
|
||||
{}
|
||||
|
||||
coord_t ExtrusionLine::getLength() const
|
||||
{
|
||||
if (junctions.empty())
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
coord_t len = 0;
|
||||
ExtrusionJunction prev = junctions.front();
|
||||
for (const ExtrusionJunction& next : junctions)
|
||||
{
|
||||
len += (next.p - prev.p).cast<int64_t>().norm();
|
||||
prev = next;
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
coord_t ExtrusionLine::getMinimalWidth() const
|
||||
{
|
||||
return std::min_element(junctions.cbegin(), junctions.cend(),
|
||||
[](const ExtrusionJunction& l, const ExtrusionJunction& r)
|
||||
{
|
||||
return l.w < r.w;
|
||||
})->w;
|
||||
}
|
||||
|
||||
void ExtrusionLine::appendJunctionsTo(LineJunctions& result) const
|
||||
{
|
||||
result.insert(result.end(), junctions.begin(), junctions.end());
|
||||
}
|
||||
|
||||
void ExtrusionLine::simplify(const int64_t smallest_line_segment_squared, const int64_t allowed_error_distance_squared, const int64_t maximum_extrusion_area_deviation)
|
||||
{
|
||||
if (junctions.size() <= 3)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
/* ExtrusionLines are treated as (open) polylines, so in case an ExtrusionLine is actually a closed polygon, its
|
||||
* starting and ending points will be equal (or almost equal). Therefore, the simplification of the ExtrusionLine
|
||||
* should not touch the first and last points. As a result, start simplifying from point at index 1.
|
||||
* */
|
||||
std::vector<ExtrusionJunction> new_junctions;
|
||||
// Starting junction should always exist in the simplified path
|
||||
new_junctions.emplace_back(junctions.front());
|
||||
|
||||
/* Initially, previous_previous is always the same as previous because, for open ExtrusionLines the last junction
|
||||
* cannot be taken into consideration when checking the points at index 1. For closed ExtrusionLines, the first and
|
||||
* last junctions are anyway the same.
|
||||
* */
|
||||
ExtrusionJunction previous_previous = junctions.front();
|
||||
ExtrusionJunction previous = junctions.front();
|
||||
|
||||
/* When removing a vertex, we check the height of the triangle of the area
|
||||
being removed from the original polygon by the simplification. However,
|
||||
when consecutively removing multiple vertices the height of the previously
|
||||
removed vertices w.r.t. the shortcut path changes.
|
||||
In order to not recompute the new height value of previously removed
|
||||
vertices we compute the height of a representative triangle, which covers
|
||||
the same amount of area as the area being cut off. We use the Shoelace
|
||||
formula to accumulate the area under the removed segments. This works by
|
||||
computing the area in a 'fan' where each of the blades of the fan go from
|
||||
the origin to one of the segments. While removing vertices the area in
|
||||
this fan accumulates. By subtracting the area of the blade connected to
|
||||
the short-cutting segment we obtain the total area of the cutoff region.
|
||||
From this area we compute the height of the representative triangle using
|
||||
the standard formula for a triangle area: A = .5*b*h
|
||||
*/
|
||||
const ExtrusionJunction& initial = junctions.at(1);
|
||||
int64_t accumulated_area_removed = int64_t(previous.p.x()) * int64_t(initial.p.y()) - int64_t(previous.p.y()) * int64_t(initial.p.x()); // Twice the Shoelace formula for area of polygon per line segment.
|
||||
|
||||
for (size_t point_idx = 1; point_idx < junctions.size() - 1; point_idx++)
|
||||
{
|
||||
const ExtrusionJunction& current = junctions[point_idx];
|
||||
|
||||
// Spill over in case of overflow, unless the [next] vertex will then be equal to [previous].
|
||||
const bool spill_over = point_idx + 1 == junctions.size() && new_junctions.size() > 1;
|
||||
ExtrusionJunction& next = spill_over ? new_junctions[0] : junctions[point_idx + 1];
|
||||
|
||||
const int64_t removed_area_next = int64_t(current.p.x()) * int64_t(next.p.y()) - int64_t(current.p.y()) * int64_t(next.p.x()); // Twice the Shoelace formula for area of polygon per line segment.
|
||||
const int64_t negative_area_closing = int64_t(next.p.x()) * int64_t(previous.p.y()) - int64_t(next.p.y()) * int64_t(previous.p.x()); // Area between the origin and the short-cutting segment
|
||||
accumulated_area_removed += removed_area_next;
|
||||
|
||||
const int64_t length2 = (current - previous).cast<int64_t>().squaredNorm();
|
||||
if (length2 < scaled<coord_t>(0.025))
|
||||
{
|
||||
// We're allowed to always delete segments of less than 5 micron. The width in this case doesn't matter that much.
|
||||
continue;
|
||||
}
|
||||
|
||||
const int64_t area_removed_so_far = accumulated_area_removed + negative_area_closing; // Close the shortcut area polygon
|
||||
const int64_t base_length_2 = (next - previous).cast<int64_t>().squaredNorm();
|
||||
|
||||
if (base_length_2 == 0) // Two line segments form a line back and forth with no area.
|
||||
{
|
||||
continue; // Remove the junction (vertex).
|
||||
}
|
||||
//We want to check if the height of the triangle formed by previous, current and next vertices is less than allowed_error_distance_squared.
|
||||
//1/2 L = A [actual area is half of the computed shoelace value] // Shoelace formula is .5*(...) , but we simplify the computation and take out the .5
|
||||
//A = 1/2 * b * h [triangle area formula]
|
||||
//L = b * h [apply above two and take out the 1/2]
|
||||
//h = L / b [divide by b]
|
||||
//h^2 = (L / b)^2 [square it]
|
||||
//h^2 = L^2 / b^2 [factor the divisor]
|
||||
const int64_t height_2 = int64_t(double(area_removed_so_far) * double(area_removed_so_far) / double(base_length_2));
|
||||
coord_t weighted_average_width;
|
||||
const int64_t extrusion_area_error = calculateExtrusionAreaDeviationError(previous, current, next, weighted_average_width);
|
||||
if ((height_2 <= 1 //Almost exactly colinear (barring rounding errors).
|
||||
&& Line::distance_to_infinite(current.p, previous.p, next.p) <= 1.) // Make sure that height_2 is not small because of cancellation of positive and negative areas
|
||||
// We shouldn't remove middle junctions of colinear segments if the area changed for the C-P segment is exceeding the maximum allowed
|
||||
&& extrusion_area_error <= maximum_extrusion_area_deviation)
|
||||
{
|
||||
// Adjust the width of the entire P-N line as a weighted average of the widths of the P-C and C-N lines and
|
||||
// then remove the current junction (vertex).
|
||||
next.w = weighted_average_width;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (length2 < smallest_line_segment_squared
|
||||
&& height_2 <= allowed_error_distance_squared) // Removing the junction (vertex) doesn't introduce too much error.
|
||||
{
|
||||
const int64_t next_length2 = (current - next).cast<int64_t>().squaredNorm();
|
||||
if (next_length2 > smallest_line_segment_squared)
|
||||
{
|
||||
// Special case; The next line is long. If we were to remove this, it could happen that we get quite noticeable artifacts.
|
||||
// We should instead move this point to a location where both edges are kept and then remove the previous point that we wanted to keep.
|
||||
// By taking the intersection of these two lines, we get a point that preserves the direction (so it makes the corner a bit more pointy).
|
||||
// We just need to be sure that the intersection point does not introduce an artifact itself.
|
||||
Point intersection_point;
|
||||
bool has_intersection = Line(previous_previous.p, previous.p).intersection_infinite(Line(current.p, next.p), &intersection_point);
|
||||
if (!has_intersection
|
||||
|| Line::distance_to_infinite_squared(intersection_point, previous.p, current.p) > double(allowed_error_distance_squared)
|
||||
|| (intersection_point - previous.p).cast<int64_t>().squaredNorm() > smallest_line_segment_squared // The intersection point is way too far from the 'previous'
|
||||
|| (intersection_point - next.p).cast<int64_t>().squaredNorm() > smallest_line_segment_squared) // and 'next' points, so it shouldn't replace 'current'
|
||||
{
|
||||
// We can't find a better spot for it, but the size of the line is more than 5 micron.
|
||||
// So the only thing we can do here is leave it in...
|
||||
}
|
||||
else
|
||||
{
|
||||
// New point seems like a valid one.
|
||||
const ExtrusionJunction new_to_add = ExtrusionJunction(intersection_point, current.w, current.perimeter_index, current.region_id);
|
||||
// If there was a previous point added, remove it.
|
||||
if(!new_junctions.empty())
|
||||
{
|
||||
new_junctions.pop_back();
|
||||
previous = previous_previous;
|
||||
}
|
||||
|
||||
// The junction (vertex) is replaced by the new one.
|
||||
accumulated_area_removed = removed_area_next; // So that in the next iteration it's the area between the origin, [previous] and [current]
|
||||
previous_previous = previous;
|
||||
previous = new_to_add; // Note that "previous" is only updated if we don't remove the junction (vertex).
|
||||
new_junctions.push_back(new_to_add);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
continue; // Remove the junction (vertex).
|
||||
}
|
||||
}
|
||||
// The junction (vertex) isn't removed.
|
||||
accumulated_area_removed = removed_area_next; // So that in the next iteration it's the area between the origin, [previous] and [current]
|
||||
previous_previous = previous;
|
||||
previous = current; // Note that "previous" is only updated if we don't remove the junction (vertex).
|
||||
new_junctions.push_back(current);
|
||||
}
|
||||
|
||||
// Ending junction (vertex) should always exist in the simplified path
|
||||
new_junctions.emplace_back(junctions.back());
|
||||
|
||||
/* In case this is a closed polygon (instead of a poly-line-segments), the invariant that the first and last points are the same should be enforced.
|
||||
* Since one of them didn't move, and the other can't have been moved further than the constraints, if originally equal, they can simply be equated.
|
||||
*/
|
||||
if ((junctions.front().p - junctions.back().p).cast<int64_t>().squaredNorm() == 0)
|
||||
{
|
||||
new_junctions.back().p = junctions.front().p;
|
||||
}
|
||||
|
||||
junctions = new_junctions;
|
||||
}
|
||||
|
||||
int64_t ExtrusionLine::calculateExtrusionAreaDeviationError(ExtrusionJunction A, ExtrusionJunction B, ExtrusionJunction C, coord_t& weighted_average_width)
|
||||
{
|
||||
/*
|
||||
* A B C A C
|
||||
* --------------- **************
|
||||
* | | ------------------------------------------
|
||||
* | |--------------------------| B removed | |***************************|
|
||||
* | | | ---------> | | |
|
||||
* | |--------------------------| | |***************************|
|
||||
* | | ------------------------------------------
|
||||
* --------------- ^ **************
|
||||
* ^ C.w ^
|
||||
* B.w new_width = weighted_average_width
|
||||
*
|
||||
*
|
||||
* ******** denote the total extrusion area deviation error in the consecutive segments as a result of using the
|
||||
* weighted-average width for the entire extrusion line.
|
||||
*
|
||||
* */
|
||||
const int64_t ab_length = (B - A).cast<int64_t>().norm();
|
||||
const int64_t bc_length = (C - B).cast<int64_t>().norm();
|
||||
const int64_t width_diff = llabs(B.w - C.w);
|
||||
if (width_diff > 1)
|
||||
{
|
||||
// Adjust the width only if there is a difference, or else the rounding errors may produce the wrong
|
||||
// weighted average value.
|
||||
assert(((int64_t(ab_length) * int64_t(B.w) + int64_t(bc_length) * int64_t(C.w)) / (C - A).cast<int64_t>().norm()) <= std::numeric_limits<int64_t>::max());
|
||||
weighted_average_width = (ab_length * int64_t(B.w) + bc_length * int64_t(C.w)) / (C - A).cast<int64_t>().norm();
|
||||
assert((double(llabs(B.w - weighted_average_width)) * double(ab_length) + double(llabs(C.w - weighted_average_width)) * double(bc_length)) <= double(std::numeric_limits<int64_t>::max()));
|
||||
return int64_t(llabs(B.w - weighted_average_width)) * ab_length + int64_t(llabs(C.w - weighted_average_width)) * bc_length;
|
||||
}
|
||||
else
|
||||
{
|
||||
// If the width difference is very small, then select the width of the segment that is longer
|
||||
weighted_average_width = ab_length > bc_length ? B.w : C.w;
|
||||
assert((int64_t(width_diff) * int64_t(bc_length)) <= std::numeric_limits<coord_t>::max());
|
||||
assert((int64_t(width_diff) * int64_t(ab_length)) <= std::numeric_limits<coord_t>::max());
|
||||
return ab_length > bc_length ? width_diff * bc_length : width_diff * ab_length;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
159
src/libslic3r/Arachne/utils/ExtrusionLine.hpp
Normal file
159
src/libslic3r/Arachne/utils/ExtrusionLine.hpp
Normal file
@ -0,0 +1,159 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
|
||||
#ifndef UTILS_EXTRUSION_LINE_H
|
||||
#define UTILS_EXTRUSION_LINE_H
|
||||
|
||||
#include "ExtrusionJunction.hpp"
|
||||
#include "../../Polyline.hpp"
|
||||
#include "../../Polygon.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
class ThickPolyline;
|
||||
}
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* Represents a polyline (not just a line) that is to be extruded with variable
|
||||
* line width.
|
||||
*
|
||||
* This polyline is a sequence of \ref ExtrusionJunction, with a bit of metadata
|
||||
* about which inset it represents.
|
||||
*/
|
||||
struct ExtrusionLine
|
||||
{
|
||||
/*!
|
||||
* Which inset this path represents, counted from the outside inwards.
|
||||
*
|
||||
* The outer wall has index 0.
|
||||
*/
|
||||
size_t inset_idx;
|
||||
|
||||
/*!
|
||||
* If a thin piece needs to be printed with an odd number of walls (e.g. 5
|
||||
* walls) then there will be one wall in the middle that is not a loop. This
|
||||
* field indicates whether this path is such a line through the middle, that
|
||||
* has no companion line going back on the other side and is not a closed
|
||||
* loop.
|
||||
*/
|
||||
bool is_odd;
|
||||
|
||||
/*!
|
||||
* Which region this line is part of. A solid polygon without holes has only one region.
|
||||
* A polygon with holes has 2. Disconnected parts of the polygon are also separate regions.
|
||||
* Will be 0 if no region was given.
|
||||
*/
|
||||
size_t region_id;
|
||||
|
||||
/*!
|
||||
* The list of vertices along which this path runs.
|
||||
*
|
||||
* Each junction has a width, making this path a variable-width path.
|
||||
*/
|
||||
std::vector<ExtrusionJunction> junctions;
|
||||
|
||||
ExtrusionLine(const size_t inset_idx, const bool is_odd, const size_t region_id = 0);
|
||||
|
||||
/*!
|
||||
* Sum the total length of this path.
|
||||
*/
|
||||
coord_t getLength() const;
|
||||
|
||||
/*!
|
||||
* Get the minimal width of this path
|
||||
*/
|
||||
coord_t getMinimalWidth() const;
|
||||
|
||||
/*!
|
||||
* Export the included junctions as vector.
|
||||
*/
|
||||
void appendJunctionsTo(LineJunctions& result) const;
|
||||
|
||||
/*!
|
||||
* Removes vertices of the ExtrusionLines to make sure that they are not too high
|
||||
* resolution.
|
||||
*
|
||||
* This removes junctions which are connected to line segments that are shorter
|
||||
* than the `smallest_line_segment`, unless that would introduce a deviation
|
||||
* in the contour of more than `allowed_error_distance`.
|
||||
*
|
||||
* Criteria:
|
||||
* 1. Never remove a junction if either of the connected segments is larger than \p smallest_line_segment
|
||||
* 2. Never remove a junction if the distance between that junction and the final resulting polygon would be higher
|
||||
* than \p allowed_error_distance
|
||||
* 3. The direction of segments longer than \p smallest_line_segment always
|
||||
* remains unaltered (but their end points may change if it is connected to
|
||||
* a small segment)
|
||||
* 4. Never remove a junction if it has a distinctively different width than the next junction, as this can
|
||||
* introduce unwanted irregularities on the wall widths.
|
||||
*
|
||||
* Simplify uses a heuristic and doesn't necessarily remove all removable
|
||||
* vertices under the above criteria, but simplify may never violate these
|
||||
* criteria. Unless the segments or the distance is smaller than the
|
||||
* rounding error of 5 micron.
|
||||
*
|
||||
* Vertices which introduce an error of less than 5 microns are removed
|
||||
* anyway, even if the segments are longer than the smallest line segment.
|
||||
* This makes sure that (practically) co-linear line segments are joined into
|
||||
* a single line segment.
|
||||
* \param smallest_line_segment Maximal length of removed line segments.
|
||||
* \param allowed_error_distance If removing a vertex introduces a deviation
|
||||
* from the original path that is more than this distance, the vertex may
|
||||
* not be removed.
|
||||
* \param maximum_extrusion_area_deviation The maximum extrusion area deviation allowed when removing intermediate
|
||||
* junctions from a straight ExtrusionLine
|
||||
*/
|
||||
void simplify(int64_t smallest_line_segment_squared, int64_t allowed_error_distance_squared, int64_t maximum_extrusion_area_deviation);
|
||||
|
||||
/*!
|
||||
* Computes and returns the total area error (in μm²) of the AB and BC segments of an ABC straight ExtrusionLine
|
||||
* when the junction B with a width B.w is removed from the ExtrusionLine. The area changes due to the fact that the
|
||||
* new simplified line AC has a uniform width which equals to the weighted average of the width of the subsegments
|
||||
* (based on their length).
|
||||
*
|
||||
* \param A Start point of the 3-point-straight line
|
||||
* \param B Intermediate point of the 3-point-straight line
|
||||
* \param C End point of the 3-point-straight line
|
||||
* \param weighted_average_width The weighted average of the widths of the two colinear extrusion segments
|
||||
* */
|
||||
static int64_t calculateExtrusionAreaDeviationError(ExtrusionJunction A, ExtrusionJunction B, ExtrusionJunction C, coord_t& weighted_average_width);
|
||||
};
|
||||
|
||||
using VariableWidthLines = std::vector<ExtrusionLine>; //<! The ExtrusionLines generated by libArachne for each Path
|
||||
using VariableWidthPaths = std::vector<VariableWidthLines>; //<! The toolpaths generated by libArachne
|
||||
|
||||
static inline Slic3r::ThickPolyline to_thick_polyline(const Arachne::LineJunctions &line_junctions)
|
||||
{
|
||||
assert(line_junctions.size() >= 2);
|
||||
Slic3r::ThickPolyline out;
|
||||
out.points.emplace_back(line_junctions.front().p);
|
||||
out.width.emplace_back(line_junctions.front().w);
|
||||
out.points.emplace_back(line_junctions[1].p);
|
||||
out.width.emplace_back(line_junctions[1].w);
|
||||
|
||||
auto it_prev = line_junctions.begin() + 1;
|
||||
for (auto it = line_junctions.begin() + 2; it != line_junctions.end(); ++it) {
|
||||
out.points.emplace_back(it->p);
|
||||
out.width.emplace_back(it_prev->w);
|
||||
out.width.emplace_back(it->w);
|
||||
it_prev = it;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static inline Polygon to_polygon(const ExtrusionLine& line) {
|
||||
Polygon out;
|
||||
assert(line.junctions.size() >= 3);
|
||||
assert(line.junctions.front().p == line.junctions.back().p);
|
||||
out.points.reserve(line.junctions.size() - 1);
|
||||
for (auto it = line.junctions.begin(); it != line.junctions.end() - 1; ++it)
|
||||
out.points.emplace_back(it->p);
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // UTILS_EXTRUSION_LINE_H
|
39
src/libslic3r/Arachne/utils/HalfEdge.hpp
Normal file
39
src/libslic3r/Arachne/utils/HalfEdge.hpp
Normal file
@ -0,0 +1,39 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_HALF_EDGE_H
|
||||
#define UTILS_HALF_EDGE_H
|
||||
|
||||
#include <forward_list>
|
||||
#include <optional>
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
|
||||
class HalfEdgeNode;
|
||||
|
||||
|
||||
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
|
||||
class HalfEdge
|
||||
{
|
||||
using edge_t = derived_edge_t;
|
||||
using node_t = derived_node_t;
|
||||
public:
|
||||
edge_data_t data;
|
||||
edge_t* twin = nullptr;
|
||||
edge_t* next = nullptr;
|
||||
edge_t* prev = nullptr;
|
||||
node_t* from = nullptr;
|
||||
node_t* to = nullptr;
|
||||
HalfEdge(edge_data_t data)
|
||||
: data(data)
|
||||
{}
|
||||
bool operator==(const edge_t& other)
|
||||
{
|
||||
return this == &other;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // UTILS_HALF_EDGE_H
|
29
src/libslic3r/Arachne/utils/HalfEdgeGraph.hpp
Normal file
29
src/libslic3r/Arachne/utils/HalfEdgeGraph.hpp
Normal file
@ -0,0 +1,29 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_HALF_EDGE_GRAPH_H
|
||||
#define UTILS_HALF_EDGE_GRAPH_H
|
||||
|
||||
|
||||
#include <list>
|
||||
#include <cassert>
|
||||
|
||||
|
||||
|
||||
#include "HalfEdge.hpp"
|
||||
#include "HalfEdgeNode.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
template<class node_data_t, class edge_data_t, class derived_node_t, class derived_edge_t> // types of data contained in nodes and edges
|
||||
class HalfEdgeGraph
|
||||
{
|
||||
public:
|
||||
using edge_t = derived_edge_t;
|
||||
using node_t = derived_node_t;
|
||||
std::list<edge_t> edges;
|
||||
std::list<node_t> nodes;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // UTILS_HALF_EDGE_GRAPH_H
|
38
src/libslic3r/Arachne/utils/HalfEdgeNode.hpp
Normal file
38
src/libslic3r/Arachne/utils/HalfEdgeNode.hpp
Normal file
@ -0,0 +1,38 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_HALF_EDGE_NODE_H
|
||||
#define UTILS_HALF_EDGE_NODE_H
|
||||
|
||||
#include <list>
|
||||
|
||||
#include "../../Point.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
|
||||
class HalfEdge;
|
||||
|
||||
template<typename node_data_t, typename edge_data_t, typename derived_node_t, typename derived_edge_t>
|
||||
class HalfEdgeNode
|
||||
{
|
||||
using edge_t = derived_edge_t;
|
||||
using node_t = derived_node_t;
|
||||
public:
|
||||
node_data_t data;
|
||||
Point p;
|
||||
edge_t* incident_edge = nullptr;
|
||||
HalfEdgeNode(node_data_t data, Point p)
|
||||
: data(data)
|
||||
, p(p)
|
||||
{}
|
||||
|
||||
bool operator==(const node_t& other)
|
||||
{
|
||||
return this == &other;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
#endif // UTILS_HALF_EDGE_NODE_H
|
131
src/libslic3r/Arachne/utils/PolygonsPointIndex.hpp
Normal file
131
src/libslic3r/Arachne/utils/PolygonsPointIndex.hpp
Normal file
@ -0,0 +1,131 @@
|
||||
//Copyright (c) 2018 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_POLYGONS_POINT_INDEX_H
|
||||
#define UTILS_POLYGONS_POINT_INDEX_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "../../Point.hpp"
|
||||
#include "../../Polygon.hpp"
|
||||
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* A class for iterating over the points in one of the polygons in a \ref Polygons object
|
||||
*/
|
||||
class PolygonsPointIndex
|
||||
{
|
||||
public:
|
||||
/*!
|
||||
* The polygons into which this index is indexing.
|
||||
*/
|
||||
const Polygons* polygons; // (pointer to const polygons)
|
||||
|
||||
unsigned int poly_idx; //!< The index of the polygon in \ref PolygonsPointIndex::polygons
|
||||
|
||||
unsigned int point_idx; //!< The index of the point in the polygon in \ref PolygonsPointIndex::polygons
|
||||
|
||||
/*!
|
||||
* Constructs an empty point index to no polygon.
|
||||
*
|
||||
* This is used as a placeholder for when there is a zero-construction
|
||||
* needed. Since the `polygons` field is const you can't ever make this
|
||||
* initialisation useful.
|
||||
*/
|
||||
PolygonsPointIndex() : polygons(nullptr), poly_idx(0), point_idx(0) {}
|
||||
|
||||
/*!
|
||||
* Constructs a new point index to a vertex of a polygon.
|
||||
* \param polygons The Polygons instance to which this index points.
|
||||
* \param poly_idx The index of the sub-polygon to point to.
|
||||
* \param point_idx The index of the vertex in the sub-polygon.
|
||||
*/
|
||||
PolygonsPointIndex(const Polygons *polygons, unsigned int poly_idx, unsigned int point_idx)
|
||||
: polygons(polygons), poly_idx(poly_idx), point_idx(point_idx) {}
|
||||
|
||||
/*!
|
||||
* Copy constructor to copy these indices.
|
||||
*/
|
||||
PolygonsPointIndex(const PolygonsPointIndex& original) = default;
|
||||
|
||||
Point p() const
|
||||
{
|
||||
if (!polygons)
|
||||
return {0, 0};
|
||||
|
||||
return (*polygons)[poly_idx][point_idx];
|
||||
}
|
||||
|
||||
/*!
|
||||
* Test whether two iterators refer to the same polygon in the same polygon list.
|
||||
*
|
||||
* \param other The PolygonsPointIndex to test for equality
|
||||
* \return Wether the right argument refers to the same polygon in the same ListPolygon as the left argument.
|
||||
*/
|
||||
bool operator==(const PolygonsPointIndex &other) const
|
||||
{
|
||||
return polygons == other.polygons && poly_idx == other.poly_idx && point_idx == other.point_idx;
|
||||
}
|
||||
bool operator!=(const PolygonsPointIndex &other) const { return !(*this == other); }
|
||||
bool operator<(const PolygonsPointIndex &other) const { return this->p() < other.p(); }
|
||||
PolygonsPointIndex &operator=(const PolygonsPointIndex &other)
|
||||
{
|
||||
polygons = other.polygons;
|
||||
poly_idx = other.poly_idx;
|
||||
point_idx = other.point_idx;
|
||||
return *this;
|
||||
}
|
||||
//! move the iterator forward (and wrap around at the end)
|
||||
PolygonsPointIndex &operator++()
|
||||
{
|
||||
point_idx = (point_idx + 1) % (*polygons)[poly_idx].size();
|
||||
return *this;
|
||||
}
|
||||
//! move the iterator backward (and wrap around at the beginning)
|
||||
PolygonsPointIndex &operator--()
|
||||
{
|
||||
if (point_idx == 0)
|
||||
point_idx = (*polygons)[poly_idx].size();
|
||||
point_idx--;
|
||||
return *this;
|
||||
}
|
||||
//! move the iterator forward (and wrap around at the end)
|
||||
PolygonsPointIndex next() const
|
||||
{
|
||||
PolygonsPointIndex ret(*this);
|
||||
++ret;
|
||||
return ret;
|
||||
}
|
||||
//! move the iterator backward (and wrap around at the beginning)
|
||||
PolygonsPointIndex prev() const
|
||||
{
|
||||
PolygonsPointIndex ret(*this);
|
||||
--ret;
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
}//namespace Slic3r::Arachne
|
||||
|
||||
namespace std
|
||||
{
|
||||
/*!
|
||||
* Hash function for \ref PolygonsPointIndex
|
||||
*/
|
||||
template <>
|
||||
struct hash<Slic3r::Arachne::PolygonsPointIndex>
|
||||
{
|
||||
size_t operator()(const Slic3r::Arachne::PolygonsPointIndex& lpi) const
|
||||
{
|
||||
return Slic3r::PointHash{}(lpi.p());
|
||||
}
|
||||
};
|
||||
}//namespace std
|
||||
|
||||
|
||||
|
||||
#endif//UTILS_POLYGONS_POINT_INDEX_H
|
31
src/libslic3r/Arachne/utils/PolygonsSegmentIndex.hpp
Normal file
31
src/libslic3r/Arachne/utils/PolygonsSegmentIndex.hpp
Normal file
@ -0,0 +1,31 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_POLYGONS_SEGMENT_INDEX_H
|
||||
#define UTILS_POLYGONS_SEGMENT_INDEX_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "PolygonsPointIndex.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
* A class for iterating over the points in one of the polygons in a \ref Polygons object
|
||||
*/
|
||||
class PolygonsSegmentIndex : public PolygonsPointIndex
|
||||
{
|
||||
public:
|
||||
PolygonsSegmentIndex() : PolygonsPointIndex(){};
|
||||
PolygonsSegmentIndex(const Polygons *polygons, unsigned int poly_idx, unsigned int point_idx) : PolygonsPointIndex(polygons, poly_idx, point_idx){};
|
||||
|
||||
Point from() const { return PolygonsPointIndex::p(); }
|
||||
|
||||
Point to() const { return PolygonsSegmentIndex::next().p(); }
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
|
||||
|
||||
#endif//UTILS_POLYGONS_SEGMENT_INDEX_H
|
133
src/libslic3r/Arachne/utils/SparseGrid.hpp
Normal file
133
src/libslic3r/Arachne/utils/SparseGrid.hpp
Normal file
@ -0,0 +1,133 @@
|
||||
//Copyright (c) 2016 Scott Lenser
|
||||
//Copyright (c) 2018 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_SPARSE_GRID_H
|
||||
#define UTILS_SPARSE_GRID_H
|
||||
|
||||
#include <cassert>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
#include "../../Point.hpp"
|
||||
#include "SquareGrid.hpp"
|
||||
|
||||
namespace Slic3r::Arachne {
|
||||
|
||||
/*! \brief Sparse grid which can locate spatially nearby elements efficiently.
|
||||
*
|
||||
* \note This is an abstract template class which doesn't have any functions to insert elements.
|
||||
* \see SparsePointGrid
|
||||
*
|
||||
* \tparam ElemT The element type to store.
|
||||
*/
|
||||
template<class ElemT> class SparseGrid : public SquareGrid
|
||||
{
|
||||
public:
|
||||
using Elem = ElemT;
|
||||
|
||||
using GridPoint = SquareGrid::GridPoint;
|
||||
using grid_coord_t = SquareGrid::grid_coord_t;
|
||||
using GridMap = std::unordered_multimap<GridPoint, Elem, PointHash>;
|
||||
|
||||
using iterator = typename GridMap::iterator;
|
||||
using const_iterator = typename GridMap::const_iterator;
|
||||
|
||||
/*! \brief Constructs a sparse grid with the specified cell size.
|
||||
*
|
||||
* \param[in] cell_size The size to use for a cell (square) in the grid.
|
||||
* Typical values would be around 0.5-2x of expected query radius.
|
||||
* \param[in] elem_reserve Number of elements to research space for.
|
||||
* \param[in] max_load_factor Maximum average load factor before rehashing.
|
||||
*/
|
||||
SparseGrid(coord_t cell_size, size_t elem_reserve=0U, float max_load_factor=1.0f);
|
||||
|
||||
iterator begin() { return m_grid.begin(); }
|
||||
iterator end() { return m_grid.end(); }
|
||||
const_iterator begin() const { return m_grid.begin(); }
|
||||
const_iterator end() const { return m_grid.end(); }
|
||||
|
||||
/*! \brief Returns all data within radius of query_pt.
|
||||
*
|
||||
* Finds all elements with location within radius of \p query_pt. May
|
||||
* return additional elements that are beyond radius.
|
||||
*
|
||||
* Average running time is a*(1 + 2 * radius / cell_size)**2 +
|
||||
* b*cnt where a and b are proportionality constance and cnt is
|
||||
* the number of returned items. The search will return items in
|
||||
* an area of (2*radius + cell_size)**2 on average. The max range
|
||||
* of an item from the query_point is radius + cell_size.
|
||||
*
|
||||
* \param[in] query_pt The point to search around.
|
||||
* \param[in] radius The search radius.
|
||||
* \return Vector of elements found
|
||||
*/
|
||||
std::vector<Elem> getNearby(const Point &query_pt, coord_t radius) const;
|
||||
|
||||
/*! \brief Process elements from cells that might contain sought after points.
|
||||
*
|
||||
* Processes elements from cell that might have elements within \p
|
||||
* radius of \p query_pt. Processes all elements that are within
|
||||
* radius of query_pt. May process elements that are up to radius +
|
||||
* cell_size from query_pt.
|
||||
*
|
||||
* \param[in] query_pt The point to search around.
|
||||
* \param[in] radius The search radius.
|
||||
* \param[in] process_func Processes each element. process_func(elem) is
|
||||
* called for each element in the cell. Processing stops if function returns false.
|
||||
* \return Whether we need to continue processing after this function
|
||||
*/
|
||||
bool processNearby(const Point &query_pt, coord_t radius, const std::function<bool(const ElemT &)> &process_func) const;
|
||||
|
||||
protected:
|
||||
/*! \brief Process elements from the cell indicated by \p grid_pt.
|
||||
*
|
||||
* \param[in] grid_pt The grid coordinates of the cell.
|
||||
* \param[in] process_func Processes each element. process_func(elem) is
|
||||
* called for each element in the cell. Processing stops if function returns false.
|
||||
* \return Whether we need to continue processing a next cell.
|
||||
*/
|
||||
bool processFromCell(const GridPoint &grid_pt, const std::function<bool(const Elem &)> &process_func) const;
|
||||
|
||||
/*! \brief Map from grid locations (GridPoint) to elements (Elem). */
|
||||
GridMap m_grid;
|
||||
};
|
||||
|
||||
template<class ElemT> SparseGrid<ElemT>::SparseGrid(coord_t cell_size, size_t elem_reserve, float max_load_factor) : SquareGrid(cell_size)
|
||||
{
|
||||
// Must be before the reserve call.
|
||||
m_grid.max_load_factor(max_load_factor);
|
||||
if (elem_reserve != 0U)
|
||||
m_grid.reserve(elem_reserve);
|
||||
}
|
||||
|
||||
template<class ElemT> bool SparseGrid<ElemT>::processFromCell(const GridPoint &grid_pt, const std::function<bool(const Elem &)> &process_func) const
|
||||
{
|
||||
auto grid_range = m_grid.equal_range(grid_pt);
|
||||
for (auto iter = grid_range.first; iter != grid_range.second; ++iter)
|
||||
if (!process_func(iter->second))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class ElemT>
|
||||
bool SparseGrid<ElemT>::processNearby(const Point &query_pt, coord_t radius, const std::function<bool(const Elem &)> &process_func) const
|
||||
{
|
||||
return SquareGrid::processNearby(query_pt, radius, [&process_func, this](const GridPoint &grid_pt) { return processFromCell(grid_pt, process_func); });
|
||||
}
|
||||
|
||||
template<class ElemT> std::vector<typename SparseGrid<ElemT>::Elem> SparseGrid<ElemT>::getNearby(const Point &query_pt, coord_t radius) const
|
||||
{
|
||||
std::vector<Elem> ret;
|
||||
const std::function<bool(const Elem &)> process_func = [&ret](const Elem &elem) {
|
||||
ret.push_back(elem);
|
||||
return true;
|
||||
};
|
||||
processNearby(query_pt, radius, process_func);
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
|
||||
#endif // UTILS_SPARSE_GRID_H
|
77
src/libslic3r/Arachne/utils/SparseLineGrid.hpp
Normal file
77
src/libslic3r/Arachne/utils/SparseLineGrid.hpp
Normal file
@ -0,0 +1,77 @@
|
||||
//Copyright (c) 2018 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
|
||||
#ifndef UTILS_SPARSE_LINE_GRID_H
|
||||
#define UTILS_SPARSE_LINE_GRID_H
|
||||
|
||||
#include <cassert>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
#include "SparseGrid.hpp"
|
||||
|
||||
namespace Slic3r::Arachne {
|
||||
|
||||
/*! \brief Sparse grid which can locate spatially nearby elements efficiently.
|
||||
*
|
||||
* \tparam ElemT The element type to store.
|
||||
* \tparam Locator The functor to get the start and end locations from ElemT.
|
||||
* must have: std::pair<Point, Point> operator()(const ElemT &elem) const
|
||||
* which returns the location associated with val.
|
||||
*/
|
||||
template<class ElemT, class Locator> class SparseLineGrid : public SparseGrid<ElemT>
|
||||
{
|
||||
public:
|
||||
using Elem = ElemT;
|
||||
|
||||
/*! \brief Constructs a sparse grid with the specified cell size.
|
||||
*
|
||||
* \param[in] cell_size The size to use for a cell (square) in the grid.
|
||||
* Typical values would be around 0.5-2x of expected query radius.
|
||||
* \param[in] elem_reserve Number of elements to research space for.
|
||||
* \param[in] max_load_factor Maximum average load factor before rehashing.
|
||||
*/
|
||||
SparseLineGrid(coord_t cell_size, size_t elem_reserve = 0U, float max_load_factor = 1.0f);
|
||||
|
||||
/*! \brief Inserts elem into the sparse grid.
|
||||
*
|
||||
* \param[in] elem The element to be inserted.
|
||||
*/
|
||||
void insert(const Elem &elem);
|
||||
|
||||
protected:
|
||||
using GridPoint = typename SparseGrid<ElemT>::GridPoint;
|
||||
|
||||
/*! \brief Accessor for getting locations from elements. */
|
||||
Locator m_locator;
|
||||
};
|
||||
|
||||
template<class ElemT, class Locator>
|
||||
SparseLineGrid<ElemT, Locator>::SparseLineGrid(coord_t cell_size, size_t elem_reserve, float max_load_factor)
|
||||
: SparseGrid<ElemT>(cell_size, elem_reserve, max_load_factor) {}
|
||||
|
||||
template<class ElemT, class Locator> void SparseLineGrid<ElemT, Locator>::insert(const Elem &elem)
|
||||
{
|
||||
const std::pair<Point, Point> line = m_locator(elem);
|
||||
using GridMap = std::unordered_multimap<GridPoint, Elem, PointHash>;
|
||||
// below is a workaround for the fact that lambda functions cannot access private or protected members
|
||||
// first we define a lambda which works on any GridMap and then we bind it to the actual protected GridMap of the parent class
|
||||
std::function<bool(GridMap *, const GridPoint)> process_cell_func_ = [&elem](GridMap *m_grid, const GridPoint grid_loc) {
|
||||
m_grid->emplace(grid_loc, elem);
|
||||
return true;
|
||||
};
|
||||
using namespace std::placeholders; // for _1, _2, _3...
|
||||
GridMap *m_grid = &(this->m_grid);
|
||||
std::function<bool(const GridPoint)> process_cell_func(std::bind(process_cell_func_, m_grid, _1));
|
||||
|
||||
SparseGrid<ElemT>::processLineCells(line, process_cell_func);
|
||||
}
|
||||
|
||||
#undef SGI_TEMPLATE
|
||||
#undef SGI_THIS
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
|
||||
#endif // UTILS_SPARSE_LINE_GRID_H
|
147
src/libslic3r/Arachne/utils/SquareGrid.cpp
Normal file
147
src/libslic3r/Arachne/utils/SquareGrid.cpp
Normal file
@ -0,0 +1,147 @@
|
||||
//Copyright (c) 2021 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include "SquareGrid.hpp"
|
||||
#include "../../Point.hpp"
|
||||
|
||||
using namespace Slic3r::Arachne;
|
||||
|
||||
|
||||
SquareGrid::SquareGrid(coord_t cell_size) : cell_size(cell_size)
|
||||
{
|
||||
assert(cell_size > 0U);
|
||||
}
|
||||
|
||||
|
||||
SquareGrid::GridPoint SquareGrid::toGridPoint(const Vec2i64 &point) const
|
||||
{
|
||||
return Point(toGridCoord(point.x()), toGridCoord(point.y()));
|
||||
}
|
||||
|
||||
|
||||
SquareGrid::grid_coord_t SquareGrid::toGridCoord(const int64_t &coord) const
|
||||
{
|
||||
// This mapping via truncation results in the cells with
|
||||
// GridPoint.x==0 being twice as large and similarly for
|
||||
// GridPoint.y==0. This doesn't cause any incorrect behavior,
|
||||
// just changes the running time slightly. The change in running
|
||||
// time from this is probably not worth doing a proper floor
|
||||
// operation.
|
||||
return coord / cell_size;
|
||||
}
|
||||
|
||||
coord_t SquareGrid::toLowerCoord(const grid_coord_t& grid_coord) const
|
||||
{
|
||||
// This mapping via truncation results in the cells with
|
||||
// GridPoint.x==0 being twice as large and similarly for
|
||||
// GridPoint.y==0. This doesn't cause any incorrect behavior,
|
||||
// just changes the running time slightly. The change in running
|
||||
// time from this is probably not worth doing a proper floor
|
||||
// operation.
|
||||
return grid_coord * cell_size;
|
||||
}
|
||||
|
||||
|
||||
bool SquareGrid::processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func)
|
||||
{
|
||||
return static_cast<const SquareGrid*>(this)->processLineCells(line, process_cell_func);
|
||||
}
|
||||
|
||||
|
||||
bool SquareGrid::processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func) const
|
||||
{
|
||||
Point start = line.first;
|
||||
Point end = line.second;
|
||||
if (end.x() < start.x())
|
||||
{ // make sure X increases between start and end
|
||||
std::swap(start, end);
|
||||
}
|
||||
|
||||
const GridPoint start_cell = toGridPoint(start.cast<int64_t>());
|
||||
const GridPoint end_cell = toGridPoint(end.cast<int64_t>());
|
||||
const int64_t y_diff = int64_t(end.y() - start.y());
|
||||
const grid_coord_t y_dir = nonzeroSign(y_diff);
|
||||
|
||||
/* This line drawing algorithm iterates over the range of Y coordinates, and
|
||||
for each Y coordinate computes the range of X coordinates crossed in one
|
||||
unit of Y. These ranges are rounded to be inclusive, so effectively this
|
||||
creates a "fat" line, marking more cells than a strict one-cell-wide path.*/
|
||||
grid_coord_t x_cell_start = start_cell.x();
|
||||
for (grid_coord_t cell_y = start_cell.y(); cell_y * y_dir <= end_cell.y() * y_dir; cell_y += y_dir)
|
||||
{ // for all Y from start to end
|
||||
// nearest y coordinate of the cells in the next row
|
||||
const coord_t nearest_next_y = toLowerCoord(cell_y + ((nonzeroSign(cell_y) == y_dir || cell_y == 0) ? y_dir : coord_t(0)));
|
||||
grid_coord_t x_cell_end; // the X coord of the last cell to include from this row
|
||||
if (y_diff == 0)
|
||||
{
|
||||
x_cell_end = end_cell.x();
|
||||
}
|
||||
else
|
||||
{
|
||||
const int64_t area = int64_t(end.x() - start.x()) * int64_t(nearest_next_y - start.y());
|
||||
// corresponding_x: the x coordinate corresponding to nearest_next_y
|
||||
int64_t corresponding_x = int64_t(start.x()) + area / y_diff;
|
||||
x_cell_end = toGridCoord(corresponding_x + ((corresponding_x < 0) && ((area % y_diff) != 0)));
|
||||
if (x_cell_end < start_cell.x())
|
||||
{ // process at least one cell!
|
||||
x_cell_end = x_cell_start;
|
||||
}
|
||||
}
|
||||
|
||||
for (grid_coord_t cell_x = x_cell_start; cell_x <= x_cell_end; ++cell_x)
|
||||
{
|
||||
GridPoint grid_loc(cell_x, cell_y);
|
||||
if (! process_cell_func(grid_loc))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
if (grid_loc == end_cell)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
// TODO: this causes at least a one cell overlap for each row, which
|
||||
// includes extra cells when crossing precisely on the corners
|
||||
// where positive slope where x > 0 and negative slope where x < 0
|
||||
x_cell_start = x_cell_end;
|
||||
}
|
||||
assert(false && "We should have returned already before here!");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool SquareGrid::processNearby
|
||||
(
|
||||
const Point &query_pt,
|
||||
coord_t radius,
|
||||
const std::function<bool (const GridPoint&)>& process_func
|
||||
) const
|
||||
{
|
||||
const Point min_loc(query_pt.x() - radius, query_pt.y() - radius);
|
||||
const Point max_loc(query_pt.x() + radius, query_pt.y() + radius);
|
||||
|
||||
GridPoint min_grid = toGridPoint(min_loc.cast<int64_t>());
|
||||
GridPoint max_grid = toGridPoint(max_loc.cast<int64_t>());
|
||||
|
||||
for (coord_t grid_y = min_grid.y(); grid_y <= max_grid.y(); ++grid_y)
|
||||
{
|
||||
for (coord_t grid_x = min_grid.x(); grid_x <= max_grid.x(); ++grid_x)
|
||||
{
|
||||
GridPoint grid_pt(grid_x,grid_y);
|
||||
if (!process_func(grid_pt))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
SquareGrid::grid_coord_t SquareGrid::nonzeroSign(const grid_coord_t z) const
|
||||
{
|
||||
return (z >= 0) - (z < 0);
|
||||
}
|
||||
|
||||
coord_t SquareGrid::getCellSize() const
|
||||
{
|
||||
return cell_size;
|
||||
}
|
110
src/libslic3r/Arachne/utils/SquareGrid.hpp
Normal file
110
src/libslic3r/Arachne/utils/SquareGrid.hpp
Normal file
@ -0,0 +1,110 @@
|
||||
//Copyright (c) 2021 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_SQUARE_GRID_H
|
||||
#define UTILS_SQUARE_GRID_H
|
||||
|
||||
#include "../../Point.hpp"
|
||||
|
||||
#include <cassert>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
namespace Slic3r::Arachne {
|
||||
|
||||
/*!
|
||||
* Helper class to calculate coordinates on a square grid, and providing some
|
||||
* utility functions to process grids.
|
||||
*
|
||||
* Doesn't contain any data, except cell size. The purpose is only to
|
||||
* automatically generate coordinates on a grid, and automatically feed them to
|
||||
* functions.
|
||||
* The grid is theoretically infinite (bar integer limits).
|
||||
*/
|
||||
class SquareGrid
|
||||
{
|
||||
public:
|
||||
/*! \brief Constructs a grid with the specified cell size.
|
||||
* \param[in] cell_size The size to use for a cell (square) in the grid.
|
||||
*/
|
||||
SquareGrid(const coord_t cell_size);
|
||||
|
||||
/*!
|
||||
* Get the cell size this grid was created for.
|
||||
*/
|
||||
coord_t getCellSize() const;
|
||||
|
||||
using GridPoint = Point;
|
||||
using grid_coord_t = coord_t;
|
||||
|
||||
/*! \brief Process cells along a line indicated by \p line.
|
||||
*
|
||||
* \param line The line along which to process cells.
|
||||
* \param process_func Processes each cell. ``process_func(elem)`` is called
|
||||
* for each cell. Processing stops if function returns false.
|
||||
* \return Whether we need to continue processing after this function.
|
||||
*/
|
||||
bool processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func);
|
||||
|
||||
/*! \brief Process cells along a line indicated by \p line.
|
||||
*
|
||||
* \param line The line along which to process cells
|
||||
* \param process_func Processes each cell. ``process_func(elem)`` is called
|
||||
* for each cell. Processing stops if function returns false.
|
||||
* \return Whether we need to continue processing after this function.
|
||||
*/
|
||||
bool processLineCells(const std::pair<Point, Point> line, const std::function<bool (GridPoint)>& process_cell_func) const;
|
||||
|
||||
/*! \brief Process cells that might contain sought after points.
|
||||
*
|
||||
* Processes cells that might be within a square with twice \p radius as
|
||||
* width, centered around \p query_pt.
|
||||
* May process elements that are up to radius + cell_size from query_pt.
|
||||
* \param query_pt The point to search around.
|
||||
* \param radius The search radius.
|
||||
* \param process_func Processes each cell. ``process_func(loc)`` is called
|
||||
* for each cell coord within range. Processing stops if function returns
|
||||
* ``false``.
|
||||
* \return Whether we need to continue processing after this function.
|
||||
*/
|
||||
bool processNearby(const Point &query_pt, coord_t radius, const std::function<bool(const GridPoint &)> &process_func) const;
|
||||
|
||||
/*! \brief Compute the grid coordinates of a point.
|
||||
* \param point The actual location.
|
||||
* \return The grid coordinates that correspond to \p point.
|
||||
*/
|
||||
GridPoint toGridPoint(const Vec2i64 &point) const;
|
||||
|
||||
/*! \brief Compute the grid coordinate of a real space coordinate.
|
||||
* \param coord The actual location.
|
||||
* \return The grid coordinate that corresponds to \p coord.
|
||||
*/
|
||||
grid_coord_t toGridCoord(const int64_t &coord) const;
|
||||
|
||||
/*! \brief Compute the lowest coord in a grid cell.
|
||||
* The lowest point is the point in the grid cell closest to the origin.
|
||||
*
|
||||
* \param grid_coord The grid coordinate.
|
||||
* \return The print space coordinate that corresponds to \p grid_coord.
|
||||
*/
|
||||
coord_t toLowerCoord(const grid_coord_t &grid_coord) const;
|
||||
|
||||
protected:
|
||||
/*! \brief The cell (square) size. */
|
||||
coord_t cell_size;
|
||||
|
||||
/*!
|
||||
* Compute the sign of a number.
|
||||
*
|
||||
* The number 0 will result in a positive sign (1).
|
||||
* \param z The number to find the sign of.
|
||||
* \return 1 if the number is positive or 0, or -1 if the number is
|
||||
* negative.
|
||||
*/
|
||||
grid_coord_t nonzeroSign(grid_coord_t z) const;
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
|
||||
#endif //UTILS_SQUARE_GRID_H
|
250
src/libslic3r/Arachne/utils/VoronoiUtils.cpp
Normal file
250
src/libslic3r/Arachne/utils/VoronoiUtils.cpp
Normal file
@ -0,0 +1,250 @@
|
||||
//Copyright (c) 2021 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#include <stack>
|
||||
#include <optional>
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
#include "linearAlg2D.hpp"
|
||||
#include "VoronoiUtils.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
Vec2i64 VoronoiUtils::p(const vd_t::vertex_type *node)
|
||||
{
|
||||
const double x = node->x();
|
||||
const double y = node->y();
|
||||
assert(x <= double(std::numeric_limits<int64_t>::max()) && x >= std::numeric_limits<int64_t>::lowest());
|
||||
assert(y <= double(std::numeric_limits<int64_t>::max()) && y >= std::numeric_limits<int64_t>::lowest());
|
||||
return Vec2i64(int64_t(x + 0.5 - (x < 0)), int64_t(y + 0.5 - (y < 0))); // Round to the nearest integer coordinates.
|
||||
}
|
||||
|
||||
Point VoronoiUtils::getSourcePoint(const vd_t::cell_type& cell, const std::vector<Segment>& segments)
|
||||
{
|
||||
assert(cell.contains_point());
|
||||
if(!cell.contains_point())
|
||||
BOOST_LOG_TRIVIAL(debug) << "Voronoi cell doesn't contain a source point!";
|
||||
|
||||
switch (cell.source_category()) {
|
||||
case boost::polygon::SOURCE_CATEGORY_SINGLE_POINT:
|
||||
assert(false && "Voronoi diagram is always constructed using segments, so cell.source_category() shouldn't be SOURCE_CATEGORY_SINGLE_POINT!\n");
|
||||
BOOST_LOG_TRIVIAL(error) << "Voronoi diagram is always constructed using segments, so cell.source_category() shouldn't be SOURCE_CATEGORY_SINGLE_POINT!";
|
||||
break;
|
||||
case boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT:
|
||||
assert(cell.source_index() < segments.size());
|
||||
return segments[cell.source_index()].to();
|
||||
break;
|
||||
case boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT:
|
||||
assert(cell.source_index() < segments.size());
|
||||
return segments[cell.source_index()].from();
|
||||
break;
|
||||
default:
|
||||
assert(false && "getSourcePoint should only be called on point cells!\n");
|
||||
break;
|
||||
}
|
||||
|
||||
assert(false && "cell.source_category() is equal to an invalid value!\n");
|
||||
BOOST_LOG_TRIVIAL(error) << "cell.source_category() is equal to an invalid value!";
|
||||
return {};
|
||||
}
|
||||
|
||||
PolygonsPointIndex VoronoiUtils::getSourcePointIndex(const vd_t::cell_type& cell, const std::vector<Segment>& segments)
|
||||
{
|
||||
assert(cell.contains_point());
|
||||
if(!cell.contains_point())
|
||||
BOOST_LOG_TRIVIAL(debug) << "Voronoi cell doesn't contain a source point!";
|
||||
|
||||
assert(cell.source_category() != boost::polygon::SOURCE_CATEGORY_SINGLE_POINT);
|
||||
switch (cell.source_category()) {
|
||||
case boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT: {
|
||||
assert(cell.source_index() < segments.size());
|
||||
PolygonsPointIndex ret = segments[cell.source_index()];
|
||||
++ret;
|
||||
return ret;
|
||||
break;
|
||||
}
|
||||
case boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT: {
|
||||
assert(cell.source_index() < segments.size());
|
||||
return segments[cell.source_index()];
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(false && "getSourcePoint should only be called on point cells!\n");
|
||||
break;
|
||||
}
|
||||
PolygonsPointIndex ret = segments[cell.source_index()];
|
||||
return ++ret;
|
||||
}
|
||||
|
||||
const VoronoiUtils::Segment &VoronoiUtils::getSourceSegment(const vd_t::cell_type &cell, const std::vector<Segment> &segments)
|
||||
{
|
||||
assert(cell.contains_segment());
|
||||
if (!cell.contains_segment())
|
||||
BOOST_LOG_TRIVIAL(debug) << "Voronoi cell doesn't contain a source segment!";
|
||||
|
||||
return segments[cell.source_index()];
|
||||
}
|
||||
|
||||
class PointMatrix
|
||||
{
|
||||
public:
|
||||
double matrix[4];
|
||||
|
||||
PointMatrix()
|
||||
{
|
||||
matrix[0] = 1;
|
||||
matrix[1] = 0;
|
||||
matrix[2] = 0;
|
||||
matrix[3] = 1;
|
||||
}
|
||||
|
||||
PointMatrix(double rotation)
|
||||
{
|
||||
rotation = rotation / 180 * M_PI;
|
||||
matrix[0] = cos(rotation);
|
||||
matrix[1] = -sin(rotation);
|
||||
matrix[2] = -matrix[1];
|
||||
matrix[3] = matrix[0];
|
||||
}
|
||||
|
||||
PointMatrix(const Point p)
|
||||
{
|
||||
matrix[0] = p.x();
|
||||
matrix[1] = p.y();
|
||||
double f = sqrt((matrix[0] * matrix[0]) + (matrix[1] * matrix[1]));
|
||||
matrix[0] /= f;
|
||||
matrix[1] /= f;
|
||||
matrix[2] = -matrix[1];
|
||||
matrix[3] = matrix[0];
|
||||
}
|
||||
|
||||
static PointMatrix scale(double s)
|
||||
{
|
||||
PointMatrix ret;
|
||||
ret.matrix[0] = s;
|
||||
ret.matrix[3] = s;
|
||||
return ret;
|
||||
}
|
||||
|
||||
Point apply(const Point p) const
|
||||
{
|
||||
return Point(coord_t(p.x() * matrix[0] + p.y() * matrix[1]), coord_t(p.x() * matrix[2] + p.y() * matrix[3]));
|
||||
}
|
||||
|
||||
Point unapply(const Point p) const
|
||||
{
|
||||
return Point(coord_t(p.x() * matrix[0] + p.y() * matrix[2]), coord_t(p.x() * matrix[1] + p.y() * matrix[3]));
|
||||
}
|
||||
};
|
||||
std::vector<Point> VoronoiUtils::discretizeParabola(const Point& p, const Segment& segment, Point s, Point e, coord_t approximate_step_size, float transitioning_angle)
|
||||
{
|
||||
std::vector<Point> discretized;
|
||||
// x is distance of point projected on the segment ab
|
||||
// xx is point projected on the segment ab
|
||||
const Point a = segment.from();
|
||||
const Point b = segment.to();
|
||||
const Point ab = b - a;
|
||||
const Point as = s - a;
|
||||
const Point ae = e - a;
|
||||
const coord_t ab_size = ab.cast<int64_t>().norm();
|
||||
const coord_t sx = as.cast<int64_t>().dot(ab.cast<int64_t>()) / ab_size;
|
||||
const coord_t ex = ae.cast<int64_t>().dot(ab.cast<int64_t>()) / ab_size;
|
||||
const coord_t sxex = ex - sx;
|
||||
|
||||
assert((as.cast<int64_t>().dot(ab.cast<int64_t>()) / int64_t(ab_size)) <= std::numeric_limits<coord_t>::max());
|
||||
assert((ae.cast<int64_t>().dot(ab.cast<int64_t>()) / int64_t(ab_size)) <= std::numeric_limits<coord_t>::max());
|
||||
|
||||
const Point ap = p - a;
|
||||
const coord_t px = ap.cast<int64_t>().dot(ab.cast<int64_t>()) / ab_size;
|
||||
|
||||
assert((ap.cast<int64_t>().dot(ab.cast<int64_t>()) / int64_t(ab_size)) <= std::numeric_limits<coord_t>::max());
|
||||
|
||||
Point pxx;
|
||||
Line(a, b).distance_to_infinite_squared(p, &pxx);
|
||||
const Point ppxx = pxx - p;
|
||||
const coord_t d = ppxx.cast<int64_t>().norm();
|
||||
const PointMatrix rot = PointMatrix(ppxx.rotate_90_degree_ccw());
|
||||
|
||||
if (d == 0)
|
||||
{
|
||||
discretized.emplace_back(s);
|
||||
discretized.emplace_back(e);
|
||||
return discretized;
|
||||
}
|
||||
|
||||
const float marking_bound = atan(transitioning_angle * 0.5);
|
||||
int64_t msx = - marking_bound * int64_t(d); // projected marking_start
|
||||
int64_t mex = marking_bound * int64_t(d); // projected marking_end
|
||||
|
||||
assert(msx <= std::numeric_limits<coord_t>::max());
|
||||
assert(double(msx) * double(msx) <= double(std::numeric_limits<int64_t>::max()));
|
||||
assert(mex <= std::numeric_limits<coord_t>::max());
|
||||
assert(double(msx) * double(msx) / double(2 * d) + double(d / 2) <= std::numeric_limits<coord_t>::max());
|
||||
|
||||
const coord_t marking_start_end_h = msx * msx / (2 * d) + d / 2;
|
||||
Point marking_start = rot.unapply(Point(coord_t(msx), marking_start_end_h)) + pxx;
|
||||
Point marking_end = rot.unapply(Point(coord_t(mex), marking_start_end_h)) + pxx;
|
||||
const int dir = (sx > ex) ? -1 : 1;
|
||||
if (dir < 0)
|
||||
{
|
||||
std::swap(marking_start, marking_end);
|
||||
std::swap(msx, mex);
|
||||
}
|
||||
|
||||
bool add_marking_start = msx * int64_t(dir) > int64_t(sx - px) * int64_t(dir) && msx * int64_t(dir) < int64_t(ex - px) * int64_t(dir);
|
||||
bool add_marking_end = mex * int64_t(dir) > int64_t(sx - px) * int64_t(dir) && mex * int64_t(dir) < int64_t(ex - px) * int64_t(dir);
|
||||
|
||||
const Point apex = rot.unapply(Point(0, d / 2)) + pxx;
|
||||
bool add_apex = int64_t(sx - px) * int64_t(dir) < 0 && int64_t(ex - px) * int64_t(dir) > 0;
|
||||
|
||||
assert(!(add_marking_start && add_marking_end) || add_apex);
|
||||
if(add_marking_start && add_marking_end && !add_apex)
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(warning) << "Failing to discretize parabola! Must add an apex or one of the endpoints.";
|
||||
}
|
||||
|
||||
const coord_t step_count = static_cast<coord_t>(static_cast<float>(std::abs(ex - sx)) / approximate_step_size + 0.5);
|
||||
|
||||
discretized.emplace_back(s);
|
||||
for (coord_t step = 1; step < step_count; step++)
|
||||
{
|
||||
assert(double(sxex) * double(step) <= double(std::numeric_limits<int64_t>::max()));
|
||||
const int64_t x = int64_t(sx) + int64_t(sxex) * int64_t(step) / int64_t(step_count) - int64_t(px);
|
||||
assert(double(x) * double(x) <= double(std::numeric_limits<int64_t>::max()));
|
||||
assert(double(x) * double(x) / double(2 * d) + double(d / 2) <= double(std::numeric_limits<int64_t>::max()));
|
||||
const int64_t y = int64_t(x) * int64_t(x) / int64_t(2 * d) + int64_t(d / 2);
|
||||
|
||||
if (add_marking_start && msx * int64_t(dir) < int64_t(x) * int64_t(dir))
|
||||
{
|
||||
discretized.emplace_back(marking_start);
|
||||
add_marking_start = false;
|
||||
}
|
||||
if (add_apex && int64_t(x) * int64_t(dir) > 0)
|
||||
{
|
||||
discretized.emplace_back(apex);
|
||||
add_apex = false; // only add the apex just before the
|
||||
}
|
||||
if (add_marking_end && mex * int64_t(dir) < int64_t(x) * int64_t(dir))
|
||||
{
|
||||
discretized.emplace_back(marking_end);
|
||||
add_marking_end = false;
|
||||
}
|
||||
assert(x <= std::numeric_limits<coord_t>::max() && x >= std::numeric_limits<coord_t>::lowest());
|
||||
assert(y <= std::numeric_limits<coord_t>::max() && y >= std::numeric_limits<coord_t>::lowest());
|
||||
const Point result = rot.unapply(Point(x, y)) + pxx;
|
||||
discretized.emplace_back(result);
|
||||
}
|
||||
if (add_apex)
|
||||
{
|
||||
discretized.emplace_back(apex);
|
||||
}
|
||||
if (add_marking_end)
|
||||
{
|
||||
discretized.emplace_back(marking_end);
|
||||
}
|
||||
discretized.emplace_back(e);
|
||||
return discretized;
|
||||
}
|
||||
|
||||
}//namespace Slic3r::Arachne
|
42
src/libslic3r/Arachne/utils/VoronoiUtils.hpp
Normal file
42
src/libslic3r/Arachne/utils/VoronoiUtils.hpp
Normal file
@ -0,0 +1,42 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
|
||||
#ifndef UTILS_VORONOI_UTILS_H
|
||||
#define UTILS_VORONOI_UTILS_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
|
||||
#include <boost/polygon/voronoi.hpp>
|
||||
|
||||
#include "PolygonsSegmentIndex.hpp"
|
||||
|
||||
namespace Slic3r::Arachne
|
||||
{
|
||||
|
||||
/*!
|
||||
*/
|
||||
class VoronoiUtils
|
||||
{
|
||||
public:
|
||||
using Segment = PolygonsSegmentIndex;
|
||||
using voronoi_data_t = double;
|
||||
using vd_t = boost::polygon::voronoi_diagram<voronoi_data_t>;
|
||||
|
||||
static Point getSourcePoint(const vd_t::cell_type &cell, const std::vector<Segment> &segments);
|
||||
static const Segment &getSourceSegment(const vd_t::cell_type &cell, const std::vector<Segment> &segments);
|
||||
static PolygonsPointIndex getSourcePointIndex(const vd_t::cell_type &cell, const std::vector<Segment> &segments);
|
||||
|
||||
static Vec2i64 p(const vd_t::vertex_type *node);
|
||||
|
||||
/*!
|
||||
* Discretize a parabola based on (approximate) step size.
|
||||
* The \p approximate_step_size is measured parallel to the \p source_segment, not along the parabola.
|
||||
*/
|
||||
static std::vector<Point> discretizeParabola(const Point &source_point, const Segment &source_segment, Point start, Point end, coord_t approximate_step_size, float transitioning_angle);
|
||||
};
|
||||
|
||||
} // namespace Slic3r::Arachne
|
||||
|
||||
#endif // UTILS_VORONOI_UTILS_H
|
131
src/libslic3r/Arachne/utils/linearAlg2D.hpp
Normal file
131
src/libslic3r/Arachne/utils/linearAlg2D.hpp
Normal file
@ -0,0 +1,131 @@
|
||||
//Copyright (c) 2020 Ultimaker B.V.
|
||||
//CuraEngine is released under the terms of the AGPLv3 or higher.
|
||||
|
||||
#ifndef UTILS_LINEAR_ALG_2D_H
|
||||
#define UTILS_LINEAR_ALG_2D_H
|
||||
|
||||
#include "../../Point.hpp"
|
||||
|
||||
namespace Slic3r::Arachne::LinearAlg2D
|
||||
{
|
||||
|
||||
/*!
|
||||
* Test whether a point is inside a corner.
|
||||
* Whether point \p query_point is left of the corner abc.
|
||||
* Whether the \p query_point is in the circle half left of ab and left of bc, rather than to the right.
|
||||
*
|
||||
* Test whether the \p query_point is inside of a polygon w.r.t a single corner.
|
||||
*/
|
||||
inline static bool isInsideCorner(const Point a, const Point b, const Point c, const Vec2i64 query_point) {
|
||||
|
||||
|
||||
// Visualisation for the algorithm below:
|
||||
//
|
||||
// query
|
||||
// |
|
||||
// |
|
||||
// |
|
||||
// perp-----------b
|
||||
// / \ (note that the lines
|
||||
// / \ AB and AC are normalized
|
||||
// / \ to 10000 units length)
|
||||
// a c
|
||||
//
|
||||
|
||||
auto normal = [](const Point& p0, coord_t len) -> Point
|
||||
{
|
||||
int64_t _len = p0.cast<int64_t>().norm();
|
||||
if (_len < 1)
|
||||
return Point(len, 0);
|
||||
return (p0.cast<int64_t>() * int64_t(len) / _len).cast<coord_t>();
|
||||
};
|
||||
|
||||
auto rotate_90_degree_ccw = [](const Vec2i64 &p) -> Vec2i64 {
|
||||
return Vec2i64(-p.y(), p.x());
|
||||
};
|
||||
|
||||
constexpr coord_t normal_length = 10000; //Create a normal vector of reasonable length in order to reduce rounding error.
|
||||
const Point ba = normal(a - b, normal_length);
|
||||
const Point bc = normal(c - b, normal_length);
|
||||
const Vec2i64 bq = query_point - b.cast<int64_t>();
|
||||
const Vec2i64 perpendicular = rotate_90_degree_ccw(bq); //The query projects to this perpendicular to coordinate 0.
|
||||
|
||||
assert(ba.cast<double>().dot(perpendicular.cast<double>()) <= double(std::numeric_limits<int64_t>::max()) && ba.cast<double>().dot(perpendicular.cast<double>()) >= double(std::numeric_limits<int64_t>::lowest()));
|
||||
assert(bc.cast<double>().dot(perpendicular.cast<double>()) <= double(std::numeric_limits<int64_t>::max()) && bc.cast<double>().dot(perpendicular.cast<double>()) >= double(std::numeric_limits<int64_t>::lowest()));
|
||||
|
||||
const int64_t project_a_perpendicular = ba.cast<int64_t>().dot(perpendicular); //Project vertex A on the perpendicular line.
|
||||
const int64_t project_c_perpendicular = bc.cast<int64_t>().dot(perpendicular); //Project vertex C on the perpendicular line.
|
||||
if ((project_a_perpendicular > 0) != (project_c_perpendicular > 0)) //Query is between A and C on the projection.
|
||||
{
|
||||
return project_a_perpendicular > 0; //Due to the winding order of corner ABC, this means that the query is inside.
|
||||
}
|
||||
else //Beyond either A or C, but it could still be inside of the polygon.
|
||||
{
|
||||
assert(ba.cast<double>().dot(bq.cast<double>()) <= double(std::numeric_limits<int64_t>::max()) && ba.cast<double>().dot(bq.cast<double>()) >= double(std::numeric_limits<int64_t>::lowest()));
|
||||
assert(bc.cast<double>().dot(bq.cast<double>()) <= double(std::numeric_limits<int64_t>::max()) && bc.cast<double>().dot(bq.cast<double>()) >= double(std::numeric_limits<int64_t>::lowest()));
|
||||
|
||||
const int64_t project_a_parallel = ba.cast<int64_t>().dot(bq); //Project not on the perpendicular, but on the original.
|
||||
const int64_t project_c_parallel = bc.cast<int64_t>().dot(bq);
|
||||
|
||||
//Either:
|
||||
// * A is to the right of B (project_a_perpendicular > 0) and C is below A (project_c_parallel < project_a_parallel), or
|
||||
// * A is to the left of B (project_a_perpendicular < 0) and C is above A (project_c_parallel > project_a_parallel).
|
||||
return (project_c_parallel < project_a_parallel) == (project_a_perpendicular > 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the determinant of the 2D matrix defined by the the vectors ab and ap as rows.
|
||||
*
|
||||
* The returned value is zero for \p p lying (approximately) on the line going through \p a and \p b
|
||||
* The value is positive for values lying to the left and negative for values lying to the right when looking from \p a to \p b.
|
||||
*
|
||||
* \param p the point to check
|
||||
* \param a the from point of the line
|
||||
* \param b the to point of the line
|
||||
* \return a positive value when \p p lies to the left of the line from \p a to \p b
|
||||
*/
|
||||
static inline int64_t pointIsLeftOfLine(const Point& p, const Point& a, const Point& b)
|
||||
{
|
||||
return int64_t(b.x() - a.x()) * int64_t(p.y() - a.y()) - int64_t(b.y() - a.y()) * int64_t(p.x() - a.x());
|
||||
}
|
||||
|
||||
/*!
|
||||
* Compute the angle between two consecutive line segments.
|
||||
*
|
||||
* The angle is computed from the left side of b when looking from a.
|
||||
*
|
||||
* c
|
||||
* \ .
|
||||
* \ b
|
||||
* angle|
|
||||
* |
|
||||
* a
|
||||
*
|
||||
* \param a start of first line segment
|
||||
* \param b end of first segment and start of second line segment
|
||||
* \param c end of second line segment
|
||||
* \return the angle in radians between 0 and 2 * pi of the corner in \p b
|
||||
*/
|
||||
static inline float getAngleLeft(const Point& a, const Point& b, const Point& c)
|
||||
{
|
||||
const Vec2i64 ba = (a - b).cast<int64_t>();
|
||||
const Vec2i64 bc = (c - b).cast<int64_t>();
|
||||
const int64_t dott = ba.dot(bc); // dot product
|
||||
const int64_t det = cross2(ba, bc); // determinant
|
||||
if (det == 0) {
|
||||
if ((ba.x() != 0 && (ba.x() > 0) == (bc.x() > 0)) || (ba.x() == 0 && (ba.y() > 0) == (bc.y() > 0)))
|
||||
return 0; // pointy bit
|
||||
else
|
||||
return float(M_PI); // straight bit
|
||||
}
|
||||
const float angle = -atan2(double(det), double(dott)); // from -pi to pi
|
||||
if (angle >= 0)
|
||||
return angle;
|
||||
else
|
||||
return M_PI * 2 + angle;
|
||||
}
|
||||
|
||||
}//namespace Slic3r::Arachne
|
||||
#endif//UTILS_LINEAR_ALG_2D_H
|
@ -291,6 +291,45 @@ add_library(libslic3r STATIC
|
||||
SLA/Clustering.hpp
|
||||
SLA/Clustering.cpp
|
||||
SLA/ReprojectPointsOnMesh.hpp
|
||||
|
||||
Arachne/BeadingStrategy/BeadingStrategy.hpp
|
||||
Arachne/BeadingStrategy/BeadingStrategy.cpp
|
||||
Arachne/BeadingStrategy/BeadingStrategyFactory.hpp
|
||||
Arachne/BeadingStrategy/BeadingStrategyFactory.cpp
|
||||
Arachne/BeadingStrategy/CenterDeviationBeadingStrategy.hpp
|
||||
Arachne/BeadingStrategy/CenterDeviationBeadingStrategy.cpp
|
||||
Arachne/BeadingStrategy/DistributedBeadingStrategy.hpp
|
||||
Arachne/BeadingStrategy/DistributedBeadingStrategy.cpp
|
||||
Arachne/BeadingStrategy/LimitedBeadingStrategy.hpp
|
||||
Arachne/BeadingStrategy/LimitedBeadingStrategy.cpp
|
||||
Arachne/BeadingStrategy/OuterWallInsetBeadingStrategy.hpp
|
||||
Arachne/BeadingStrategy/OuterWallInsetBeadingStrategy.cpp
|
||||
Arachne/BeadingStrategy/RedistributeBeadingStrategy.hpp
|
||||
Arachne/BeadingStrategy/RedistributeBeadingStrategy.cpp
|
||||
Arachne/BeadingStrategy/WideningBeadingStrategy.hpp
|
||||
Arachne/BeadingStrategy/WideningBeadingStrategy.cpp
|
||||
Arachne/utils/ExtrusionJunction.hpp
|
||||
Arachne/utils/ExtrusionJunction.cpp
|
||||
Arachne/utils/ExtrusionLine.hpp
|
||||
Arachne/utils/ExtrusionLine.cpp
|
||||
Arachne/utils/HalfEdge.hpp
|
||||
Arachne/utils/HalfEdgeGraph.hpp
|
||||
Arachne/utils/HalfEdgeNode.hpp
|
||||
Arachne/utils/SparseGrid.hpp
|
||||
Arachne/utils/SquareGrid.hpp
|
||||
Arachne/utils/SquareGrid.cpp
|
||||
Arachne/utils/PolygonsPointIndex.hpp
|
||||
Arachne/utils/PolygonsSegmentIndex.hpp
|
||||
Arachne/utils/VoronoiUtils.hpp
|
||||
Arachne/utils/VoronoiUtils.cpp
|
||||
Arachne/SkeletalTrapezoidation.hpp
|
||||
Arachne/SkeletalTrapezoidation.cpp
|
||||
Arachne/SkeletalTrapezoidationEdge.hpp
|
||||
Arachne/SkeletalTrapezoidationGraph.hpp
|
||||
Arachne/SkeletalTrapezoidationGraph.cpp
|
||||
Arachne/SkeletalTrapezoidationJoint.hpp
|
||||
Arachne/WallToolPaths.hpp
|
||||
Arachne/WallToolPaths.cpp
|
||||
)
|
||||
|
||||
if (SLIC3R_STATIC)
|
||||
|
@ -101,7 +101,10 @@ void LayerRegion::make_perimeters(const SurfaceCollection &slices, SurfaceCollec
|
||||
g.overhang_flow = this->bridging_flow(frPerimeter);
|
||||
g.solid_infill_flow = this->flow(frSolidInfill);
|
||||
|
||||
g.process();
|
||||
if (print_config.slicing_engine.value == SlicingEngine::Arachne)
|
||||
g.process_arachne();
|
||||
else
|
||||
g.process_classic();
|
||||
}
|
||||
|
||||
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
|
||||
|
@ -82,6 +82,44 @@ double distance_to(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||||
return std::sqrt(distance_to_squared(line, point));
|
||||
}
|
||||
|
||||
// Returns a squared distance to the closest point on the infinite.
|
||||
// Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template<class L>
|
||||
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *closest_point)
|
||||
{
|
||||
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
|
||||
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.) {
|
||||
// a == b case
|
||||
*closest_point = get_a(line);
|
||||
return va.squaredNorm();
|
||||
}
|
||||
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
*closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
|
||||
return (t * v - va).squaredNorm();
|
||||
}
|
||||
|
||||
// Returns a squared distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template<class L>
|
||||
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||||
{
|
||||
Vec<Dim<L>, Scalar<L>> nearest_point;
|
||||
return distance_to_infinite_squared<L>(line, point, &nearest_point);
|
||||
}
|
||||
|
||||
// Returns a distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template<class L>
|
||||
double distance_to_infinite(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||||
{
|
||||
return std::sqrt(distance_to_infinite_squared(line, point));
|
||||
}
|
||||
|
||||
} // namespace line_alg
|
||||
|
||||
class Line
|
||||
@ -102,6 +140,7 @@ public:
|
||||
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
|
||||
double distance_to_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
|
||||
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
|
||||
double distance_to_infinite_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
|
||||
double perp_distance_to(const Point &point) const;
|
||||
bool parallel_to(double angle) const;
|
||||
bool parallel_to(const Line& line) const;
|
||||
@ -122,6 +161,11 @@ public:
|
||||
static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
|
||||
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
|
||||
|
||||
// Returns a distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
static inline double distance_to_infinite_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_infinite_squared(Line{a, b}, Vec<2, coord_t>{point}); }
|
||||
static double distance_to_infinite(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
|
||||
|
||||
Point a;
|
||||
Point b;
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "ExtrusionEntityCollection.hpp"
|
||||
#include "ShortestPath.hpp"
|
||||
#include "Arachne/WallToolPaths.hpp"
|
||||
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
@ -275,7 +276,106 @@ static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perime
|
||||
return out;
|
||||
}
|
||||
|
||||
void PerimeterGenerator::process()
|
||||
// Thanks, Cura developers, for implementing an algorithm for generating perimeters with variable width (Arachne) that is based on the paper
|
||||
// "A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling"
|
||||
void PerimeterGenerator::process_arachne()
|
||||
{
|
||||
// other perimeters
|
||||
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
||||
coord_t perimeter_width = this->perimeter_flow.scaled_width();
|
||||
|
||||
// external perimeters
|
||||
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
||||
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
||||
|
||||
// overhang perimeters
|
||||
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
||||
|
||||
// solid infill
|
||||
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
|
||||
|
||||
// prepare grown lower layer slices for overhang detection
|
||||
if (this->lower_slices != NULL && this->config->overhangs) {
|
||||
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
||||
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
||||
// in the current layer
|
||||
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
|
||||
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter/2)));
|
||||
}
|
||||
|
||||
// we need to process each island separately because we might have different
|
||||
// extra perimeters for each one
|
||||
for (const Surface &surface : this->slices->surfaces) {
|
||||
// detect how many perimeters must be generated for this island
|
||||
int loop_number = this->config->perimeters + surface.extra_perimeters - 1; // 0-indexed loops
|
||||
ExPolygons last = union_ex(surface.expolygon.simplify_p(m_scaled_resolution));
|
||||
Polygons last_p = to_polygons(last);
|
||||
|
||||
coord_t bead_width_0 = ext_perimeter_width;
|
||||
coord_t bead_width_x = perimeter_width;
|
||||
coord_t wall_0_inset = 0;
|
||||
|
||||
Arachne::WallToolPaths wallToolPaths(last_p, bead_width_0, bead_width_x, coord_t(loop_number + 1), wall_0_inset, *this->print_config);
|
||||
wallToolPaths.generate();
|
||||
|
||||
std::set<size_t> bins_with_index_zero_perimeters;
|
||||
Arachne::BinJunctions perimeters = wallToolPaths.getBinJunctions(bins_with_index_zero_perimeters);
|
||||
|
||||
int start_perimeter = int(perimeters.size()) - 1;
|
||||
int end_perimeter = -1;
|
||||
int direction = -1;
|
||||
|
||||
if (this->config->external_perimeters_first) {
|
||||
start_perimeter = 0;
|
||||
end_perimeter = int(perimeters.size());
|
||||
direction = 1;
|
||||
}
|
||||
|
||||
for (int perimeter_idx = start_perimeter; perimeter_idx != end_perimeter; perimeter_idx += direction) {
|
||||
if (perimeters[perimeter_idx].empty())
|
||||
continue;
|
||||
|
||||
ThickPolylines thick_polylines;
|
||||
for (const Arachne::LineJunctions &ej : perimeters[perimeter_idx])
|
||||
thick_polylines.emplace_back(Arachne::to_thick_polyline(ej));
|
||||
ExtrusionEntityCollection entities_coll;
|
||||
if (bins_with_index_zero_perimeters.count(perimeter_idx) > 0) // Print using outer wall config.
|
||||
variable_width(thick_polylines, erExternalPerimeter, this->ext_perimeter_flow, entities_coll.entities);
|
||||
else
|
||||
variable_width(thick_polylines, erPerimeter, this->perimeter_flow, entities_coll.entities);
|
||||
this->loops->append(entities_coll);
|
||||
}
|
||||
|
||||
ExPolygons infill_contour = union_ex(wallToolPaths.getInnerContour());
|
||||
// create one more offset to be used as boundary for fill
|
||||
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
||||
// and then we offset back and forth by half the infill spacing to only consider the
|
||||
// non-collapsing regions
|
||||
coord_t inset =
|
||||
(loop_number < 0) ? 0 :
|
||||
(loop_number == 0) ?
|
||||
// one loop
|
||||
ext_perimeter_width:
|
||||
// two or more loops?
|
||||
perimeter_width;
|
||||
|
||||
inset = coord_t(scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset))));
|
||||
Polygons pp;
|
||||
for (ExPolygon &ex : infill_contour)
|
||||
ex.simplify_p(m_scaled_resolution, &pp);
|
||||
// collapse too narrow infill areas
|
||||
coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
||||
// append infill areas to fill_surfaces
|
||||
this->fill_surfaces->append(
|
||||
offset_ex(offset2_ex(
|
||||
union_ex(pp),
|
||||
float(-min_perimeter_infill_spacing / 2.),
|
||||
float(min_perimeter_infill_spacing / 2.)), inset),
|
||||
stInternal);
|
||||
}
|
||||
}
|
||||
|
||||
void PerimeterGenerator::process_classic()
|
||||
{
|
||||
// other perimeters
|
||||
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
||||
|
@ -55,7 +55,8 @@ public:
|
||||
m_ext_mm3_per_mm(-1), m_mm3_per_mm(-1), m_mm3_per_mm_overhang(-1)
|
||||
{}
|
||||
|
||||
void process();
|
||||
void process_classic();
|
||||
void process_arachne();
|
||||
|
||||
double ext_mm3_per_mm() const { return m_ext_mm3_per_mm; }
|
||||
double mm3_per_mm() const { return m_mm3_per_mm; }
|
||||
|
@ -161,6 +161,7 @@ public:
|
||||
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
|
||||
Point rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; }
|
||||
Point rotated(double angle, const Point ¢er) const { Point res(*this); res.rotate(angle, center); return res; }
|
||||
Point rotate_90_degree_ccw() const { return Point(-this->y(), this->x()); }
|
||||
int nearest_point_index(const Points &points) const;
|
||||
int nearest_point_index(const PointConstPtrs &points) const;
|
||||
int nearest_point_index(const PointPtrs &points) const;
|
||||
@ -248,6 +249,15 @@ inline bool has_duplicate_successive_points_closed(const std::vector<Point> &pts
|
||||
return has_duplicate_successive_points(pts) || (pts.size() >= 2 && pts.front() == pts.back());
|
||||
}
|
||||
|
||||
inline bool shorter_then(const Point& p0, const coord_t len)
|
||||
{
|
||||
if (p0.x() > len || p0.x() < -len)
|
||||
return false;
|
||||
if (p0.y() > len || p0.y() < -len)
|
||||
return false;
|
||||
return p0.cast<int64_t>().squaredNorm() <= Slic3r::sqr(int64_t(len));
|
||||
}
|
||||
|
||||
namespace int128 {
|
||||
// Exact orientation predicate,
|
||||
// returns +1: CCW, 0: collinear, -1: CW.
|
||||
|
@ -448,7 +448,9 @@ static std::vector<std::string> s_Preset_print_options {
|
||||
"top_infill_extrusion_width", "support_material_extrusion_width", "infill_overlap", "infill_anchor", "infill_anchor_max", "bridge_flow_ratio", "clip_multipart_objects",
|
||||
"elefant_foot_compensation", "xy_size_compensation", "threads", "resolution", "gcode_resolution", "wipe_tower", "wipe_tower_x", "wipe_tower_y",
|
||||
"wipe_tower_width", "wipe_tower_rotation_angle", "wipe_tower_brim_width", "wipe_tower_bridging", "single_extruder_multi_material_priming", "mmu_segmented_region_max_width",
|
||||
"wipe_tower_no_sparse_layers", "compatible_printers", "compatible_printers_condition", "inherits"
|
||||
"wipe_tower_no_sparse_layers", "compatible_printers", "compatible_printers_condition", "inherits",
|
||||
"slicing_engine", "beading_strategy_type", "wall_transition_length", "wall_transition_filter_distance", "wall_transition_angle",
|
||||
"wall_distribution_count", "wall_split_middle_threshold", "wall_add_middle_threshold", "min_feature_size", "min_bead_width"
|
||||
};
|
||||
|
||||
static std::vector<std::string> s_Preset_filament_options {
|
||||
|
@ -222,6 +222,18 @@ bool Print::invalidate_state_by_config_options(const ConfigOptionResolver & /* n
|
||||
osteps.emplace_back(posInfill);
|
||||
osteps.emplace_back(posSupportMaterial);
|
||||
steps.emplace_back(psSkirtBrim);
|
||||
} else if (
|
||||
opt_key == "slicing_engine"
|
||||
|| opt_key == "beading_strategy_type"
|
||||
|| opt_key == "wall_transition_length"
|
||||
|| opt_key == "wall_transition_filter_distance"
|
||||
|| opt_key == "wall_transition_angle"
|
||||
|| opt_key == "wall_distribution_count"
|
||||
|| opt_key == "wall_split_middle_threshold"
|
||||
|| opt_key == "wall_add_middle_threshold"
|
||||
|| opt_key == "min_feature_size"
|
||||
|| opt_key == "min_bead_width") {
|
||||
osteps.emplace_back(posSlice);
|
||||
} else {
|
||||
// for legacy, if we can't handle this option let's invalidate all steps
|
||||
//FIXME invalidate all steps of all objects as well?
|
||||
|
@ -195,6 +195,19 @@ static const t_config_enum_values s_keys_map_ForwardCompatibilitySubstitutionRul
|
||||
};
|
||||
CONFIG_OPTION_ENUM_DEFINE_STATIC_MAPS(ForwardCompatibilitySubstitutionRule)
|
||||
|
||||
static t_config_enum_values s_keys_map_SlicingEngine {
|
||||
{ "classic", int(SlicingEngine::Classic) },
|
||||
{ "arachne", int(SlicingEngine::Arachne) }
|
||||
};
|
||||
CONFIG_OPTION_ENUM_DEFINE_STATIC_MAPS(SlicingEngine)
|
||||
|
||||
static t_config_enum_values s_keys_map_BeadingStrategyType {
|
||||
{ "center_deviation", int(BeadingStrategyType::Center) },
|
||||
{ "distributed", int(BeadingStrategyType::Distributed) },
|
||||
{ "inward_distributed", int(BeadingStrategyType::InwardDistributed) }
|
||||
};
|
||||
CONFIG_OPTION_ENUM_DEFINE_STATIC_MAPS(BeadingStrategyType)
|
||||
|
||||
static void assign_printer_technology_to_unknown(t_optiondef_map &options, PrinterTechnology printer_technology)
|
||||
{
|
||||
for (std::pair<const t_config_option_key, ConfigOptionDef> &kvp : options)
|
||||
@ -3037,6 +3050,136 @@ void PrintConfigDef::init_fff_params()
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(0));
|
||||
|
||||
def = this->add("slicing_engine", coEnum);
|
||||
def->label = L("Slicing engine");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("Classic slicing engine produces perimeters with constant extrusion width and for"
|
||||
" very thing areas is used gap-fill."
|
||||
"Arachne produces perimeters with variable extrusion width.");
|
||||
def->enum_keys_map = &ConfigOptionEnum<SlicingEngine>::get_enum_values();
|
||||
def->enum_values.push_back("classic");
|
||||
def->enum_values.push_back("arachne");
|
||||
def->enum_labels.push_back(L("Classic"));
|
||||
def->enum_labels.push_back(L("Arachne"));
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionEnum<SlicingEngine>(SlicingEngine::Classic));
|
||||
|
||||
def = this->add("beading_strategy_type", coEnum);
|
||||
def->label = L("Variable Line Strategy");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("Strategy to use to print the width of a part with a number of walls. This determines "
|
||||
"how many walls it will use for a certain total width, and how wide each of"
|
||||
" these lines are. \"Center Deviation\" will print all walls at the nominal"
|
||||
" line width except the central one(s), causing big variations in the center"
|
||||
" but very consistent outsides. \"Distributed\" distributes the width equally"
|
||||
" over all walls. \"Inward Distributed\" is a balance between the other two, "
|
||||
"distributing the changes in width over all walls but keeping the walls on the"
|
||||
" outside slightly more consistent.");
|
||||
def->enum_keys_map = &ConfigOptionEnum<BeadingStrategyType>::get_enum_values();
|
||||
def->enum_values.push_back("center_deviation");
|
||||
def->enum_values.push_back("distributed");
|
||||
def->enum_values.push_back("inward_distributed");
|
||||
def->enum_labels.push_back(L("Center Deviation"));
|
||||
def->enum_labels.push_back(L("Distributed"));
|
||||
def->enum_labels.push_back(L("Inward Distributed"));
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionEnum<BeadingStrategyType>(BeadingStrategyType::InwardDistributed));
|
||||
|
||||
def = this->add("wall_transition_length", coFloat);
|
||||
def->label = L("Wall Transition Length");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("When transitioning between different numbers of walls as the part becomes"
|
||||
"thinner, a certain amount of space is allotted to split or join the wall lines.");
|
||||
def->sidetext = L("mm");
|
||||
def->mode = comExpert;
|
||||
def->min = 0;
|
||||
def->set_default_value(new ConfigOptionFloat(0.4));
|
||||
|
||||
def = this->add("wall_transition_filter_distance", coFloat);
|
||||
def->label = L("Wall Transition Distance Filter");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("If it would be transitioning back and forth between different numbers of walls in "
|
||||
"quick succession, don't transition at all. Remove transitions if they are closer "
|
||||
"together than this distance.");
|
||||
def->sidetext = L("mm");
|
||||
def->mode = comExpert;
|
||||
def->min = 0;
|
||||
def->set_default_value(new ConfigOptionFloat(1.4));
|
||||
|
||||
def = this->add("wall_transition_angle", coFloat);
|
||||
def->label = L("Wall Transition Angle");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("When transitioning between different numbers of walls as the part becomes thinner, "
|
||||
"two adjacent walls will join together at this angle. This can make the walls come "
|
||||
"together faster than what the Wall Transition Length indicates, filling the space "
|
||||
"better.");
|
||||
def->sidetext = L("°");
|
||||
def->mode = comExpert;
|
||||
def->min = 1.;
|
||||
def->max = 59.;
|
||||
def->set_default_value(new ConfigOptionFloat(10.));
|
||||
|
||||
def = this->add("wall_distribution_count", coInt);
|
||||
def->label = L("Wall Distribution Count");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("The number of walls, counted from the center, over which the variation needs to be "
|
||||
"spread. Lower values mean that the outer walls don't change in width.");
|
||||
def->mode = comExpert;
|
||||
def->min = 1;
|
||||
def->set_default_value(new ConfigOptionInt(1));
|
||||
|
||||
def = this->add("wall_split_middle_threshold", coPercent);
|
||||
def->label = L("Split Middle Line Threshold");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("The smallest line width, as a factor of the normal line width, above which the middle "
|
||||
"line (if there is one) will be split into two. Reduce this setting to use more, thinner "
|
||||
"lines. Increase to use fewer, wider lines. Note that this applies -as if- the entire "
|
||||
"shape should be filled with wall, so the middle here refers to the middle of the object "
|
||||
"between two outer edges of the shape, even if there actually is fill or (other) skin in "
|
||||
"the print instead of wall.");
|
||||
def->sidetext = L("%");
|
||||
def->mode = comExpert;
|
||||
def->min = 1;
|
||||
def->max = 99;
|
||||
def->set_default_value(new ConfigOptionPercent(90));
|
||||
|
||||
def = this->add("wall_add_middle_threshold", coPercent);
|
||||
def->label = L("Add Middle Line Threshold");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("The smallest line width, as a factor of the normal line width, above which a middle "
|
||||
"line (if there wasn't one already) will be added. Reduce this setting to use more, "
|
||||
"thinner lines. Increase to use fewer, wider lines. Note that this applies -as if- the "
|
||||
"entire shape should be filled with wall, so the middle here refers to the middle of the "
|
||||
"object between two outer edges of the shape, even if there actually is fill or (other) "
|
||||
"skin in the print instead of wall.");
|
||||
def->sidetext = L("%");
|
||||
def->mode = comExpert;
|
||||
def->min = 1;
|
||||
def->max = 99;
|
||||
def->set_default_value(new ConfigOptionPercent(80));
|
||||
|
||||
def = this->add("min_feature_size", coFloat);
|
||||
def->label = L("Minimum Feature Size");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("Minimum thickness of thin features. Model features that are thinner than this value will "
|
||||
"not be printed, while features thicker than the Minimum Feature Size will be widened to "
|
||||
"the Minimum Wall Line Width.");
|
||||
def->sidetext = L("mm");
|
||||
def->mode = comExpert;
|
||||
def->min = 0;
|
||||
def->set_default_value(new ConfigOptionFloat(0.1));
|
||||
|
||||
def = this->add("min_bead_width", coFloat);
|
||||
def->label = L("Minimum Wall Line Width");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("Width of the wall that will replace thin features (according to the Minimum Feature Size) "
|
||||
"of the model. If the Minimum Wall Line Width is thinner than the thickness of the feature,"
|
||||
" the wall will become as thick as the feature itself.");
|
||||
def->sidetext = L("mm");
|
||||
def->mode = comExpert;
|
||||
def->min = 0;
|
||||
def->set_default_value(new ConfigOptionFloat(0.2));
|
||||
|
||||
// Declare retract values for filament profile, overriding the printer's extruder profile.
|
||||
for (const char *opt_key : {
|
||||
// floats
|
||||
@ -3968,6 +4111,13 @@ void DynamicPrintConfig::normalize_fdm()
|
||||
if (auto *opt_gcode_resolution = this->opt<ConfigOptionFloat>("gcode_resolution", false); opt_gcode_resolution)
|
||||
// Resolution will be above 1um.
|
||||
opt_gcode_resolution->value = std::max(opt_gcode_resolution->value, 0.001);
|
||||
|
||||
if (auto *opt_min_bead_width = this->opt<ConfigOptionFloat>("min_bead_width", false); opt_min_bead_width)
|
||||
opt_min_bead_width->value = std::max(opt_min_bead_width->value, 0.001);
|
||||
if (auto *opt_wall_transition_length = this->opt<ConfigOptionFloat>("wall_transition_length", false); opt_wall_transition_length)
|
||||
opt_wall_transition_length->value = std::max(opt_wall_transition_length->value, 0.001);
|
||||
if (auto *opt_wall_transition_filter_distance = this->opt<ConfigOptionFloat>("wall_transition_filter_distance", false); opt_wall_transition_filter_distance)
|
||||
opt_wall_transition_filter_distance->value = std::max(opt_wall_transition_filter_distance->value, 0.001);
|
||||
}
|
||||
|
||||
void handle_legacy_sla(DynamicPrintConfig &config)
|
||||
|
@ -127,6 +127,24 @@ enum DraftShield {
|
||||
dsDisabled, dsLimited, dsEnabled
|
||||
};
|
||||
|
||||
enum class SlicingEngine
|
||||
{
|
||||
// Classic perimeter generator using Clipper offsets with constant extrusion width.
|
||||
Classic,
|
||||
// Perimeter generator with variable extrusion width based on the paper
|
||||
// "A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling" ported from Cura.
|
||||
Arachne
|
||||
};
|
||||
|
||||
enum class BeadingStrategyType
|
||||
{
|
||||
Center,
|
||||
Distributed,
|
||||
InwardDistributed,
|
||||
None,
|
||||
Count
|
||||
};
|
||||
|
||||
#define CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS(NAME) \
|
||||
template<> const t_config_enum_names& ConfigOptionEnum<NAME>::get_enum_names(); \
|
||||
template<> const t_config_enum_values& ConfigOptionEnum<NAME>::get_enum_values();
|
||||
@ -149,6 +167,8 @@ CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS(SLAPillarConnectionMode)
|
||||
CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS(BrimType)
|
||||
CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS(DraftShield)
|
||||
CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS(ForwardCompatibilitySubstitutionRule)
|
||||
CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS(SlicingEngine)
|
||||
CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS(BeadingStrategyType)
|
||||
|
||||
#undef CONFIG_OPTION_ENUM_DECLARE_STATIC_MAPS
|
||||
|
||||
@ -748,6 +768,16 @@ PRINT_CONFIG_CLASS_DERIVED_DEFINE(
|
||||
((ConfigOptionFloat, skirt_distance))
|
||||
((ConfigOptionInt, skirt_height))
|
||||
((ConfigOptionInt, skirts))
|
||||
((ConfigOptionEnum<SlicingEngine>, slicing_engine))
|
||||
((ConfigOptionEnum<BeadingStrategyType>, beading_strategy_type))
|
||||
((ConfigOptionFloat, wall_transition_length))
|
||||
((ConfigOptionFloat, wall_transition_filter_distance))
|
||||
((ConfigOptionFloat, wall_transition_angle))
|
||||
((ConfigOptionInt, wall_distribution_count))
|
||||
((ConfigOptionPercent, wall_split_middle_threshold))
|
||||
((ConfigOptionPercent, wall_add_middle_threshold))
|
||||
((ConfigOptionFloat, min_feature_size))
|
||||
((ConfigOptionFloat, min_bead_width))
|
||||
((ConfigOptionInts, slowdown_below_layer_time))
|
||||
((ConfigOptionBool, spiral_vase))
|
||||
((ConfigOptionInt, standby_temperature_delta))
|
||||
|
@ -1670,6 +1670,18 @@ void TabPrint::build()
|
||||
optgroup = page->new_optgroup(L("Other"));
|
||||
optgroup->append_single_option_line("clip_multipart_objects");
|
||||
|
||||
optgroup = page->new_optgroup(L("Experimental"));
|
||||
optgroup->append_single_option_line("slicing_engine");
|
||||
optgroup->append_single_option_line("beading_strategy_type");
|
||||
optgroup->append_single_option_line("wall_transition_length");
|
||||
optgroup->append_single_option_line("wall_transition_filter_distance");
|
||||
optgroup->append_single_option_line("wall_transition_angle");
|
||||
optgroup->append_single_option_line("wall_distribution_count");
|
||||
optgroup->append_single_option_line("wall_split_middle_threshold");
|
||||
optgroup->append_single_option_line("wall_add_middle_threshold");
|
||||
optgroup->append_single_option_line("min_feature_size");
|
||||
optgroup->append_single_option_line("min_bead_width");
|
||||
|
||||
page = add_options_page(L("Output options"), "output+page_white");
|
||||
optgroup = page->new_optgroup(L("Sequential printing"));
|
||||
optgroup->append_single_option_line("complete_objects", "sequential-printing_124589");
|
||||
|
Loading…
Reference in New Issue
Block a user