Fix for empty or broken png output.

Fix for instance transformation order error and state invalidation issues with rasterization.
This commit is contained in:
tamasmeszaros 2018-11-29 18:12:40 +01:00
parent bf94751a94
commit 55d62b8295
5 changed files with 54 additions and 161 deletions

View File

@ -218,8 +218,10 @@ public:
std::sprintf(lyrnum, "%.5d", i);
auto zfilename = project + lyrnum + ".png";
writer.next_entry(zfilename);
writer << m_layers_rst[i].second.rdbuf();
m_layers_rst[i].second.str("");
writer << m_layers_rst[i].second.str();
// writer << m_layers_rst[i].second.rdbuf();
// we can keep the date for later calls of this method
//m_layers_rst[i].second.str("");
}
}
@ -250,146 +252,6 @@ public:
}
};
//// Let's shadow this eigen interface
//inline coord_t px(const Point& p) { return p(0); }
//inline coord_t py(const Point& p) { return p(1); }
//inline coordf_t px(const Vec2d& p) { return p(0); }
//inline coordf_t py(const Vec2d& p) { return p(1); }
//template<FilePrinterFormat format, class LayerFormat, class...Args>
//void print_to(Print& print,
// std::string dirpath,
// double width_mm,
// double height_mm,
// Args&&...args)
//{
// std::string& dir = dirpath;
// // This map will hold the layers sorted by z coordinate. Layers on the
// // same height (from different objects) will be mapped to the same key and
// // rasterized to the same image.
// std::map<long long, LayerPtrs> layers;
// auto& objects = print.objects();
// // Merge the sliced layers with the support layers
// std::for_each(objects.cbegin(), objects.cend(),
// [&layers](const PrintObject *o)
// {
// for(const auto l : o->layers()) {
// auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
// lyrs.push_back(l);
// }
// for(const auto l : o->support_layers()) {
// auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
// lyrs.push_back(l);
// }
// });
// auto print_bb = print.bounding_box();
// Vec2d punsc = unscale(print_bb.size());
// // If the print does not fit into the print area we should cry about it.
// if(px(punsc) > width_mm || py(punsc) > height_mm) {
// BOOST_LOG_TRIVIAL(warning) << "Warning: Print will not fit!" << "\n"
// << "Width needed: " << px(punsc) << "\n"
// << "Height needed: " << py(punsc) << "\n";
// }
// // Offset for centering the print onto the print area
// auto cx = scale_(width_mm)/2 - (px(print_bb.center()) - px(print_bb.min));
// auto cy = scale_(height_mm)/2 - (py(print_bb.center()) - py(print_bb.min));
// // Create the actual printer, forward any additional arguments to it.
// FilePrinter<format, LayerFormat> printer(width_mm, height_mm,
// std::forward<Args>(args)...);
// printer.print_config(print);
// printer.layers(layers.size()); // Allocate space for all the layers
// int st_prev = 0;
// const std::string jobdesc = "Rasterizing and compressing sliced layers";
// tbb::spin_mutex m;
// std::vector<long long> keys;
// keys.reserve(layers.size());
// for(auto& e : layers) keys.push_back(e.first);
// print.set_status(0, jobdesc);
// // Method that prints one layer
// auto process_layer = [&layers, &keys, &printer, &st_prev, &m,
// &jobdesc, print_bb, dir, cx, cy, &print]
// (unsigned layer_id)
// {
// LayerPtrs lrange = layers[keys[layer_id]];
// printer.begin_layer(layer_id); // Switch to the appropriate layer
// for(Layer *lp : lrange) {
// Layer& l = *lp;
// ExPolygonCollection slices = l.slices; // Copy the layer slices
// // Sort the polygons in the layer
// std::stable_sort(slices.expolygons.begin(), slices.expolygons.end(),
// [](const ExPolygon& a, const ExPolygon& b) {
// return a.contour.contains(b.contour.first_point()) ? false :
// true;
// });
// // Draw all the polygons in the slice to the actual layer.
// for (const Point &d : l.object()->copies())
// for (ExPolygon slice : slices.expolygons) {
// slice.translate(px(d), py(d));
// slice.translate(-px(print_bb.min) + cx,
// -py(print_bb.min) + cy);
// printer.draw_polygon(slice, layer_id);
// }
// /*if(print.has_support_material() && layer_id > 0) {
// BOOST_LOG_TRIVIAL(warning) << "support material for layer "
// << layer_id
// << " defined but export is "
// "not yet implemented.";
// }*/
// }
// printer.finish_layer(layer_id); // Finish the layer for later saving it.
// auto st = static_cast<int>(layer_id*80.0/layers.size());
// m.lock();
// if( st - st_prev > 10) {
// print.set_status(st, jobdesc);
// st_prev = st;
// }
// m.unlock();
// // printer.saveLayer(layer_id, dir); We could save the layer immediately
// };
// // Print all the layers in parallel
// tbb::parallel_for<size_t, decltype(process_layer)>(0,
// layers.size(),
// process_layer);
// // Sequential version (for testing)
// // for(unsigned l = 0; l < layers.size(); ++l) process_layer(l);
//// print.set_status(100, jobdesc);
// // Save the print into the file system.
// print.set_status(90, "Writing layers to disk");
// printer.save(dir);
// print.set_status(100, "Writing layers completed");
//}
}
#endif // PRINTEXPORT_HPP

View File

@ -28,6 +28,7 @@ public:
sla::PointSet support_points; // all the support points (manual/auto)
SupportTreePtr support_tree_ptr; // the supports
SlicedSupports support_slices; // sliced supports
std::vector<LevelID> level_ids;
};
namespace {
@ -567,11 +568,10 @@ void SLAPrint::process()
}
};
auto& levels = m_printer_input;
// We have the layer polygon collection but we need to unite them into
// an index where the key is the height level in discrete levels (clipper)
auto index_slices = [this, ilh, ilhd, &levels](SLAPrintObject& po) {
auto index_slices = [this, ilh, ilhd](SLAPrintObject& po) {
po.m_slice_index.clear();
auto sih = LevelID(scale_(ilh));
// For all print objects, go through its initial layers and place them
@ -591,7 +591,7 @@ void SLAPrint::process()
// It is important that the next levels match the levels in
// model_slice method. Only difference is that here it works with
// scaled coordinates
std::vector<LevelID> levelids;
auto& levelids = po.m_level_ids; levelids.clear();
if(sminZ >= smodelgnd) levelids.emplace_back(sminZ);
for(LevelID h = sminZ + sih; h < smaxZ; h += slh)
if(h >= smodelgnd) levelids.emplace_back(h);
@ -615,11 +615,9 @@ void SLAPrint::process()
// shortcut for empty index into the slice vectors
static const auto EMPTY_SLICE = SLAPrintObject::SliceRecord::NONE;
for(int i = 0; i < oslices.size(); ++i) {
LevelID h = levelids[i];
auto& lyrs = levels[h]; // this initializes a new record
lyrs.emplace_back(oslices[i], po.m_instances);
float fh = float(double(h) * SCALING_FACTOR);
@ -632,13 +630,14 @@ void SLAPrint::process()
if(po.m_supportdata) { // deal with the support slices if present
auto& sslices = po.m_supportdata->support_slices;
po.m_supportdata->level_ids.clear();
po.m_supportdata->level_ids.reserve(sslices.size());
for(int i = 0; i < sslices.size(); ++i) {
int a = i == 0 ? 0 : 1;
int b = i == 0 ? 0 : i - 1;
LevelID h = sminZ + a * sih + b * slh;
auto& lyrs = levels[h];
lyrs.emplace_back(sslices[i], po.m_instances);
po.m_supportdata->level_ids.emplace_back(h);
float fh = float(double(h) * SCALING_FACTOR);
@ -649,10 +648,40 @@ void SLAPrint::process()
}
};
auto& levels = m_printer_input;
// Rasterizing the model objects, and their supports
auto rasterize = [this, ilh, ilhd, max_objstatus, &levels]() {
if(canceled()) return;
// clear the rasterizer input
m_printer_input.clear();
for(SLAPrintObject * o : m_objects) {
auto& po = *o;
SlicedModel & oslices = po.m_model_slices;
// We need to adjust the min Z level of the slices to be zero
LevelID smfirst = po.m_supportdata? po.m_supportdata->level_ids.front() : 0;
LevelID mfirst = po.m_level_ids.front();
LevelID gndlvl = -(std::min(smfirst, mfirst));
// now merge this object's support and object slices with the rest
// of the print object slices
for(int i = 0; i < oslices.size(); ++i) {
auto& lyrs = levels[gndlvl + po.m_level_ids[i]];
lyrs.emplace_back(oslices[i], po.m_instances);
}
if(!po.m_supportdata) continue;
auto& sslices = po.m_supportdata->support_slices;
for(int i = 0; i < sslices.size(); ++i) {
auto& lyrs = levels[gndlvl + po.m_supportdata->level_ids[i]];
lyrs.emplace_back(sslices[i], po.m_instances);
}
}
// collect all the keys
std::vector<long long> keys; keys.reserve(levels.size());
for(auto& e : levels) keys.emplace_back(e.first);
@ -704,8 +733,10 @@ void SLAPrint::process()
// Draw all the polygons in the slice to the actual layer.
for(auto& cp : copies) {
for(ExPolygon slice : sl) {
slice.translate(cp.shift(X), cp.shift(Y));
// The order is important here:
// apply rotation before translation...
slice.rotate(cp.rotation);
slice.translate(cp.shift(X), cp.shift(Y));
printer.draw_polygon(slice, level_id);
}
}

View File

@ -33,6 +33,10 @@ class GLCanvas;
using _SLAPrintObjectBase =
PrintObjectBaseWithState<SLAPrint, SLAPrintObjectStep, slaposCount>;
// Layers according to quantized height levels. This will be consumed by
// the printer (rasterizer) in the SLAPrint class.
using LevelID = long long;
class SLAPrintObject : public _SLAPrintObjectBase
{
private: // Prevents erroneous use by other classes.
@ -93,7 +97,6 @@ public:
// to the z coordinate of the object coordinate system.
struct SliceRecord {
using Key = float;
// inline static float scale_back(Key h) { return float(h * SCALING_FACTOR); }
using Idx = size_t;
static const Idx NONE = Idx(-1); // this will be the max limit of size_t
@ -145,6 +148,7 @@ private:
std::vector<bool> m_stepmask;
std::vector<ExPolygons> m_model_slices;
SliceIndex m_slice_index;
std::vector<LevelID> m_level_ids;
// Caching the transformed (m_trafo) raw mesh of the object
mutable CachedObject<TriangleMesh> m_transformed_rmesh;
@ -214,10 +218,6 @@ private:
lref(std::cref(lyr)), copies(std::cref(cp)) {}
};
// Layers according to quantized height levels. This will be consumed by
// the printer (rasterizer) in the SLAPrint class.
using LevelID = long long;
// One level may contain multiple slices from multiple objects and their
// supports
using LayerRefs = std::vector<LayerRef>;

View File

@ -71,14 +71,12 @@ int ProgressStatusBar::get_progress() const
void ProgressStatusBar::set_progress(int val)
{
if(!m_prog->IsShown()) show_progress(true);
if(val < 0) return;
if(val == m_prog->GetRange()) {
m_prog->SetValue(0);
show_progress(false);
}
else if(val < 0) {
m_prog->Pulse();
}
else {
m_prog->SetValue(val);
}

View File

@ -35,6 +35,8 @@ public:
~ProgressStatusBar();
int get_progress() const;
// if the argument is less than 0 it shows the last state or
// pulses if no state was set before.
void set_progress(int);
int get_range() const;
void set_range(int = 100);