Merge branch 'master' into fs_emboss

This commit is contained in:
Filip Sykala - NTB T15p 2022-12-02 15:57:11 +01:00
commit 57695056ed
17 changed files with 1398 additions and 1030 deletions

View file

@ -14,21 +14,44 @@ namespace Measure {
constexpr double feature_hover_limit = 0.5; // how close to a feature the mouse must be to highlight it
static std::pair<Vec3d, double> get_center_and_radius(const std::vector<Vec3d>& border, int start_idx, int end_idx, const Transform3d& trafo)
static std::pair<Vec3d, double> get_center_and_radius(const std::vector<Vec3d>& points, const Transform3d& trafo)
{
Vec2ds pts;
Vec2ds out;
double z = 0.;
for (int i=start_idx; i<=end_idx; ++i) {
Vec3d pt_transformed = trafo * border[i];
for (const Vec3d& pt : points) {
Vec3d pt_transformed = trafo * pt;
z = pt_transformed.z();
pts.emplace_back(pt_transformed.x(), pt_transformed.y());
out.emplace_back(pt_transformed.x(), pt_transformed.y());
}
auto circle = Geometry::circle_ransac(pts, 20); // FIXME: iterations?
auto circle = Geometry::circle_ransac(out, 20); // FIXME: iterations?
return std::make_pair(trafo.inverse() * Vec3d(circle.center.x(), circle.center.y(), z), circle.radius);
}
static bool circle_fit_is_ok(const std::vector<Vec3d>& pts, const Vec3d& center, double radius)
{
for (const Vec3d& pt : pts)
if (std::abs((pt - center).norm() - radius) > 0.05)
return false;
return true;
}
static std::array<Vec3d, 3> orthonormal_basis(const Vec3d& v)
{
std::array<Vec3d, 3> ret;
ret[2] = v.normalized();
int index;
ret[2].cwiseAbs().maxCoeff(&index);
switch (index)
{
case 0: { ret[0] = Vec3d(ret[2].y(), -ret[2].x(), 0.0).normalized(); break; }
case 1: { ret[0] = Vec3d(0.0, ret[2].z(), -ret[2].y()).normalized(); break; }
case 2: { ret[0] = Vec3d(-ret[2].z(), 0.0, ret[2].x()).normalized(); break; }
}
ret[1] = ret[2].cross(ret[0]).normalized();
return ret;
}
@ -47,6 +70,7 @@ public:
std::optional<SurfaceFeature> get_feature(size_t face_idx, const Vec3d& point) const;
std::vector<std::vector<int>> get_planes_triangle_indices() const;
const std::vector<SurfaceFeature>& get_plane_features(unsigned int plane_id) const;
const TriangleMesh& get_mesh() const;
private:
void update_planes();
@ -54,7 +78,7 @@ private:
std::vector<PlaneData> m_planes;
std::vector<size_t> m_face_to_plane;
const indexed_triangle_set& m_its;
TriangleMesh m_mesh;
};
@ -63,7 +87,7 @@ private:
MeasuringImpl::MeasuringImpl(const indexed_triangle_set& its)
: m_its{its}
: m_mesh(its)
{
update_planes();
extract_features();
@ -76,10 +100,10 @@ void MeasuringImpl::update_planes()
// Now we'll go through all the facets and append Points of facets sharing the same normal.
// This part is still performed in mesh coordinate system.
const size_t num_of_facets = m_its.indices.size();
const size_t num_of_facets = m_mesh.its.indices.size();
m_face_to_plane.resize(num_of_facets, size_t(-1));
const std::vector<Vec3f> face_normals = its_face_normals(m_its);
const std::vector<Vec3i> face_neighbors = its_face_neighbors(m_its);
const std::vector<Vec3f> face_normals = its_face_normals(m_mesh.its);
const std::vector<Vec3i> face_neighbors = its_face_neighbors(m_mesh.its);
std::vector<int> facet_queue(num_of_facets, 0);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
@ -128,7 +152,7 @@ void MeasuringImpl::update_planes()
assert(std::none_of(m_face_to_plane.begin(), m_face_to_plane.end(), [](size_t val) { return val == size_t(-1); }));
// Now we will walk around each of the planes and save vertices which form the border.
SurfaceMesh sm(m_its);
SurfaceMesh sm(m_mesh.its);
for (int plane_id=0; plane_id < int(m_planes.size()); ++plane_id) {
const auto& facets = m_planes[plane_id].facets;
m_planes[plane_id].borders.clear();
@ -173,10 +197,16 @@ void MeasuringImpl::update_planes()
he = sm.next_around_target(he);
if (he.is_invalid())
goto PLANE_FAILURE;
// For broken meshes, the iteration might never get back to he_orig.
// Remember all halfedges we saw to break out of such infinite loops.
boost::container::small_vector<Halfedge_index, 10> he_seen;
while ( (int)m_face_to_plane[sm.face(he)] == plane_id && he != he_orig) {
he_seen.emplace_back(he);
he = sm.next_around_target(he);
if (he.is_invalid())
goto PLANE_FAILURE;
if (he.is_invalid() || std::find(he_seen.begin(), he_seen.end(), he) != he_seen.end())
goto PLANE_FAILURE;
}
he = sm.opposite(he);
if (he.is_invalid())
@ -194,12 +224,19 @@ void MeasuringImpl::update_planes()
visited[face_it - facets.begin()][he.side()] = true;
last_border.emplace_back(sm.point(sm.source(he)).cast<double>());
// In case of broken meshes, this loop might be infinite. Break
// out in case it is clearly going bad.
if (last_border.size() > 3*facets.size()+1)
goto PLANE_FAILURE;
} while (he != he_start);
if (last_border.size() == 1)
m_planes[plane_id].borders.pop_back();
else {
assert(last_border.front() == last_border.back());
last_border.pop_back();
}
}
}
@ -217,7 +254,7 @@ void MeasuringImpl::update_planes()
void MeasuringImpl::extract_features()
{
std::vector<double> angles;
std::vector<double> angles; // placed in outer scope to prevent reallocations
std::vector<double> lengths;
@ -230,180 +267,201 @@ void MeasuringImpl::extract_features()
q.setFromTwoVectors(plane.normal, Vec3d::UnitZ());
Transform3d trafo = Transform3d::Identity();
trafo.rotate(q);
for (const std::vector<Vec3d>& border : plane.borders) {
if (border.size() <= 1)
continue;
assert(border.front() == border.back());
int start_idx = -1;
std::vector<SurfaceFeature> edges;
bool done = false;
// First calculate angles at all the vertices.
angles.clear();
lengths.clear();
for (int i=0; i<int(border.size()); ++i) { // front is the same as back, hence the weird indexing
const Vec3d& v2 = (i == 0 ? border[0] - border[border.size()-2]
: border[i] - border[i-1]);
const Vec3d& v1 = i == (int)border.size()-1 ? border[1] - border.back()
: border[i+1] - border[i];
double angle = atan2(-normal.dot(v1.cross(v2)), -v1.dot(v2)) + M_PI;
if (angle > M_PI)
angle = 2*M_PI - angle;
if (const auto& [center, radius] = get_center_and_radius(border, trafo);
(border.size()>4) && circle_fit_is_ok(border, center, radius)) {
// The whole border is one circle. Just add it into the list of features
// and we are done.
angles.push_back(angle);
lengths.push_back(v2.norm());
}
assert(border.size() == angles.size());
assert(border.size() == lengths.size());
bool is_polygon = border.size()>4 && border.size()<=8;
bool lengths_match = std::all_of(border.begin()+2, border.end(), [is_polygon](const Vec3d& pt) {
return Slic3r::is_approx((pt - *((&pt)-1)).squaredNorm(), (*((&pt)-1) - *((&pt)-2)).squaredNorm(), is_polygon ? 0.01 : 0.01);
});
// First go around the border and pick what might be circular segments.
// Save pair of indices to where such potential segments start and end.
// Also remember the length of these segments.
bool circle = false;
std::vector<SurfaceFeature> circles;
std::vector<std::pair<int, int>> circles_idxs;
std::vector<double> circles_lengths;
for (int i=1; i<(int)angles.size(); ++i) {
if (Slic3r::is_approx(lengths[i], lengths[i-1])
&& Slic3r::is_approx(angles[i], angles[i-1])
&& i != (int)angles.size()-1 ) {
// circle
if (! circle) {
circle = true;
start_idx = std::max(0, i-2);
if (lengths_match && (is_polygon || border.size() > 8)) {
if (is_polygon) {
// This is a polygon, add the separate edges with the center.
for (int j=0; j<int(border.size()); ++j)
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge,
border[j==0 ? border.size()-1 : j-1], border[j],
std::make_optional(center)));
} else {
// The fit went well and it has more than 8 points - let's consider this a circle.
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
}
} else {
if (circle) {
const auto& [center, radius] = get_center_and_radius(border, start_idx, i, trafo);
// Add the circle and remember indices into borders.
circles_idxs.emplace_back(start_idx, i);
circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
circles_lengths.emplace_back(std::accumulate(lengths.begin() + start_idx + 1, lengths.begin() + i + 1, 0.));
done = true;
}
}
if (! done) {
// In this case, the border is not a circle and may contain circular
// segments. Try to find them and then add all remaining edges as edges.
auto are_angles_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); };
auto are_lengths_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); };
// Given an idx into border, return the index that is idx+offset position,
// while taking into account the need for wrap-around and the fact that
// the first and last point are the same.
auto offset_to_index = [border_size = int(border.size())](int idx, int offset) -> int {
assert(std::abs(offset) < border_size);
int out = idx+offset;
if (out >= border_size)
out = out - border_size;
else if (out < 0)
out = border_size + out;
return out;
};
// First calculate angles at all the vertices.
angles.clear();
lengths.clear();
int first_different_angle_idx = 0;
for (int i=0; i<int(border.size()); ++i) {
const Vec3d& v2 = border[i] - (i == 0 ? border[border.size()-1] : border[i-1]);
const Vec3d& v1 = (i == int(border.size()-1) ? border[0] : border[i+1]) - border[i];
double angle = atan2(-normal.dot(v1.cross(v2)), -v1.dot(v2)) + M_PI;
if (angle > M_PI)
angle = 2*M_PI - angle;
angles.push_back(angle);
lengths.push_back(v2.norm());
if (first_different_angle_idx == 0 && angles.size() > 1) {
if (! are_angles_same(angles.back(), angles[angles.size()-2]))
first_different_angle_idx = angles.size()-1;
}
}
assert(border.size() == angles.size());
assert(border.size() == lengths.size());
// First go around the border and pick what might be circular segments.
// Save pair of indices to where such potential segments start and end.
// Also remember the length of these segments.
int start_idx = -1;
bool circle = false;
bool first_iter = true;
std::vector<SurfaceFeature> circles;
std::vector<SurfaceFeature> edges;
std::vector<std::pair<int, int>> circles_idxs;
//std::vector<double> circles_lengths;
std::vector<Vec3d> single_circle; // could be in loop-scope, but reallocations
double single_circle_length = 0.;
int first_pt_idx = offset_to_index(first_different_angle_idx, 1);
int i = first_pt_idx;
while (i != first_pt_idx || first_iter) {
if (are_angles_same(angles[i], angles[offset_to_index(i,-1)])
&& i != offset_to_index(first_pt_idx, -1) // not the last point
&& i != start_idx ) {
// circle
if (! circle) {
circle = true;
single_circle.clear();
single_circle_length = 0.;
start_idx = offset_to_index(i, -2);
single_circle = { border[start_idx], border[offset_to_index(start_idx,1)] };
single_circle_length += lengths[offset_to_index(i, -1)];
}
single_circle.emplace_back(border[i]);
single_circle_length += lengths[i];
} else {
if (circle && single_circle.size() >= 5) { // Less than 5 vertices? Not a circle.
single_circle.emplace_back(border[i]);
single_circle_length += lengths[i];
bool accept_circle = true;
{
// Check that lengths of internal (!!!) edges match.
int j = offset_to_index(start_idx, 3);
while (j != i) {
if (! are_lengths_same(lengths[offset_to_index(j,-1)], lengths[j])) {
accept_circle = false;
break;
}
j = offset_to_index(j, 1);
}
}
if (accept_circle) {
const auto& [center, radius] = get_center_and_radius(single_circle, trafo);
// Check that the fit went well. The tolerance is high, only to
// reject complete failures.
accept_circle &= circle_fit_is_ok(single_circle, center, radius);
// If the segment subtends less than 90 degrees, throw it away.
accept_circle &= single_circle_length / radius > 0.9*M_PI/2.;
if (accept_circle) {
// Add the circle and remember indices into borders.
circles_idxs.emplace_back(start_idx, i);
circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
}
}
}
circle = false;
}
// Take care of the wrap around.
first_iter = false;
i = offset_to_index(i, 1);
}
}
// At this point we might need to merge the first and last segment, if the starting
// point happened to be inside the segment. The discrimination of too small segments
// will follow, so we need a complete picture before that.
if (circles_idxs.size() > 1
&& circles_idxs.back().second == angles.size()-1
&& circles_idxs.front().first == 0) {
// Possibly the same circle. Check that the angle and length criterion holds along the combined segment.
bool same = true;
double last_len = -1.;
double last_angle = 0.;
for (int i=circles_idxs.back().first + 1; i != circles_idxs.front().second; ++i) {
if (i == angles.size())
i = 1;
if (last_len == -1.) {
last_len = lengths[i];
last_angle = angles[i];
} else {
if (! Slic3r::is_approx(lengths[i], last_len) || ! Slic3r::is_approx(angles[i], last_angle)) {
same = false;
break;
// We have the circles. Now go around again and pick edges, while jumping over circles.
if (circles_idxs.empty()) {
// Just add all edges.
for (int i=1; i<int(border.size()); ++i)
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[i-1], border[i]));
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[0], border[border.size()-1]));
} else if (circles_idxs.size() > 1 || circles_idxs.front().first != circles_idxs.front().second) {
// There is at least one circular segment. Start at its end and add edges until the start of the next one.
int i = circles_idxs.front().second;
int circle_idx = 1;
while (true) {
i = offset_to_index(i, 1);
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[offset_to_index(i,-1)], border[i]));
if (circle_idx < int(circles_idxs.size()) && i == circles_idxs[circle_idx].first) {
i = circles_idxs[circle_idx].second;
++circle_idx;
}
if (i == circles_idxs.front().first)
break;
}
}
if (same) {
// This seems to really be the same circle. Better apply ransac again. The parts can be small and inexact.
std::vector<Vec3d> points(border.begin() + circles_idxs.back().first, border.end());
points.insert(points.end(), border.begin(), border.begin() + circles_idxs.front().second+1);
auto [c, radius] = get_center_and_radius(points, 0, points.size()-1, trafo);
// Now replace the first circle with the combined one, remove the last circle.
// First index of the first circle is saved negative - we are going to pick edges
// from the border later, we will need to know where the merged in segment was.
// The sign simplifies the algorithm that picks the remaining edges - see below.
circles.front() = SurfaceFeature(SurfaceFeatureType::Circle, c, plane.normal, std::nullopt, radius);
circles_idxs.front().first = - circles_idxs.back().first;
circles_lengths.front() += circles_lengths.back();
circles.pop_back();
circles_idxs.pop_back();
circles_lengths.pop_back();
// Merge adjacent edges where needed.
assert(std::all_of(edges.begin(), edges.end(),
[](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; }));
for (int i=edges.size()-1; i>=0; --i) {
const auto& [first_start, first_end] = edges[i==0 ? edges.size()-1 : i-1].get_edge();
const auto& [second_start, second_end] = edges[i].get_edge();
if (Slic3r::is_approx(first_end, second_start)
&& Slic3r::is_approx((first_end-first_start).normalized().dot((second_end-second_start).normalized()), 1.)) {
// The edges have the same direction and share a point. Merge them.
edges[i==0 ? edges.size()-1 : i-1] = SurfaceFeature(SurfaceFeatureType::Edge, first_start, second_end);
edges.erase(edges.begin() + i);
}
}
}
// Now throw away all circles that subtend less than 90 deg.
assert(circles.size() == circles_lengths.size());
for (int i=0; i<int(circles.size()); ++i) {
double r = std::get<1>(circles[i].get_circle());
if (circles_lengths[i] / r < 0.9*M_PI/2.) {
circles_lengths.erase(circles_lengths.begin() + i);
circles.erase(circles.begin() + i);
circles_idxs.erase(circles_idxs.begin() + i);
--i;
}
// Now move the circles and edges into the feature list for the plane.
assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Circle;
}));
assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Edge;
}));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()),
std::make_move_iterator(circles.end()));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(edges.begin()),
std::make_move_iterator(edges.end()));
}
circles_lengths.clear(); // no longer needed, make it obvious
// Anything under 5 vertices shall not be considered a circle.
assert(circles_idxs.size() == circles.size());
for (int i=int(circles_idxs.size())-1; i>=0; --i) {
const auto& [start, end] = circles_idxs[i];
int N = start >= 0
? end - start + (start == 0 && end == border.size()-1 ? 0 : 1) // last point is the same as first
: end + (border.size() + start);
if (N < 5) {
circles.erase(circles.begin() + i);
circles_idxs.erase(circles_idxs.begin() + i);
} else if (N <= 8 && start == 0 && end == border.size()-1) {
// This is a regular 5-8 polygon. Add the edges as edges with a special
// point and remove the circle. Leave the indices in circles_idxs, so
// the edges are not picked up again later.
const Vec3d center = std::get<0>(circles[i].get_circle());
for (int j=1; j<=end; ++j)
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge,
border[j - 1], border[j], std::make_optional(center)));
circles.erase(circles.begin() + i);
}
}
// We have the circles. Now go around again and pick edges, while jumping over circles.
// If the first index of the first circle is negative, it means that it was merged
// with a segment that was originally at the back and is no longer there. Ressurect
// its pair of indices so that edges are not picked again.
if (! circles_idxs.empty() && circles_idxs.front().first < 0)
circles_idxs.emplace_back(-circles_idxs.front().first, int(border.size()));
int cidx = 0; // index of next circle to jump over
for (int i=1; i<int(border.size()); ++i) {
if (cidx < (int)circles_idxs.size() && i > (int)circles_idxs[cidx].first)
i = circles_idxs[cidx++].second;
else
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[i - 1], border[i]));
}
// Merge adjacent edges where needed.
assert(std::all_of(edges.begin(), edges.end(),
[](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; }));
for (int i=edges.size()-1; i>=0; --i) {
const auto& [first_start, first_end] = edges[i==0 ? edges.size()-1 : i-1].get_edge();
const auto& [second_start, second_end] = edges[i].get_edge();
if (Slic3r::is_approx(first_end, second_start)
&& Slic3r::is_approx((first_end-first_start).normalized().dot((second_end-second_start).normalized()), 1.)) {
// The edges have the same direction and share a point. Merge them.
edges[i==0 ? edges.size()-1 : i-1] = SurfaceFeature(SurfaceFeatureType::Edge, first_start, second_end);
edges.erase(edges.begin() + i);
}
}
// Now move the circles and edges into the feature list for the plane.
assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Circle;
}));
assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Edge;
}));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()),
std::make_move_iterator(circles.end()));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(edges.begin()),
std::make_move_iterator(edges.end()));
}
// The last surface feature is the plane itself.
@ -510,6 +568,10 @@ const std::vector<SurfaceFeature>& MeasuringImpl::get_plane_features(unsigned in
return m_planes[plane_id].surface_features;
}
const TriangleMesh& MeasuringImpl::get_mesh() const
{
return this->m_mesh;
}
@ -551,6 +613,11 @@ const std::vector<SurfaceFeature>& Measuring::get_plane_features(unsigned int pl
return priv->get_plane_features(plane_id);
}
const TriangleMesh& Measuring::get_mesh() const
{
return priv->get_mesh();
}
const AngleAndEdges AngleAndEdges::Dummy = { 0.0, Vec3d::Zero(), { Vec3d::Zero(), Vec3d::Zero() }, { Vec3d::Zero(), Vec3d::Zero() }, 0.0, true };
static AngleAndEdges angle_edge_edge(const std::pair<Vec3d, Vec3d>& e1, const std::pair<Vec3d, Vec3d>& e2)
@ -620,8 +687,8 @@ static AngleAndEdges angle_edge_edge(const std::pair<Vec3d, Vec3d>& e1, const st
static AngleAndEdges angle_edge_plane(const std::pair<Vec3d, Vec3d>& e, const std::tuple<int, Vec3d, Vec3d>& p)
{
const auto& [idx, normal, origin] = p;
const Vec3d e1e2_unit = edge_direction(e);
if (are_parallel(e1e2_unit, normal) || are_perpendicular(e1e2_unit, normal))
Vec3d e1e2_unit = edge_direction(e);
if (are_perpendicular(e1e2_unit, normal))
return AngleAndEdges::Dummy;
// ensure the edge is pointing away from the intersection
@ -633,8 +700,22 @@ static AngleAndEdges angle_edge_plane(const std::pair<Vec3d, Vec3d>& e, const st
// then verify edge direction and revert it, if needed
Vec3d e1 = e.first;
Vec3d e2 = e.second;
if ((e1 - inters).squaredNorm() > (e2 - inters).squaredNorm())
if ((e1 - inters).squaredNorm() > (e2 - inters).squaredNorm()) {
std::swap(e1, e2);
e1e2_unit = -e1e2_unit;
}
if (are_parallel(e1e2_unit, normal)) {
const std::array<Vec3d, 3> basis = orthonormal_basis(e1e2_unit);
const double radius = (0.5 * (e1 + e2) - inters).norm();
const Vec3d edge_on_plane_dir = (basis[1].dot(origin - inters) >= 0.0) ? basis[1] : -basis[1];
std::pair<Vec3d, Vec3d> edge_on_plane = std::make_pair(inters, inters + radius * edge_on_plane_dir);
if (!inters.isApprox(e1)) {
edge_on_plane.first += radius * edge_on_plane_dir;
edge_on_plane.second += radius * edge_on_plane_dir;
}
return AngleAndEdges(0.5 * double(PI), inters, std::make_pair(e1, e2), edge_on_plane, radius, inters.isApprox(e1));
}
const Vec3d e1e2 = e2 - e1;
const double e1e2_len = e1e2.norm();
@ -763,7 +844,8 @@ MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature&
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
} else if (f1.get_type() == SurfaceFeatureType::Edge) {
}
else if (f1.get_type() == SurfaceFeatureType::Edge) {
if (f2.get_type() == SurfaceFeatureType::Edge) {
std::vector<DistAndPoints> distances;
@ -890,21 +972,6 @@ MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature&
const Vec3d D = c1 - c0;
if (!are_parallel(n0, n1)) {
auto orthonormal_basis = [](const Vec3d& v) {
std::array<Vec3d, 3> ret;
ret[2] = v.normalized();
int index;
ret[2].maxCoeff(&index);
switch (index)
{
case 0: { ret[0] = Vec3d(ret[2].y(), -ret[2].x(), 0.0).normalized(); break; }
case 1: { ret[0] = Vec3d(0.0, ret[2].z(), -ret[2].y()).normalized(); break; }
case 2: { ret[0] = Vec3d(-ret[2].z(), 0.0, ret[2].x()).normalized(); break; }
}
ret[1] = ret[2].cross(ret[0]).normalized();
return ret;
};
// Get parameters for constructing the degree-8 polynomial phi.
const double one = 1.0;
const double two = 2.0;
@ -1149,27 +1216,6 @@ MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature&
return result;
}
void DistAndPoints::transform(const Transform3d& trafo) {
from = trafo * from;
to = trafo * to;
dist = (to - from).norm();
}
void AngleAndEdges::transform(const Transform3d& trafo) {
const Vec3d old_e1 = e1.second - e1.first;
const Vec3d old_e2 = e2.second - e2.first;
center = trafo * center;
e1.first = trafo * e1.first;
e1.second = trafo * e1.second;
e2.first = trafo * e2.first;
e2.second = trafo * e2.second;
angle = std::acos(std::clamp(Measure::edge_direction(e1).dot(Measure::edge_direction(e2)), -1.0, 1.0));
const Vec3d new_e1 = e1.second - e1.first;
const Vec3d new_e2 = e2.second - e2.first;
const double average_scale = 0.5 * (new_e1.norm() / old_e1.norm() + new_e2.norm() / old_e2.norm());
radius = average_scale * radius;
}

View file

@ -12,6 +12,9 @@ struct indexed_triangle_set;
namespace Slic3r {
class TriangleMesh;
namespace Measure {
@ -87,8 +90,7 @@ class MeasuringImpl;
class Measuring {
public:
// Construct the measurement object on a given its. The its must remain
// valid and unchanged during the whole lifetime of the object.
// Construct the measurement object on a given its.
explicit Measuring(const indexed_triangle_set& its);
~Measuring();
@ -108,6 +110,9 @@ public:
// Returns the surface features of the plane with the given index
const std::vector<SurfaceFeature>& get_plane_features(unsigned int plane_id) const;
// Returns the mesh used for measuring
const TriangleMesh& get_mesh() const;
private:
std::unique_ptr<MeasuringImpl> priv;
};
@ -118,8 +123,6 @@ struct DistAndPoints {
double dist;
Vec3d from;
Vec3d to;
void transform(const Transform3d& trafo);
};
struct AngleAndEdges {
@ -132,8 +135,6 @@ struct AngleAndEdges {
double radius;
bool coplanar;
void transform(const Transform3d& trafo);
static const AngleAndEdges Dummy;
};
@ -150,17 +151,6 @@ struct MeasurementResult {
bool has_any_data() const {
return angle.has_value() || distance_infinite.has_value() || distance_strict.has_value() || distance_xyz.has_value();
}
void transform(const Transform3d& trafo) {
if (angle.has_value())
angle->transform(trafo);
if (distance_infinite.has_value())
distance_infinite->transform(trafo);
if (distance_strict.has_value()) {
distance_strict->transform(trafo);
distance_xyz = (distance_strict->to - distance_strict->from).cwiseAbs();
}
}
};
// Returns distance/angle between two SurfaceFeatures.

View file

@ -4,6 +4,8 @@
#include <admesh/stl.h>
#include <libslic3r/TriangleMesh.hpp>
#include "boost/container/small_vector.hpp"
namespace Slic3r {
class TriangleMesh;
@ -115,11 +117,18 @@ public:
size_t degree(Vertex_index v) const
{
// In case the mesh is broken badly, the loop might end up to be infinite,
// never getting back to the first halfedge. Remember list of all half-edges
// and trip if any is encountered for the second time.
Halfedge_index h_first = halfedge(v);
boost::container::small_vector<Halfedge_index, 10> he_visited;
Halfedge_index h = next_around_target(h_first);
size_t degree = 2;
while (! h.is_invalid() && h != h_first) {
he_visited.emplace_back(h);
h = next_around_target(h);
if (std::find(he_visited.begin(), he_visited.end(), h) == he_visited.end())
return 0;
++degree;
}
return h.is_invalid() ? 0 : degree - 1;

View file

@ -37,12 +37,12 @@
//====================
// 2.5.0.alpha1 techs
// 2.6.0.alpha1 techs
//====================
#define ENABLE_2_5_0_ALPHA1 1
#define ENABLE_2_6_0_ALPHA1 1
// Enable removal of legacy OpenGL calls
#define ENABLE_LEGACY_OPENGL_REMOVAL (1 && ENABLE_2_5_0_ALPHA1)
#define ENABLE_LEGACY_OPENGL_REMOVAL (1 && ENABLE_2_6_0_ALPHA1)
// Enable OpenGL ES
#define ENABLE_OPENGL_ES (0 && ENABLE_LEGACY_OPENGL_REMOVAL)
// Enable OpenGL core profile context (tested against Mesa 20.1.8 on Windows)
@ -52,15 +52,15 @@
// Shows an imgui dialog with GLModel statistics data
#define ENABLE_GLMODEL_STATISTICS (0 && ENABLE_LEGACY_OPENGL_REMOVAL)
// Enable rework of Reload from disk command
#define ENABLE_RELOAD_FROM_DISK_REWORK (1 && ENABLE_2_5_0_ALPHA1)
#define ENABLE_RELOAD_FROM_DISK_REWORK (1 && ENABLE_2_6_0_ALPHA1)
// Enable editing volumes transformation in world coordinates and instances in local coordinates
#define ENABLE_WORLD_COORDINATE (1 && ENABLE_2_5_0_ALPHA1)
#define ENABLE_WORLD_COORDINATE (1 && ENABLE_2_6_0_ALPHA1)
// Enable alternative version of file_wildcards()
#define ENABLE_ALTERNATIVE_FILE_WILDCARDS_GENERATOR (1 && ENABLE_2_5_0_ALPHA1)
#define ENABLE_ALTERNATIVE_FILE_WILDCARDS_GENERATOR (1 && ENABLE_2_6_0_ALPHA1)
// Enable processing of gcode G2 and G3 lines
#define ENABLE_PROCESS_G2_G3_LINES (1 && ENABLE_2_5_0_ALPHA1)
#define ENABLE_PROCESS_G2_G3_LINES (1 && ENABLE_2_6_0_ALPHA1)
// Enable fix of used filament data exported to gcode file
#define ENABLE_USED_FILAMENT_POST_PROCESS (1 && ENABLE_2_5_0_ALPHA1)
#define ENABLE_USED_FILAMENT_POST_PROCESS (1 && ENABLE_2_6_0_ALPHA1)
// Enable picking using raytracing
#define ENABLE_RAYCAST_PICKING (1 && ENABLE_LEGACY_OPENGL_REMOVAL)
#define ENABLE_RAYCAST_PICKING_DEBUG (0 && ENABLE_RAYCAST_PICKING)