diff --git a/src/libslic3r/TreeSupport.cpp b/src/libslic3r/TreeSupport.cpp index c408b2f85..b440818a8 100644 --- a/src/libslic3r/TreeSupport.cpp +++ b/src/libslic3r/TreeSupport.cpp @@ -19,6 +19,9 @@ #include "Polyline.hpp" #include "MutablePolygon.hpp" #include "SupportMaterial.hpp" +#include "TriangleMeshSlicer.hpp" +#include "OpenVDBUtils.hpp" +#include #include #include @@ -26,6 +29,7 @@ #include #include #include +#include #ifdef _WIN32 #include //todo Remove! ONLY FOR PUBLIC BETA!! #endif // _WIN32 @@ -97,6 +101,20 @@ static inline void validate_range(const LineInformations &lines) validate_range(l); } +static inline void check_self_intersections(const Polygons &polygons, const std::string_view message) +{ +#ifdef _WIN32 + if (!intersecting_edges(polygons).empty()) + ::MessageBoxA(nullptr, (std::string("TreeSupport infill self intersections: ") + std::string(message)).c_str(), "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING); +#endif // _WIN32 +} +static inline void check_self_intersections(const ExPolygon &expoly, const std::string_view message) +{ +#ifdef _WIN32 + check_self_intersections(to_polygons(expoly), message); +#endif // _WIN32 +} + static inline void clip_for_diff(const Polygon &src, const BoundingBox &bbox, Polygon &out) { out.clear(); @@ -323,6 +341,7 @@ void tree_supports_show_error(std::string message, bool critical) lower_layer.lslices); overhangs = overhangs.empty() ? std::move(enforced_overhangs) : union_(overhangs, enforced_overhangs); } + check_self_intersections(overhangs, "generate_overhangs"); out[layer_id] = std::move(overhangs); } }); @@ -675,7 +694,10 @@ static std::optional> polyline_sample_next_point_at_dis return lines; #else #ifdef _WIN32 - if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon))) + // Max dimensions for MK3 +// if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon))) + // Max dimensions for XL + if (! BoundingBox(Point::new_scale(-250., -250.), Point::new_scale(250., 250.)).contains(get_extents(polygon))) ::MessageBoxA(nullptr, "TreeSupport infill kravsky", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING); #endif // _WIN32 @@ -702,10 +724,7 @@ static std::optional> polyline_sample_next_point_at_dis ::MessageBoxA(nullptr, "TreeSupport infill negative area", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING); #endif // _WIN32 assert(intersecting_edges(to_polygons(expoly)).empty()); -#ifdef _WIN32 - if (! intersecting_edges(to_polygons(expoly)).empty()) - ::MessageBoxA(nullptr, "TreeSupport infill self intersections", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING); -#endif // _WIN32 + check_self_intersections(expoly, "generate_support_infill_lines"); Surface surface(stInternal, std::move(expoly)); try { Polylines pl = filler->fill_surface(&surface, fill_params); @@ -831,6 +850,11 @@ static std::optional> polyline_sample_next_point_at_dis return union_(ret); } +static double layer_z(const SlicingParameters &slicing_params, const size_t layer_idx) +{ + return slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height; +} + static inline SupportGeneratorLayer& layer_initialize( SupportGeneratorLayer &layer_new, const SupporLayerType layer_type, @@ -838,7 +862,7 @@ static inline SupportGeneratorLayer& layer_initialize( const size_t layer_idx) { layer_new.layer_type = layer_type; - layer_new.print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height; + layer_new.print_z = layer_z(slicing_params, layer_idx); layer_new.height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height; layer_new.bottom_z = layer_idx == 0 ? slicing_params.object_print_z_min : layer_new.print_z - layer_new.height; return layer_new; @@ -1082,6 +1106,8 @@ static void generate_initial_areas( overhang_regular = mesh_group_settings.support_offset == 0 ? overhang_raw : safe_offset_inc(overhang_raw, mesh_group_settings.support_offset, relevant_forbidden, mesh_config.min_radius * 1.75 + mesh_config.xy_min_distance, 0, 1); + check_self_intersections(overhang_regular, "overhang_regular1"); + // offset ensures that areas that could be supported by a part of a support line, are not considered unsupported overhang Polygons remaining_overhang = intersection( diff(mesh_group_settings.support_offset == 0 ? @@ -1108,6 +1134,7 @@ static void generate_initial_areas( remaining_overhang = diff(remaining_overhang, safe_offset_inc(overhang_regular, 1.5 * extra_total_offset_acc, raw_collision, offset_step, 0, 1)); // Extending the overhangs by the inflated remaining overhangs. overhang_regular = union_(overhang_regular, diff(safe_offset_inc(remaining_overhang, extra_total_offset_acc, raw_collision, offset_step, 0, 1), relevant_forbidden)); + check_self_intersections(overhang_regular, "overhang_regular2"); } // If the xy distance overrides the z distance, some support needs to be inserted further down. //=> Analyze which support points do not fit on this layer and check if they will fit a few layers down (while adding them an infinite amount of layers down would technically be closer the the setting description, it would not produce reasonable results. ) @@ -1159,6 +1186,7 @@ static void generate_initial_areas( if (mesh_group_settings.minimum_support_area > 0) remove_small(overhang_roofs, mesh_group_settings.minimum_roof_area); overhang_regular = diff(overhang_regular, overhang_roofs, ApplySafetyOffset::Yes); + check_self_intersections(overhang_regular, "overhang_regular3"); for (ExPolygon &roof_part : union_ex(overhang_roofs)) overhang_processing.emplace_back(std::move(roof_part), true); } @@ -3044,6 +3072,475 @@ static void draw_areas( "finalize_interface_and_support_areas " << dur_finalize << " ms"; } +#if 1 +// Test whether two circles, each on its own plane in 3D intersect. +// Circles are considered intersecting, if the lowest point on one circle is below the other circle's plane. +// Assumption: The two planes are oriented the same way. +static bool circles_intersect( + const Vec3d &p1, const Vec3d &n1, const double r1, + const Vec3d &p2, const Vec3d &n2, const double r2) +{ + assert(n1.dot(n2) >= 0); + + const Vec3d z = n1.cross(n2); + const Vec3d dir1 = z.cross(n1); + const Vec3d lowest_point1 = p1 + dir1 * (r1 / dir1.norm()); + assert(n2.dot(p1) >= n2.dot(lowest_point1)); + if (n2.dot(lowest_point1) <= 0) + return true; + const Vec3d dir2 = z.cross(n2); + const Vec3d lowest_point2 = p2 + dir2 * (r2 / dir2.norm()); + assert(n1.dot(p2) >= n1.dot(lowest_point2)); + return n1.dot(lowest_point2) <= 0; +} + +template +void triangulate_fan(indexed_triangle_set &its, int ifan, int ibegin, int iend) +{ + // at least 3 vertices, increasing order. + assert(ibegin + 3 <= iend); + assert(ibegin >= 0 && iend <= its.vertices.size()); + assert(ifan >= 0 && ifan < its.vertices.size()); + int num_faces = iend - ibegin; + its.indices.reserve(its.indices.size() + num_faces * 3); + for (int v = ibegin, u = iend - 1; v < iend; u = v ++) { + if (flip_normals) + its.indices.push_back({ ifan, u, v }); + else + its.indices.push_back({ ifan, v, u }); + } +} + +static void triangulate_strip(indexed_triangle_set &its, int ibegin1, int iend1, int ibegin2, int iend2) +{ + // at least 3 vertices, increasing order. + assert(ibegin1 + 3 <= iend1); + assert(ibegin1 >= 0 && iend1 <= its.vertices.size()); + assert(ibegin2 + 3 <= iend2); + assert(ibegin2 >= 0 && iend2 <= its.vertices.size()); + int n1 = iend1 - ibegin1; + int n2 = iend2 - ibegin2; + its.indices.reserve(its.indices.size() + (n1 + n2) * 3); + + // For the first vertex of 1st strip, find the closest vertex on the 2nd strip. + int istart2 = ibegin2; + { + const Vec3f &p1 = its.vertices[ibegin1]; + auto d2min = std::numeric_limits::max(); + for (int i = ibegin2; i < iend2; ++ i) { + const Vec3f &p2 = its.vertices[i]; + const float d2 = (p2 - p1).squaredNorm(); + if (d2 < d2min) { + d2min = d2; + istart2 = i; + } + } + } + + // Now triangulate the strip zig-zag fashion taking always the shortest connection if possible. + for (int u = ibegin1, v = istart2; n1 > 0 || n2 > 0;) { + bool take_first; + int u2, v2; + auto update_u2 = [&u2, u, ibegin1, iend1]() { + u2 = u; + if (++ u2 == iend1) + u2 = ibegin1; + }; + auto update_v2 = [&v2, v, ibegin2, iend2]() { + v2 = v; + if (++ v2 == iend2) + v2 = ibegin2; + }; + if (n1 == 0) { + take_first = false; + update_v2(); + } else if (n2 == 0) { + take_first = true; + update_u2(); + } else { + update_u2(); + update_v2(); + float l1 = (its.vertices[u2] - its.vertices[v]).squaredNorm(); + float l2 = (its.vertices[v2] - its.vertices[u]).squaredNorm(); + take_first = l1 < l2; + } + if (take_first) { + its.indices.push_back({ u, u2, v }); + -- n1; + u = u2; + } else { + its.indices.push_back({ u, v2, v }); + -- n2; + v = v2; + } + } +} + +// Discretize 3D circle, append to output vector, return ranges of indices of the points added. +static std::pair discretize_circle(const Vec3f ¢er, const Vec3f &normal, const float radius, const float eps, std::vector &pts) +{ + // Calculate discretization step and number of steps. + float angle_step = 2. * acos(1. - eps / radius); + auto nsteps = int(ceil(2 * M_PI / angle_step)); + angle_step = 2 * M_PI / nsteps; + + // Prepare coordinate system for the circle plane. + Vec3f x = normal.cross(Vec3f(0.f, -1.f, 0.f)).normalized(); + Vec3f y = normal.cross(x).normalized(); + assert(std::abs(x.cross(y).dot(normal) - 1.f) < EPSILON); + + // Discretize the circle. + int begin = int(pts.size()); + pts.reserve(pts.size() + nsteps); + float angle = 0; + x *= radius; + y *= radius; + for (int i = 0; i < nsteps; ++ i) { + pts.emplace_back(center + x * cos(angle) + y * sin(angle)); + angle += angle_step; + } + return { begin, int(pts.size()) }; +} + +static void extrude_branch( + const std::vector &path, + const TreeSupportSettings &config, + const SlicingParameters &slicing_params, + const std::vector &move_bounds, + indexed_triangle_set &result) +{ + Vec3d p1, p2, p3; + Vec3d v1, v2; + Vec3d nprev; + Vec3d ncurrent; + assert(path.size() >= 2); + static constexpr const float eps = 0.015f; + std::pair prev_strip; + +// char fname[2048]; +// static int irun = 0; + + for (size_t ipath = 1; ipath < path.size(); ++ ipath) { + const SupportElement &prev = *path[ipath - 1]; + const SupportElement ¤t = *path[ipath]; + assert(prev.state.layer_idx + 1 == current.state.layer_idx); + p1 = to_3d(unscaled(prev .state.result_on_layer), layer_z(slicing_params, prev .state.layer_idx)); + p2 = to_3d(unscaled(current.state.result_on_layer), layer_z(slicing_params, current.state.layer_idx)); + v1 = (p2 - p1).normalized(); + if (ipath == 1) { + nprev = v1; + // Extrude the bottom half sphere. + float radius = unscaled(config.getRadius(prev.state)); + float angle_step = 2. * acos(1. - eps / radius); + auto nsteps = int(ceil(M_PI / (2. * angle_step))); + angle_step = M_PI / (2. * nsteps); + int ifan = int(result.vertices.size()); + result.vertices.emplace_back((p1 - nprev * radius).cast()); + float angle = angle_step; + for (int i = 1; i < nsteps; ++ i, angle += angle_step) { + std::pair strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast(), nprev.cast(), radius * sin(angle), eps, result.vertices); + if (i == 1) + triangulate_fan(result, ifan, strip.first, strip.second); + else + triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second); +// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun); +// its_write_obj(result, fname); + prev_strip = strip; + } + } + if (ipath + 1 == path.size()) { + // End of the tube. + ncurrent = v1; + // Extrude the top half sphere. + float radius = unscaled(config.getRadius(current.state)); + float angle_step = 2. * acos(1. - eps / radius); + auto nsteps = int(ceil(M_PI / (2. * angle_step))); + angle_step = M_PI / (2. * nsteps); + float angle = M_PI / 2.; + for (int i = 0; i < nsteps; ++ i, angle -= angle_step) { + std::pair strip = discretize_circle((p2 + ncurrent * radius * cos(angle)).cast(), ncurrent.cast(), radius * sin(angle), eps, result.vertices); + triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second); +// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun); +// its_write_obj(result, fname); + prev_strip = strip; + } + int ifan = int(result.vertices.size()); + result.vertices.emplace_back((p2 + ncurrent * radius).cast()); + triangulate_fan(result, ifan, prev_strip.first, prev_strip.second); +// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun); +// its_write_obj(result, fname); + } else { + const SupportElement &next = *path[ipath + 1]; + assert(current.state.layer_idx + 1 == next.state.layer_idx); + p3 = to_3d(unscaled(next.state.result_on_layer), layer_z(slicing_params, next.state.layer_idx)); + v2 = (p3 - p2).normalized(); + ncurrent = (v1 + v2).normalized(); + float radius = unscaled(config.getRadius(current.state)); + std::pair strip = discretize_circle(p2.cast(), ncurrent.cast(), radius, eps, result.vertices); + triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second); + prev_strip = strip; +// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++irun); +// its_write_obj(result, fname); + } +#if 0 + if (circles_intersect(p1, nprev, settings.getRadius(prev), p2, ncurrent, settings.getRadius(current))) { + // Cannot connect previous and current slice using a simple zig-zag triangulation, + // because the two circles intersect. + + } else { + // Continue with chaining. + + } +#endif + } +} +#endif + +static void draw_branches( + PrintObject &print_object, + const TreeModelVolumes &volumes, + const TreeSupportSettings &config, + const std::vector &overhangs, + std::vector &move_bounds, + + SupportGeneratorLayersPtr &bottom_contacts, + SupportGeneratorLayersPtr &top_contacts, + SupportGeneratorLayersPtr &intermediate_layers, + SupportGeneratorLayerStorage &layer_storage) +{ + static int irun = 0; + + const SlicingParameters& slicing_params = print_object.slicing_parameters(); + + // All SupportElements are put into a layer independent storage to improve parallelization. + std::vector> elements_with_link_down; + std::vector linear_data_layers; + { + std::vector> map_downwards_old; + std::vector> map_downwards_new; + linear_data_layers.emplace_back(0); + for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) { + SupportElements *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr; + map_downwards_new.clear(); + std::sort(map_downwards_old.begin(), map_downwards_old.end(), [](auto& l, auto& r) { return l.first < r.first; }); + SupportElements &layer = move_bounds[layer_idx]; + for (size_t elem_idx = 0; elem_idx < layer.size(); ++ elem_idx) { + SupportElement &elem = layer[elem_idx]; + int child = -1; + if (layer_idx > 0) { + auto it = std::lower_bound(map_downwards_old.begin(), map_downwards_old.end(), &elem, [](auto& l, const SupportElement* r) { return l.first < r; }); + if (it != map_downwards_old.end() && it->first == &elem) { + child = it->second; + // Only one link points to a node above from below. + assert(!(++it != map_downwards_old.end() && it->first == &elem)); + } + const SupportElement *pchild = child == -1 ? nullptr : &move_bounds[layer_idx - 1][child]; + if ((! pchild && elem.state.target_height == layer_idx) || (pchild && ! pchild->state.result_on_layer_is_set())) + // We either come from nowhere at the final layer or we had invalid parents 2. should never happen but just to be sure + continue; + } + for (int32_t parent_idx : elem.parents) { + SupportElement &parent = (*layer_above)[parent_idx]; + if (parent.state.result_on_layer_is_set()) + map_downwards_new.emplace_back(&parent, elem_idx); + } + + elements_with_link_down.push_back({ &elem, int(child) }); + } + std::swap(map_downwards_old, map_downwards_new); + linear_data_layers.emplace_back(elements_with_link_down.size()); + } + } + + std::unique_ptr> closest_surface_point; + { + TriangleMesh mesh = print_object.model_object()->raw_mesh(); + mesh.transform(print_object.trafo_centered()); + double scale = 10.; + openvdb::FloatGrid::Ptr grid = mesh_to_grid(mesh.its, {}, scale, 0., 0.); + closest_surface_point = openvdb::tools::ClosestSurfacePoint::create(*grid); + std::vector pts, prev, projections; + std::vector distances; + for (const std::pair &element : elements_with_link_down) { + Vec3d pt = to_3d(unscaled(element.first->state.result_on_layer), layer_z(slicing_params, element.first->state.layer_idx)) * scale; + pts.push_back({ pt.x(), pt.y(), pt.z() }); + } + + const double collision_extra_gap = 1. * scale; + const double max_nudge_collision_avoidance = 2. * scale; + const double max_nudge_smoothing = 1. * scale; + + for (size_t iter = 0; iter < 1000; ++ iter) { + prev = pts; + projections = pts; + distances.assign(pts.size(), std::numeric_limits::max()); + closest_surface_point->searchAndReplace(projections, distances); + size_t num_moved = 0; + for (size_t i = 0; i < projections.size(); ++ i) { + const SupportElement &element = *elements_with_link_down[i].first; + const int below = elements_with_link_down[i].second; + if (pts[i] != projections[i]) { + // Nudge the circle center away from the collision. + Vec3d v{ projections[i].x() - pts[i].x(), projections[i].y() - pts[i].y(), projections[i].z() - pts[i].z() }; + double depth = v.norm(); + assert(std::abs(distances[i] - depth) < EPSILON); + double radius = unscaled(config.getRadius(element.state)) * scale; + if (depth < radius) { + // Collision detected to be removed. + ++ num_moved; + double dxy = sqrt(sqr(radius) - sqr(v.z())); + double nudge_dist_max = dxy - std::hypot(v.x(), v.y()) + //FIXME 1mm gap + + collision_extra_gap; + // Shift by maximum 2mm. + double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_collision_avoidance); + Vec2d nudge_v = to_2d(v).normalized() * (- nudge_dist); + pts[i].x() += nudge_v.x(); + pts[i].y() += nudge_v.y(); + } + } + // Laplacian smoothing + if (! element.parents.empty() && (below != -1 || element.state.layer_idx == 0)) { + Vec2d avg{ 0, 0 }; + const SupportElements &above = move_bounds[element.state.layer_idx + 1]; + const size_t offset_above = linear_data_layers[element.state.layer_idx + 1]; + for (auto iparent : element.parents) { + avg.x() += prev[offset_above + iparent].x(); + avg.y() += prev[offset_above + iparent].y(); + } + size_t cnt = element.parents.size(); + if (below != -1) { + const size_t offset_below = linear_data_layers[element.state.layer_idx - 1]; + avg.x() += prev[offset_below + below].x(); + avg.y() += prev[offset_below + below].y(); + ++ cnt; + } + avg /= double(cnt); + static constexpr const double smoothing_factor = 0.5; + Vec2d old_pos{ pts[i].x(), pts[i].y() }; + Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg; + Vec2d shift = new_pos - old_pos; + double nudge_dist_max = shift.norm(); + // Shift by maximum 1mm, less than the collision avoidance factor. + double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing); + Vec2d nudge_v = shift.normalized() * nudge_dist; + pts[i].x() += nudge_v.x(); + pts[i].y() += nudge_v.y(); + } + } + printf("iteration: %d, moved: %d\n", int(iter), int(num_moved)); + if (num_moved == 0) + break; + } + +#if 1 + for (size_t i = 0; i < projections.size(); ++ i) { + elements_with_link_down[i].first->state.result_on_layer.x() = scaled(pts[i].x()) / scale; + elements_with_link_down[i].first->state.result_on_layer.y() = scaled(pts[i].y()) / scale; + } +#endif + } + + std::vector support_layer_storage(move_bounds.size()); + std::vector support_roof_storage(move_bounds.size()); + + // Unmark all nodes. + for (SupportElements &elements : move_bounds) + for (SupportElement &element : elements) + element.state.marked = false; + + // Traverse all nodes, generate tubes. + // Traversal stack with nodes and thier current parent + std::vector path; + indexed_triangle_set cummulative_mesh; + indexed_triangle_set partial_mesh; + indexed_triangle_set temp_mesh; + for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) { + SupportElements &layer = move_bounds[layer_idx]; + SupportElements &layer_above = move_bounds[layer_idx + 1]; + + for (SupportElement &start_element : layer) + if (! start_element.state.marked && ! start_element.parents.empty()) { + // Collect elements up to a bifurcation above. + start_element.state.marked = true; + for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) { + path.clear(); + path.emplace_back(&start_element); + // Traverse each branch until it branches again. + SupportElement &first_parent = layer_above[start_element.parents[parent_idx]]; + assert(path.back()->state.layer_idx + 1 == first_parent.state.layer_idx); + path.emplace_back(&first_parent); + if (first_parent.parents.size() < 2) + first_parent.state.marked = true; + if (first_parent.parents.size() == 1) { + for (SupportElement *parent = &first_parent;;) { + SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()]; + assert(path.back()->state.layer_idx + 1 == next_parent.state.layer_idx); + path.emplace_back(&next_parent); + if (next_parent.parents.size() > 1) + break; + next_parent.state.marked = true; + if (next_parent.parents.size() == 0) + break; + parent = &next_parent; + } + } + // Triangulate the tube. + partial_mesh.clear(); + extrude_branch(path, config, slicing_params, move_bounds, partial_mesh); +#if 0 + char fname[2048]; + sprintf(fname, "d:\\temp\\meshes\\tree-raw-%d.obj", ++ irun); + its_write_obj(partial_mesh, fname); +#if 0 + temp_mesh.clear(); + cut_mesh(partial_mesh, layer_z(slicing_params, path.back()->state.layer_idx) + EPSILON, nullptr, &temp_mesh, false); + sprintf(fname, "d:\\temp\\meshes\\tree-trimmed1-%d.obj", irun); + its_write_obj(temp_mesh, fname); + partial_mesh.clear(); + cut_mesh(temp_mesh, layer_z(slicing_params, path.front()->state.layer_idx) - EPSILON, &partial_mesh, nullptr, false); + sprintf(fname, "d:\\temp\\meshes\\tree-trimmed2-%d.obj", irun); +#endif + its_write_obj(partial_mesh, fname); +#endif + its_merge(cummulative_mesh, partial_mesh); + } + } + } + + std::vector slice_z; + for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++ layer_idx) { + double print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height; + double layer_height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height; + slice_z.emplace_back(float(print_z - layer_height * 0.5)); + } + // Remove the trailing slices. + while (! slice_z.empty()) + if (move_bounds[slice_z.size() - 1].empty()) + slice_z.pop_back(); + else + break; + +#if 0 + its_write_obj(cummulative_mesh, "d:\\temp\\meshes\\tree.obj"); +#endif + + MeshSlicingParamsEx params; + params.closing_radius = float(print_object.config().slice_closing_radius.value); + params.mode = MeshSlicingParams::SlicingMode::Positive; + std::vector slices = slice_mesh_ex(cummulative_mesh, slice_z, params); + for (size_t layer_idx = 0; layer_idx < slice_z.size(); ++ layer_idx) + if (! slices[layer_idx].empty()) { + SupportGeneratorLayer *&l = intermediate_layers[layer_idx]; + if (l == nullptr) + l = &layer_allocate(layer_storage, SupporLayerType::Base, slicing_params, layer_idx); + append(l->polygons, to_polygons(std::move(slices[layer_idx]))); + } + + finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage, + bottom_contacts, top_contacts, intermediate_layers, layer_storage); +} + /*! * \brief Create the areas that need support. * @@ -3147,8 +3644,13 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume auto t_place = std::chrono::high_resolution_clock::now(); // ### draw these points as circles +#if 0 draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds, bottom_contacts, top_contacts, intermediate_layers, layer_storage); +#else + draw_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds, + bottom_contacts, top_contacts, intermediate_layers, layer_storage); +#endif auto t_draw = std::chrono::high_resolution_clock::now(); auto dur_pre_gen = 0.001 * std::chrono::duration_cast(t_precalc - t_start).count();