New functions for variable offsets of polygons / expolygons.

Test cases for the above.
Improvements of older test cases.
This commit is contained in:
bubnikv 2019-10-25 13:34:37 +02:00
parent 18bbefcd61
commit 5e8572a196
8 changed files with 565 additions and 27 deletions

View File

@ -107,8 +107,7 @@ void AddOuterPolyNodeToExPolygons(ClipperLib::PolyNode& polynode, ExPolygons* ex
} }
} }
ExPolygons ExPolygons PolyTreeToExPolygons(ClipperLib::PolyTree& polytree)
PolyTreeToExPolygons(ClipperLib::PolyTree& polytree)
{ {
ExPolygons retval; ExPolygons retval;
for (int i = 0; i < polytree.ChildCount(); ++i) for (int i = 0; i < polytree.ChildCount(); ++i)
@ -151,8 +150,7 @@ Slic3r::Polylines ClipperPaths_to_Slic3rPolylines(const ClipperLib::Paths &input
return retval; return retval;
} }
ExPolygons ExPolygons ClipperPaths_to_Slic3rExPolygons(const ClipperLib::Paths &input)
ClipperPaths_to_Slic3rExPolygons(const ClipperLib::Paths &input)
{ {
// init Clipper // init Clipper
ClipperLib::Clipper clipper; ClipperLib::Clipper clipper;
@ -167,8 +165,7 @@ ClipperPaths_to_Slic3rExPolygons(const ClipperLib::Paths &input)
return PolyTreeToExPolygons(polytree); return PolyTreeToExPolygons(polytree);
} }
ClipperLib::Path ClipperLib::Path Slic3rMultiPoint_to_ClipperPath(const MultiPoint &input)
Slic3rMultiPoint_to_ClipperPath(const MultiPoint &input)
{ {
ClipperLib::Path retval; ClipperLib::Path retval;
for (Points::const_iterator pit = input.points.begin(); pit != input.points.end(); ++pit) for (Points::const_iterator pit = input.points.begin(); pit != input.points.end(); ++pit)
@ -176,8 +173,7 @@ Slic3rMultiPoint_to_ClipperPath(const MultiPoint &input)
return retval; return retval;
} }
ClipperLib::Path ClipperLib::Path Slic3rMultiPoint_to_ClipperPath_reversed(const Slic3r::MultiPoint &input)
Slic3rMultiPoint_to_ClipperPath_reversed(const Slic3r::MultiPoint &input)
{ {
ClipperLib::Path output; ClipperLib::Path output;
output.reserve(input.points.size()); output.reserve(input.points.size());
@ -521,7 +517,7 @@ T _clipper_do(const ClipperLib::ClipType clipType,
// Fix of #117: A large fractal pyramid takes ages to slice // Fix of #117: A large fractal pyramid takes ages to slice
// The Clipper library has difficulties processing overlapping polygons. // The Clipper library has difficulties processing overlapping polygons.
// Namely, the function Clipper::JoinCommonEdges() has potentially a terrible time complexity if the output // Namely, the function ClipperLib::JoinCommonEdges() has potentially a terrible time complexity if the output
// of the operation is of the PolyTree type. // of the operation is of the PolyTree type.
// This function implmenets a following workaround: // This function implmenets a following workaround:
// 1) Peform the Clipper operation with the output to Paths. This method handles overlaps in a reasonable time. // 1) Peform the Clipper operation with the output to Paths. This method handles overlaps in a reasonable time.
@ -918,4 +914,304 @@ Polygons top_level_islands(const Slic3r::Polygons &polygons)
return out; return out;
} }
// Outer offset shall not split the input contour into multiples. It is expected, that the solution will be non empty and it will contain just a single polygon.
ClipperLib::Paths fix_after_outer_offset(const ClipperLib::Path &input, ClipperLib::PolyFillType filltype, bool reverse_result)
{
ClipperLib::Paths solution;
if (! input.empty()) {
ClipperLib::Clipper clipper;
clipper.AddPath(input, ClipperLib::ptSubject, true);
clipper.ReverseSolution(reverse_result);
clipper.Execute(ClipperLib::ctUnion, solution, filltype, filltype);
}
return solution;
}
// Inner offset may split the source contour into multiple contours, but one shall not be inside the other.
ClipperLib::Paths fix_after_inner_offset(const ClipperLib::Path &input, ClipperLib::PolyFillType filltype, bool reverse_result)
{
ClipperLib::Paths solution;
if (! input.empty()) {
ClipperLib::Clipper clipper;
clipper.AddPath(input, ClipperLib::ptSubject, true);
ClipperLib::IntRect r = clipper.GetBounds();
r.left -= 10; r.top -= 10; r.right += 10; r.bottom += 10;
if (filltype == ClipperLib::pftPositive)
clipper.AddPath({ ClipperLib::IntPoint(r.left, r.bottom), ClipperLib::IntPoint(r.left, r.top), ClipperLib::IntPoint(r.right, r.top), ClipperLib::IntPoint(r.right, r.bottom) }, ClipperLib::ptSubject, true);
else
clipper.AddPath({ ClipperLib::IntPoint(r.left, r.bottom), ClipperLib::IntPoint(r.right, r.bottom), ClipperLib::IntPoint(r.right, r.top), ClipperLib::IntPoint(r.left, r.top) }, ClipperLib::ptSubject, true);
clipper.ReverseSolution(reverse_result);
clipper.Execute(ClipperLib::ctUnion, solution, filltype, filltype);
if (! solution.empty())
solution.erase(solution.begin());
}
return solution;
}
ClipperLib::Path mittered_offset_path_scaled(const Points &contour, const std::vector<float> &deltas, double miter_limit)
{
assert(contour.size() == deltas.size());
#ifndef NDEBUG
// Verify that the deltas are either all positive, or all negative.
bool positive = false;
bool negative = false;
for (float delta : deltas)
if (delta < 0.f)
negative = true;
else if (delta > 0.f)
positive = true;
assert(! (negative && positive));
#endif /* NDEBUG */
ClipperLib::Path out;
if (deltas.size() > 2)
{
out.reserve(contour.size() * 2);
// Clamp miter limit to 2.
miter_limit = (miter_limit > 2.) ? 2. / (miter_limit * miter_limit) : 0.5;
// perpenduclar vector
auto perp = [](const Vec2d &v) -> Vec2d { return Vec2d(v.y(), - v.x()); };
// Add a new point to the output, scale by CLIPPER_OFFSET_SCALE and round to ClipperLib::cInt.
auto add_offset_point = [&out](Vec2d pt) {
pt *= double(CLIPPER_OFFSET_SCALE);
pt += Vec2d(0.5 - (pt.x() < 0), 0.5 - (pt.y() < 0));
out.emplace_back(ClipperLib::cInt(pt.x()), ClipperLib::cInt(pt.y()));
};
// Minimum edge length, squared.
double lmin = *std::max_element(deltas.begin(), deltas.end()) * CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR;
double l2min = lmin * lmin;
// Minimum angle to consider two edges to be parallel.
double sin_min_parallel = EPSILON + 1. / double(CLIPPER_OFFSET_SCALE);
// Find the last point further from pt by l2min.
Vec2d pt = contour.front().cast<double>();
size_t iprev = contour.size() - 1;
Vec2d ptprev;
for (; iprev > 0; -- iprev) {
ptprev = contour[iprev].cast<double>();
if ((ptprev - pt).squaredNorm() > l2min)
break;
}
if (iprev != 0) {
size_t ilast = iprev;
// Normal to the (pt - ptprev) segment.
Vec2d nprev = perp(pt - ptprev).normalized();
for (size_t i = 0; ; ) {
// Find the next point further from pt by l2min.
size_t j = i + 1;
Vec2d ptnext;
for (; j <= ilast; ++ j) {
ptnext = contour[j].cast<double>();
double l2 = (ptnext - pt).squaredNorm();
if (l2 > l2min)
break;
}
if (j > ilast)
ptnext = contour.front().cast<double>();
// Normal to the (ptnext - pt) segment.
Vec2d nnext = perp(ptnext - pt).normalized();
double delta = deltas[i];
double sin_a = clamp(-1., 1., cross2(nprev, nnext));
double convex = sin_a * delta;
if (convex <= - sin_min_parallel) {
// Concave corner.
add_offset_point(pt + nprev * delta);
add_offset_point(pt);
add_offset_point(pt + nnext * delta);
} else if (convex < sin_min_parallel) {
// Nearly parallel.
add_offset_point((nprev.dot(nnext) > 0.) ? (pt + nprev * delta) : pt);
} else {
// Convex corner
double dot = nprev.dot(nnext);
double r = 1. + dot;
if (r >= miter_limit)
add_offset_point(pt + (nprev + nnext) * (delta / r));
else {
double dx = std::tan(std::atan2(sin_a, dot) / 4.);
Vec2d newpt1 = pt + (nprev - perp(nprev) * dx) * delta;
Vec2d newpt2 = pt + (nnext + perp(nnext) * dx) * delta;
#ifndef NDEBUG
Vec2d vedge = 0.5 * (newpt1 + newpt2) - pt;
double dist_norm = vedge.norm();
assert(std::abs(dist_norm - delta) < EPSILON);
#endif /* NDEBUG */
add_offset_point(newpt1);
add_offset_point(newpt2);
}
}
if (i == ilast)
break;
ptprev = pt;
nprev = nnext;
pt = ptnext;
i = j;
}
}
}
return out;
}
Polygons variable_offset_inner(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit)
{
#ifndef NDEBUG
// Verify that the deltas are all non positive.
for (const std::vector<float> &ds : deltas)
for (float delta : ds)
assert(delta <= 0.);
assert(expoly.holes.size() + 1 == deltas.size());
#endif /* NDEBUG */
// 1) Offset the outer contour.
ClipperLib::Paths contours = fix_after_inner_offset(mittered_offset_path_scaled(expoly.contour.points, deltas.front(), miter_limit), ClipperLib::pftNegative, true);
// 2) Offset the holes one by one, collect the results.
ClipperLib::Paths holes;
holes.reserve(expoly.holes.size());
for (const Polygon& hole : expoly.holes)
append(holes, fix_after_outer_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftPositive, false));
// 3) Subtract holes from the contours.
ClipperLib::Paths output;
if (holes.empty())
output = std::move(contours);
else {
ClipperLib::Clipper clipper;
clipper.Clear();
clipper.AddPaths(contours, ClipperLib::ptSubject, true);
clipper.AddPaths(holes, ClipperLib::ptClip, true);
clipper.Execute(ClipperLib::ctDifference, output, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
}
// 4) Unscale the output.
unscaleClipperPolygons(output);
return ClipperPaths_to_Slic3rPolygons(output);
}
Polygons variable_offset_outer(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit)
{
#ifndef NDEBUG
// Verify that the deltas are all non positive.
for (const std::vector<float>& ds : deltas)
for (float delta : ds)
assert(delta >= 0.);
assert(expoly.holes.size() + 1 == deltas.size());
#endif /* NDEBUG */
// 1) Offset the outer contour.
ClipperLib::Paths contours = fix_after_outer_offset(mittered_offset_path_scaled(expoly.contour.points, deltas.front(), miter_limit), ClipperLib::pftPositive, false);
// 2) Offset the holes one by one, collect the results.
ClipperLib::Paths holes;
holes.reserve(expoly.holes.size());
for (const Polygon& hole : expoly.holes)
append(holes, fix_after_inner_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftPositive, true));
// 3) Subtract holes from the contours.
ClipperLib::Paths output;
if (holes.empty())
output = std::move(contours);
else {
ClipperLib::Clipper clipper;
clipper.Clear();
clipper.AddPaths(contours, ClipperLib::ptSubject, true);
clipper.AddPaths(holes, ClipperLib::ptClip, true);
clipper.Execute(ClipperLib::ctDifference, output, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
}
// 4) Unscale the output.
unscaleClipperPolygons(output);
return ClipperPaths_to_Slic3rPolygons(output);
}
ExPolygons variable_offset_outer_ex(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit)
{
#ifndef NDEBUG
// Verify that the deltas are all non positive.
for (const std::vector<float>& ds : deltas)
for (float delta : ds)
assert(delta >= 0.);
assert(expoly.holes.size() + 1 == deltas.size());
#endif /* NDEBUG */
// 1) Offset the outer contour.
ClipperLib::Paths contours = fix_after_outer_offset(mittered_offset_path_scaled(expoly.contour.points, deltas.front(), miter_limit), ClipperLib::pftPositive, false);
// 2) Offset the holes one by one, collect the results.
ClipperLib::Paths holes;
holes.reserve(expoly.holes.size());
for (const Polygon& hole : expoly.holes)
append(holes, fix_after_inner_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftPositive, true));
// 3) Subtract holes from the contours.
unscaleClipperPolygons(contours);
ExPolygons output;
if (holes.empty()) {
output.reserve(contours.size());
for (ClipperLib::Path &path : contours)
output.emplace_back(ClipperPath_to_Slic3rPolygon(path));
} else {
ClipperLib::Clipper clipper;
unscaleClipperPolygons(holes);
clipper.AddPaths(contours, ClipperLib::ptSubject, true);
clipper.AddPaths(holes, ClipperLib::ptClip, true);
ClipperLib::PolyTree polytree;
clipper.Execute(ClipperLib::ctDifference, polytree, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
output = PolyTreeToExPolygons(polytree);
}
return output;
}
ExPolygons variable_offset_inner_ex(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit)
{
#ifndef NDEBUG
// Verify that the deltas are all non positive.
for (const std::vector<float>& ds : deltas)
for (float delta : ds)
assert(delta <= 0.);
assert(expoly.holes.size() + 1 == deltas.size());
#endif /* NDEBUG */
// 1) Offset the outer contour.
ClipperLib::Paths contours = fix_after_inner_offset(mittered_offset_path_scaled(expoly.contour.points, deltas.front(), miter_limit), ClipperLib::pftNegative, false);
// 2) Offset the holes one by one, collect the results.
ClipperLib::Paths holes;
holes.reserve(expoly.holes.size());
for (const Polygon& hole : expoly.holes)
append(holes, fix_after_outer_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftNegative, true));
// 3) Subtract holes from the contours.
unscaleClipperPolygons(contours);
ExPolygons output;
if (holes.empty()) {
output.reserve(contours.size());
for (ClipperLib::Path &path : contours)
output.emplace_back(ClipperPath_to_Slic3rPolygon(path));
} else {
ClipperLib::Clipper clipper;
unscaleClipperPolygons(holes);
clipper.AddPaths(contours, ClipperLib::ptSubject, true);
clipper.AddPaths(holes, ClipperLib::ptClip, true);
ClipperLib::PolyTree polytree;
clipper.Execute(ClipperLib::ctDifference, polytree, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
output = PolyTreeToExPolygons(polytree);
}
return output;
}
} }

View File

@ -238,6 +238,11 @@ void safety_offset(ClipperLib::Paths* paths);
Polygons top_level_islands(const Slic3r::Polygons &polygons); Polygons top_level_islands(const Slic3r::Polygons &polygons);
Polygons variable_offset_inner(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit = 2.);
Polygons variable_offset_outer(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit = 2.);
ExPolygons variable_offset_outer_ex(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit = 2.);
ExPolygons variable_offset_inner_ex(const ExPolygon &expoly, const std::vector<std::vector<float>> &deltas, double miter_limit = 2.);
} }
#endif #endif

View File

@ -301,6 +301,15 @@ inline bool expolygons_contain(ExPolygons &expolys, const Point &pt)
return false; return false;
} }
inline ExPolygons expolygons_simplify(const ExPolygons &expolys, double tolerance)
{
ExPolygons out;
out.reserve(expolys.size());
for (const ExPolygon &exp : expolys)
exp.simplify(tolerance, &out);
return out;
}
extern BoundingBox get_extents(const ExPolygon &expolygon); extern BoundingBox get_extents(const ExPolygon &expolygon);
extern BoundingBox get_extents(const ExPolygons &expolygons); extern BoundingBox get_extents(const ExPolygons &expolygons);
extern BoundingBox get_extents_rotated(const ExPolygon &poly, double angle); extern BoundingBox get_extents_rotated(const ExPolygon &poly, double angle);

View File

@ -102,6 +102,15 @@ inline void polygons_append(Polygons &dst, Polygons &&src)
} }
} }
inline Polygons polygons_simplify(const Polygons &polys, double tolerance)
{
Polygons out;
out.reserve(polys.size());
for (const Polygon &p : polys)
polygons_append(out, p.simplify(tolerance));
return out;
}
inline void polygons_rotate(Polygons &polys, double angle) inline void polygons_rotate(Polygons &polys, double angle)
{ {
const double cos_angle = cos(angle); const double cos_angle = cos(angle);

View File

@ -95,7 +95,6 @@ SCENARIO(" Bridge flow specifics.", "[Flow]") {
SCENARIO("Flow: Flow math for non-bridges", "[Flow]") { SCENARIO("Flow: Flow math for non-bridges", "[Flow]") {
GIVEN("Nozzle Diameter of 0.4, a desired width of 1mm and layer height of 0.5") { GIVEN("Nozzle Diameter of 0.4, a desired width of 1mm and layer height of 0.5") {
ConfigOptionFloatOrPercent width(1.0, false); ConfigOptionFloatOrPercent width(1.0, false);
float spacing = 0.4f;
float nozzle_diameter = 0.4f; float nozzle_diameter = 0.4f;
float bridge_flow = 0.f; float bridge_flow = 0.f;
float layer_height = 0.5f; float layer_height = 0.5f;
@ -119,7 +118,6 @@ SCENARIO("Flow: Flow math for non-bridges", "[Flow]") {
} }
/// Check the min/max /// Check the min/max
GIVEN("Nozzle Diameter of 0.25") { GIVEN("Nozzle Diameter of 0.25") {
float spacing = 0.4f;
float nozzle_diameter = 0.25f; float nozzle_diameter = 0.25f;
float bridge_flow = 0.f; float bridge_flow = 0.f;
float layer_height = 0.5f; float layer_height = 0.5f;
@ -161,7 +159,6 @@ SCENARIO("Flow: Flow math for non-bridges", "[Flow]") {
SCENARIO("Flow: Flow math for bridges", "[Flow]") { SCENARIO("Flow: Flow math for bridges", "[Flow]") {
GIVEN("Nozzle Diameter of 0.4, a desired width of 1mm and layer height of 0.5") { GIVEN("Nozzle Diameter of 0.4, a desired width of 1mm and layer height of 0.5") {
auto width = ConfigOptionFloatOrPercent(1.0, false); auto width = ConfigOptionFloatOrPercent(1.0, false);
float spacing = 0.4f;
float nozzle_diameter = 0.4f; float nozzle_diameter = 0.4f;
float bridge_flow = 1.0f; float bridge_flow = 1.0f;
float layer_height = 0.5f; float layer_height = 0.5f;

View File

@ -14,8 +14,8 @@ using namespace Slic3r;
/// Helper method to find the tool used for the brim (always the first extrusion) /// Helper method to find the tool used for the brim (always the first extrusion)
static int get_brim_tool(const std::string &gcode) static int get_brim_tool(const std::string &gcode)
{ {
int brim_tool = -1; int brim_tool = -1;
int tool = -1; int tool = -1;
GCodeReader parser; GCodeReader parser;
parser.parse_buffer(gcode, [&tool, &brim_tool] (Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) parser.parse_buffer(gcode, [&tool, &brim_tool] (Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{ {
@ -29,7 +29,7 @@ static int get_brim_tool(const std::string &gcode)
return brim_tool; return brim_tool;
} }
TEST_CASE("Skirt height is honored") { TEST_CASE("Skirt height is honored", "[Skirt]") {
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config(); DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_deserialize({ config.set_deserialize({
{ "skirts", 1 }, { "skirts", 1 },
@ -60,7 +60,7 @@ TEST_CASE("Skirt height is honored") {
REQUIRE(layers_with_skirt.size() == (size_t)config.opt_int("skirt_height")); REQUIRE(layers_with_skirt.size() == (size_t)config.opt_int("skirt_height"));
} }
SCENARIO("Original Slic3r Skirt/Brim tests", "[!mayfail]") { SCENARIO("Original Slic3r Skirt/Brim tests", "[SkirtBrim]") {
GIVEN("A default configuration") { GIVEN("A default configuration") {
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config(); DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_num_extruders(4); config.set_num_extruders(4);
@ -73,7 +73,8 @@ SCENARIO("Original Slic3r Skirt/Brim tests", "[!mayfail]") {
{ "first_layer_speed", "100%" }, { "first_layer_speed", "100%" },
// remove noise from top/solid layers // remove noise from top/solid layers
{ "top_solid_layers", 0 }, { "top_solid_layers", 0 },
{ "bottom_solid_layers", 1 } { "bottom_solid_layers", 1 },
{ "start_gcode", "T[initial_tool]\n" }
}); });
WHEN("Brim width is set to 5") { WHEN("Brim width is set to 5") {
@ -120,25 +121,29 @@ SCENARIO("Original Slic3r Skirt/Brim tests", "[!mayfail]") {
WHEN("Perimeter extruder = 2 and support extruders = 3") { WHEN("Perimeter extruder = 2 and support extruders = 3") {
THEN("Brim is printed with the extruder used for the perimeters of first object") { THEN("Brim is printed with the extruder used for the perimeters of first object") {
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, { config.set_deserialize({
{ "skirts", 0 }, { "skirts", 0 },
{ "brim_width", 5 }, { "brim_width", 5 },
{ "perimeter_extruder", 2 }, { "perimeter_extruder", 2 },
{ "support_material_extruder", 3 } { "support_material_extruder", 3 },
}); { "infill_extruder", 4 }
});
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, config);
int tool = get_brim_tool(gcode); int tool = get_brim_tool(gcode);
REQUIRE(tool == config.opt_int("perimeter_extruder") - 1); REQUIRE(tool == config.opt_int("perimeter_extruder") - 1);
} }
} }
WHEN("Perimeter extruder = 2, support extruders = 3, raft is enabled") { WHEN("Perimeter extruder = 2, support extruders = 3, raft is enabled") {
THEN("brim is printed with same extruder as skirt") { THEN("brim is printed with same extruder as skirt") {
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, { config.set_deserialize({
{ "skirts", 0 }, { "skirts", 0 },
{ "brim_width", 5 }, { "brim_width", 5 },
{ "perimeter_extruder", 2 }, { "perimeter_extruder", 2 },
{ "support_material_extruder", 3 }, { "support_material_extruder", 3 },
{ "raft_layers", 1 } { "infill_extruder", 4 },
}); { "raft_layers", 1 }
});
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, config);
int tool = get_brim_tool(gcode); int tool = get_brim_tool(gcode);
REQUIRE(tool == config.opt_int("support_material_extruder") - 1); REQUIRE(tool == config.opt_int("support_material_extruder") - 1);
} }
@ -200,6 +205,7 @@ SCENARIO("Original Slic3r Skirt/Brim tests", "[!mayfail]") {
{ "infill_extruder", 3 }, // ensure that a tool command gets emitted. { "infill_extruder", 3 }, // ensure that a tool command gets emitted.
{ "cooling", false }, // to prevent speeds to be altered { "cooling", false }, // to prevent speeds to be altered
{ "first_layer_speed", "100%" }, // to prevent speeds to be altered { "first_layer_speed", "100%" }, // to prevent speeds to be altered
{ "start_gcode", "T[initial_tool]\n" }
}); });
THEN("overhang generates?") { THEN("overhang generates?") {

View File

@ -2,7 +2,9 @@ get_filename_component(_TEST_NAME ${CMAKE_CURRENT_LIST_DIR} NAME)
add_executable(${_TEST_NAME}_tests add_executable(${_TEST_NAME}_tests
${_TEST_NAME}_tests.cpp ${_TEST_NAME}_tests.cpp
test_3mf.cpp test_3mf.cpp
test_clipper_offset.cpp
test_config.cpp test_config.cpp
# test_elephant_foot_compensation.cpp
test_geometry.cpp test_geometry.cpp
test_polygon.cpp test_polygon.cpp
test_stl.cpp test_stl.cpp

View File

@ -0,0 +1,214 @@
#include <catch2/catch.hpp>
#include <iostream>
#include <boost/filesystem.hpp>
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ExPolygon.hpp"
#include "libslic3r/SVG.hpp"
using namespace Slic3r;
#define TESTS_EXPORT_SVGS
SCENARIO("Constant offset", "[ClipperUtils]") {
coord_t s = 1000000;
GIVEN("20mm box") {
ExPolygon box20mm;
box20mm.contour.points = { { 0, 0 }, { 20 * s, 0 }, { 20 * s, 20 * s}, { 0, 20 * s} };
std::vector<float> deltas_plus(box20mm.contour.points.size(), 1. * s);
std::vector<float> deltas_minus(box20mm.contour.points.size(), - 1. * s);
Polygons output;
WHEN("Slic3r::offset()") {
for (double miter : { 2.0, 1.5, 1.2 }) {
DYNAMIC_SECTION("plus 1mm, miter " << miter << "x") {
output = Slic3r::offset(box20mm, 1. * s, ClipperLib::jtMiter, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("constant_offset_box20mm_plus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(output, "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 22^2mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx(22. * 22. * s * s));
}
}
DYNAMIC_SECTION("minus 1mm, miter " << miter << "x") {
output = Slic3r::offset(box20mm, - 1. * s, ClipperLib::jtMiter, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("constant_offset_box20mm_minus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(output, "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 18^2mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx(18. * 18. * s * s));
}
}
}
}
WHEN("Slic3r::variable_offset_outer/inner") {
for (double miter : { 2.0, 1.5, 1.2 }) {
DYNAMIC_SECTION("plus 1mm, miter " << miter << "x") {
output = Slic3r::variable_offset_outer(box20mm, { deltas_plus }, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("variable_offset_box20mm_plus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(output, "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 22^2mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx(22. * 22. * s * s));
}
}
DYNAMIC_SECTION("minus 1mm, miter " << miter << "x") {
output = Slic3r::variable_offset_inner(box20mm, { deltas_minus }, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("variable_offset_box20mm_minus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(output, "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 18^2mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx(18. * 18. * s * s));
}
}
}
}
}
GIVEN("20mm box with 10mm hole") {
ExPolygon box20mm;
box20mm.contour.points = { { 0, 0 }, { 20 * s, 0 }, { 20 * s, 20 * s}, { 0, 20 * s} };
box20mm.holes.emplace_back(Slic3r::Polygon({ { 5 * s, 5 * s }, { 5 * s, 15 * s}, { 15 * s, 15 * s}, { 15 * s, 5 * s } }));
std::vector<float> deltas_plus(box20mm.contour.points.size(), 1. * s);
std::vector<float> deltas_minus(box20mm.contour.points.size(), -1. * s);
ExPolygons output;
SECTION("Slic3r::offset()") {
for (double miter : { 2.0, 1.5, 1.2 }) {
DYNAMIC_SECTION("miter " << miter << "x") {
WHEN("plus 1mm") {
output = Slic3r::offset_ex(box20mm, 1. * s, ClipperLib::jtMiter, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("constant_offset_box20mm_10mm_hole_plus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(to_polygons(output), "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 22^2-8^2 mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx((22. * 22. - 8. * 8.) * s * s));
}
}
WHEN("minus 1mm") {
output = Slic3r::offset_ex(box20mm, - 1. * s, ClipperLib::jtMiter, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("constant_offset_box20mm_10mm_hole_minus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(to_polygons(output), "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 18^2-12^2 mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx((18. * 18. - 12. * 12.) * s * s));
}
}
}
}
}
SECTION("Slic3r::variable_offset_outer()") {
for (double miter : { 2.0, 1.5, 1.2 }) {
DYNAMIC_SECTION("miter " << miter << "x") {
WHEN("plus 1mm") {
output = Slic3r::variable_offset_outer_ex(box20mm, { deltas_plus, deltas_plus }, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("variable_offset_box20mm_10mm_hole_plus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(to_polygons(output), "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 22^2-8^2 mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx((22. * 22. - 8. * 8.) * s * s));
}
}
WHEN("minus 1mm") {
output = Slic3r::variable_offset_inner_ex(box20mm, { deltas_minus, deltas_minus }, miter);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("variable_offset_box20mm_10mm_hole_minus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(box20mm, "blue");
svg.draw_outline(to_polygons(output), "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area is 18^2-12^2 mm2") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx((18. * 18. - 12. * 12.) * s * s));
}
}
}
}
}
}
GIVEN("20mm right angle triangle") {
ExPolygon triangle20mm;
triangle20mm.contour.points = { { 0, 0 }, { 20 * s, 0 }, { 0, 20 * s} };
Polygons output;
double offset = 1.;
// Angle of the sharp corner bisector.
double angle_bisector = M_PI / 8.;
// Area tapered by mitering one sharp corner.
double area_tapered = pow(offset * (1. / sin(angle_bisector) - 1.), 2.) * tan(angle_bisector);
double l_triangle_side_offsetted = 20. + offset * (1. + 1. / tan(angle_bisector));
double area_offsetted = (0.5 * l_triangle_side_offsetted * l_triangle_side_offsetted - 2. * area_tapered) * s * s;
SECTION("Slic3r::offset()") {
for (double miter : { 2.0, 1.5, 1.2 }) {
DYNAMIC_SECTION("Outer offset 1mm, miter " << miter << "x") {
output = Slic3r::offset(triangle20mm, offset * s, ClipperLib::jtMiter, 2.0);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("constant_offset_triangle20mm_plus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(triangle20mm, "blue");
svg.draw_outline(output, "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area matches") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx(area_offsetted));
}
}
}
}
SECTION("Slic3r::variable_offset_outer()") {
std::vector<float> deltas(triangle20mm.contour.points.size(), 1. * s);
for (double miter : { 2.0, 1.5, 1.2 }) {
DYNAMIC_SECTION("Outer offset 1mm, miter " << miter << "x") {
output = Slic3r::variable_offset_outer(triangle20mm, { deltas }, 2.0);
#ifdef TESTS_EXPORT_SVGS
{
SVG svg(debug_out_path("variable_offset_triangle20mm_plus1mm_miter%lf.svg", miter).c_str(), get_extents(output));
svg.draw(triangle20mm, "blue");
svg.draw_outline(output, "black", coord_t(scale_(0.01)));
}
#endif
THEN("Area matches") {
REQUIRE(output.size() == 1);
REQUIRE(output.front().area() == Approx(area_offsetted));
}
}
}
}
}
}