refactoring, pressure points extracted but not accounted for

This commit is contained in:
PavelMikus 2022-05-06 13:30:40 +02:00
parent 68243edc65
commit 609f42fb18

View file

@ -55,7 +55,7 @@ class CentroidAccumulator {
private:
Polygon convex_hull { };
Points points { };
public:
public:
Vec3f accumulated_value = Vec3f::Zero();
float accumulated_volume { };
float base_area { };
@ -66,19 +66,19 @@ public:
base_height(base_height) {
}
const Polygon& base_hull(){
const Polygon& base_hull() {
if (this->convex_hull.empty()) {
this->convex_hull = Geometry::convex_hull(this->points);
}
return this->convex_hull;
}
void add_base_points(const Points& other) {
void add_base_points(const Points &other) {
this->points.insert(this->points.end(), other.begin(), other.end());
convex_hull.clear();
}
const Points& get_base_points(){
const Points& get_base_points() {
return this->points;
}
@ -113,12 +113,27 @@ struct CentroidAccumulators {
to_acc.add_base_points(from_acc.get_base_points());
to_acc.base_area += from_acc.base_area;
mapping[from_id] = mapping[to_id];
from_acc = CentroidAccumulator{0.0f};
from_acc = CentroidAccumulator { 0.0f };
}
};
struct BalanceDistributionGrid {
class BalanceDistributionGrid {
static constexpr float cell_height = scale_(0.3f);
Vec3crd cell_size { };
Vec3crd global_origin { };
Vec3crd global_size { };
Vec3i global_cell_count { };
int local_z_index_offset { };
int local_z_cell_count { };
std::vector<Cell> cells { };
public:
BalanceDistributionGrid() = default;
void init(const PrintObject *po, size_t layer_idx_begin, size_t layer_idx_end) {
@ -278,7 +293,7 @@ struct BalanceDistributionGrid {
cell.island_id = next_island_id;
Vec3crd cell_center = this->get_cell_center(
Vec3i(current_coords.x(), current_coords.y(), local_z_index_offset));
acc.add_base_points({Point(cell_center.head<2>())});
acc.add_base_points( { Point(cell_center.head<2>()) });
acc.accumulated_value += unscale(cell_center).cast<float>() * cell.volume;
acc.accumulated_volume += cell.volume;
@ -307,7 +322,7 @@ struct BalanceDistributionGrid {
this->access_cell(local_coords).island_id = index;
CentroidAccumulator &acc = accumulators.create_accumulator(index,
issues.supports_nedded[index].position.z());
acc.add_base_points({Point(scaled(Vec2f(issues.supports_nedded[index].position.head<2>())))});
acc.add_base_points( { Point(scaled(Vec2f(issues.supports_nedded[index].position.head<2>()))) });
acc.base_area = params.support_points_interface_area;
}
@ -315,8 +330,10 @@ struct BalanceDistributionGrid {
this->access_cell(curling.position).curled_height += curling.estimated_height;
}
std::unordered_set<int> modified_acc_ids;
std::unordered_map<int, std::vector<Vec2i>> modified_acc_ids;
std::unordered_map<CentroidAccumulator*, std::vector<Vec2i>> filtered_active_accumulators;
modified_acc_ids.reserve(issues.supports_nedded.size() + 1);
for (int z = 1; z < local_z_cell_count; ++z) {
std::cout << "current z: " << z << std::endl;
@ -325,26 +342,6 @@ struct BalanceDistributionGrid {
for (int x = 0; x < global_cell_count.x(); ++x) {
for (int y = 0; y < global_cell_count.y(); ++y) {
Cell &current = this->access_cell(Vec3i(x, y, z));
// distribute curling
if (current.volume > 0) {
float curled_height = 0;
for (int y_offset = -2; y_offset <= 2; ++y_offset) {
for (int x_offset = -2; x_offset <= 2; ++x_offset) {
if (validate_xy_coords(Vec2i(x + x_offset, y + y_offset))) {
Cell &under = this->access_cell(Vec3i(x + x_offset, y + y_offset, z - 1));
curled_height = std::max(curled_height, under.curled_height);
}
}
}
bool curled = current.curled_height > 0;
current.curled_height += std::max(0.0f, float(curled_height - unscaled(this->cell_size.z())));
if (!curled) {
current.curled_height /= 4.0f;
}
std::cout << "Curling: " << current.curled_height << std::endl;
}
// distribute islands info
if (current.volume > 0 && current.island_id == std::numeric_limits<int>::max()) {
int min_island_id_found = std::numeric_limits<int>::max();
@ -373,143 +370,176 @@ struct BalanceDistributionGrid {
* unscale(this->get_cell_center(this->to_global_cell_coords(Vec3i(x, y, z)))).cast<
float>();
acc.accumulated_volume += current.volume;
modified_acc_ids.insert(min_island_id_found);
modified_acc_ids.emplace(min_island_id_found, std::vector<Vec2i> { });
}
}
// distribute curling
if (current.volume > 0) {
float curled_height = 0;
for (int y_offset = -2; y_offset <= 2; ++y_offset) {
for (int x_offset = -2; x_offset <= 2; ++x_offset) {
if (validate_xy_coords(Vec2i(x + x_offset, y + y_offset))) {
Cell &under = this->access_cell(Vec3i(x + x_offset, y + y_offset, z - 1));
curled_height = std::max(curled_height, under.curled_height);
}
}
}
bool curled = current.curled_height > 0;
current.curled_height += curled_height;
if (!curled) {
current.curled_height -= unscaled(this->cell_size.z());
}
std::cout << "Curling: " << current.curled_height << std::endl;
if (current.curled_height / unscaled(this->cell_size.z()) > 0.3f) {
modified_acc_ids[current.island_id].push_back( { x, y });
}
}
}
}
std::cout << " check all active accumulators " << std::endl;
filtered_active_accumulators.clear();
for (const auto &pair : modified_acc_ids) {
CentroidAccumulator *acc = &accumulators.access(pair.first);
filtered_active_accumulators[acc].insert(filtered_active_accumulators[acc].end(), pair.second.begin(),
pair.second.end());
}
for (int acc_id : modified_acc_ids) {
check_accumulators_stability(z, accumulators, filtered_active_accumulators, issues, params);
}
}
private:
void check_accumulators_stability(int z, CentroidAccumulators &accumulators,
std::unordered_map<CentroidAccumulator*, std::vector<Vec2i>> filtered_active_accumulators,
Issues &issues, const Params &params) {
std::cout << "Z: " << z << " controlling acc id: " << acc_id << std::endl;
for (const auto &pair : filtered_active_accumulators) {
std::cout << "Z: " << z << std::endl;
CentroidAccumulator &acc = *pair.first;
Vec3f centroid = acc.accumulated_value / acc.accumulated_volume;
CentroidAccumulator &acc = accumulators.access(acc_id);
Vec3f centroid = acc.accumulated_value / acc.accumulated_volume;
std::cout << "acc.accumulated_value : " << acc.accumulated_value.x() << " "
<< acc.accumulated_value.y() << " " << acc.accumulated_value.z() << std::endl;
std::cout << "acc.accumulated_volume : " << acc.accumulated_volume << std::endl;
std::cout << "centroid: " << centroid.x() << " " << centroid.y() << " " << centroid.z() << std::endl;
std::cout << "acc.accumulated_value : " << acc.accumulated_value.x() << " "
<< acc.accumulated_value.y() << " " << acc.accumulated_value.z() << std::endl;
std::cout << "acc.accumulated_volume : " << acc.accumulated_volume << std::endl;
std::cout << "centroid: " << centroid.x() << " " << centroid.y() << " " << centroid.z() << std::endl;
//determine signed shortest distance to the convex hull
Point centroid_base_projection = Point(scaled(Vec2f(centroid.head<2>())));
Point pivot;
double distance_scaled_sq = std::numeric_limits<double>::max();
bool inside = true;
if (acc.base_hull().points.size() == 1) {
pivot = acc.base_hull().points[0];
distance_scaled_sq = (pivot - centroid_base_projection).squaredNorm();
inside = true;
} else {
for (Line line : acc.base_hull().lines()) {
Point closest_point;
double dist_sq = line.distance_to_squared(centroid_base_projection, &closest_point);
if (dist_sq < distance_scaled_sq) {
pivot = closest_point;
distance_scaled_sq = dist_sq;
}
if ((centroid_base_projection - closest_point).cast<double>().dot(line.normal().cast<double>())
> 0) {
inside = false;
}
//determine signed shortest distance to the convex hull
Point centroid_base_projection = Point(scaled(Vec2f(centroid.head<2>())));
Point pivot;
double distance_scaled_sq = std::numeric_limits<double>::max();
bool inside = true;
if (acc.base_hull().points.size() == 1) {
pivot = acc.base_hull().points[0];
distance_scaled_sq = (pivot - centroid_base_projection).squaredNorm();
inside = distance_scaled_sq < params.support_points_interface_area;
} else {
for (Line line : acc.base_hull().lines()) {
Point closest_point;
double dist_sq = line.distance_to_squared(centroid_base_projection, &closest_point);
if (dist_sq < distance_scaled_sq) {
pivot = closest_point;
distance_scaled_sq = dist_sq;
}
if ((centroid_base_projection - closest_point).cast<double>().dot(line.normal().cast<double>())
> 0) {
inside = false;
}
}
}
Vec3f pivot_3d;
pivot_3d << unscale(pivot).cast<float>(), acc.base_height;
float embedded_distance = unscaled(sqrt(distance_scaled_sq));
float centroid_pivot_distance = (centroid - pivot_3d).norm();
float base_center_pivot_distance = float(unscale(Vec2crd(acc.base_hull().centroid() - pivot)).norm());
Vec3f pivot_3d;
pivot_3d << unscale(pivot).cast<float>(), acc.base_height;
float embedded_distance = unscaled(sqrt(distance_scaled_sq));
float centroid_pivot_distance = (centroid - pivot_3d).norm();
float base_center_pivot_distance = float(unscale(Vec2crd(acc.base_hull().centroid() - pivot)).norm());
std::cout << "centroid inside ? " << inside << " and embedded distance is: " << embedded_distance
<< std::endl;
std::cout << "centroid inside ? " << inside << " and embedded distance is: " << embedded_distance
<< std::endl;
bool additional_supports_needed = false;
float sticking_force = acc.base_area
* (acc.base_height == 0 ? params.base_adhesion : params.support_adhesion);
float sticking_torque = base_center_pivot_distance * sticking_force;
bool additional_supports_needed = false;
float sticking_force = acc.base_area
* (acc.base_height == 0 ? params.base_adhesion : params.support_adhesion);
float sticking_torque = base_center_pivot_distance * sticking_force;
std::cout << "sticking force: " << sticking_force << " sticking torque: " << sticking_torque
<< std::endl;
std::cout << "sticking force: " << sticking_force << " sticking torque: " << sticking_torque
<< std::endl;
float xy_movement_force = acc.accumulated_volume * params.filament_density * params.max_acceleration;
float xy_movement_torque = xy_movement_force * centroid_pivot_distance;
float xy_movement_force = acc.accumulated_volume * params.filament_density * params.max_acceleration;
float xy_movement_torque = xy_movement_force * centroid_pivot_distance;
std::cout << "xy_movement_force: " << xy_movement_force << " xy_movement_torque: "
<< xy_movement_torque << std::endl;
std::cout << "xy_movement_force: " << xy_movement_force << " xy_movement_torque: "
<< xy_movement_torque << std::endl;
float weight = acc.accumulated_volume * params.filament_density * params.gravity_constant;
float weight_torque = embedded_distance * weight;
if (!inside) {
weight_torque *= -1;
}
std::cout << "weight: " << weight << " weight_torque: " << weight_torque << std::endl;
float weight = acc.accumulated_volume * params.filament_density * params.gravity_constant;
float weight_torque = embedded_distance * weight;
if (!inside) {
weight_torque *= -1;
}
std::cout << "weight: " << weight << " weight_torque: " << weight_torque << std::endl;
float extruder_conflict_torque = params.tolerable_extruder_conflict_force * 2.0f
* centroid_pivot_distance;
std::cout << "extruder_conflict_torque: " << extruder_conflict_torque << std::endl;
float extruder_conflict_torque = params.tolerable_extruder_conflict_force * 2.0f
* centroid_pivot_distance;
std::cout << "extruder_conflict_torque: " << extruder_conflict_torque << std::endl;
float total_momentum = sticking_torque + weight_torque - xy_movement_torque - extruder_conflict_torque;
additional_supports_needed = total_momentum < 0;
float total_momentum = sticking_torque + weight_torque - xy_movement_torque - extruder_conflict_torque;
additional_supports_needed = total_momentum < 0;
std::cout << "total_momentum: " << total_momentum << std::endl;
std::cout << "additional supports needed: " << additional_supports_needed << std::endl;
std::cout << "total_momentum: " << total_momentum << std::endl;
std::cout << "additional supports needed: " << additional_supports_needed << std::endl;
if (additional_supports_needed) {
Vec2f attractor_dir =
unscale(Vec2crd(inside ?
pivot - centroid_base_projection :
centroid_base_projection - pivot)).cast<float>().normalized();
Vec2f attractor = unscale(centroid_base_projection).cast<float>() + 10000 * attractor_dir;
if (additional_supports_needed) {
Vec2f attractor_dir =
unscale(Vec2crd(inside ?
pivot - centroid_base_projection :
centroid_base_projection - pivot)).cast<float>().normalized();
Vec2f attractor = unscale(centroid_base_projection).cast<float>() + 10000 * attractor_dir;
std::cout << " attractor: " << attractor.x() << " | " << attractor.y() << std::endl;
std::cout << " attractor: " << attractor.x() << " | " << attractor.y() << std::endl;
double min_dist = std::numeric_limits<double>::max();
Vec3f support_point = centroid;
Vec2i coords = Vec2i(0, 0);
for (int y = 0; y < global_cell_count.y(); ++y) {
for (int x = 0; x < global_cell_count.x(); ++x) {
Cell &cell = this->access_cell(Vec3i(x, y, z));
if (cell.island_id != std::numeric_limits<int>::max() &&
&accumulators.access(cell.island_id) == &acc) {
Vec3f cell_center =
unscale(this->get_cell_center(this->to_global_cell_coords(Vec3i(x, y, z)))).cast<
float>();
float dist_sq = (cell_center.head<2>() - attractor).squaredNorm();
if (dist_sq < min_dist) {
min_dist = dist_sq;
support_point = cell_center;
coords = Vec2i(x, y);
}
double min_dist = std::numeric_limits<double>::max();
Vec3f support_point = centroid;
Vec2i coords = Vec2i(0, 0);
for (int y = 0; y < global_cell_count.y(); ++y) {
for (int x = 0; x < global_cell_count.x(); ++x) {
Cell &cell = this->access_cell(Vec3i(x, y, z));
if (cell.island_id != std::numeric_limits<int>::max() &&
&accumulators.access(cell.island_id) == &acc) {
Vec3f cell_center =
unscale(this->get_cell_center(this->to_global_cell_coords(Vec3i(x, y, z)))).cast<
float>();
float dist_sq = (cell_center.head<2>() - attractor).squaredNorm();
if (dist_sq < min_dist) {
min_dist = dist_sq;
support_point = cell_center;
coords = Vec2i(x, y);
}
}
}
int final_height_coords = z;
while (final_height_coords > 0
&& this->access_cell(Vec3i(coords.x(), coords.y(), final_height_coords)).volume > 0) {
final_height_coords--;
}
support_point.z() = unscaled(
(final_height_coords + this->local_z_index_offset) * this->cell_size.z());
float expected_force = total_momentum / (support_point - pivot_3d).norm();
std::cout << " new support point: " << support_point.x() << " | " << support_point.y() << " | "
<< support_point.z() << std::endl;
std::cout << " expected_force: " << expected_force << std::endl;
issues.supports_nedded.emplace_back(support_point, expected_force);
acc.add_base_points({Point::new_scale(Vec2f(support_point.head<2>()))});
acc.base_area += params.support_points_interface_area;
}
int final_height_coords = z;
while (final_height_coords > 0
&& this->access_cell(Vec3i(coords.x(), coords.y(), final_height_coords)).volume > 0) {
final_height_coords--;
}
support_point.z() = unscaled(
(final_height_coords + this->local_z_index_offset) * this->cell_size.z());
float expected_force = total_momentum / (support_point - pivot_3d).norm();
std::cout << " new support point: " << support_point.x() << " | " << support_point.y() << " | "
<< support_point.z() << std::endl;
std::cout << " expected_force: " << expected_force << std::endl;
issues.supports_nedded.emplace_back(support_point, expected_force);
acc.add_base_points( { Point::new_scale(Vec2f(support_point.head<2>())) });
acc.base_area += params.support_points_interface_area;
}
}
}
#ifdef DEBUG_FILES
public:
void debug_export() const {
Slic3r::CNumericLocalesSetter locales_setter;
{
@ -572,19 +602,6 @@ struct BalanceDistributionGrid {
}
}
#endif
static constexpr float cell_height = scale_(0.3f);
Vec3crd cell_size { };
Vec3crd global_origin { };
Vec3crd global_size { };
Vec3i global_cell_count { };
int local_z_index_offset { };
int local_z_cell_count { };
std::vector<Cell> cells { };
}
;
@ -777,8 +794,11 @@ Issues check_extrusion_entity_stability(const ExtrusionEntity *entity, float pri
// Estimation of short curvy segments which are not supported -> problems with curling
if (dist_from_prev_layer > -max_allowed_dist_from_prev_layer * 0.7071) { //extrusion point is unsupported or poorly supported
float dist_factor = (dist_from_prev_layer + max_allowed_dist_from_prev_layer * 0.7071)
/ max_allowed_dist_from_prev_layer;
issues.curling_up.push_back(
CurledFilament(fpoint, 0.2f * region_height + region_height * 0.6f * std::abs(angle) / PI));
CurledFilament(fpoint,
dist_factor * (0.25f * region_height + region_height * 0.75f * std::abs(angle) / PI)));
}
prev_point = point;
@ -795,7 +815,6 @@ Issues check_extrusion_entity_stability(const ExtrusionEntity *entity, float pri
points.push(Point::new_scale(Vec2f(next + reverse_v * (i * step_size))));
}
}
}
}
return issues;