FFF background slicing for a single object only:

Generalized the "enabled milestone" from SLA
to both SLA and FFF.
Merged the "milestone enabled" flag into the milestone status.
Fixed some potential threading issues in SLAPrint::finalize()
when resetting the "milestone enabled" flags.
This commit is contained in:
Vojtech Bubnik 2022-03-29 11:19:50 +02:00
parent 26d1b2a5cd
commit 60d7564942
7 changed files with 174 additions and 130 deletions

View File

@ -736,9 +736,13 @@ void GCode::do_export(Print* print, const char* path, GCodeProcessorResult* resu
CNumericLocalesSetter locales_setter;
// Does the file exist? If so, we hope that it is still valid.
if (print->is_step_done(psGCodeExport) && boost::filesystem::exists(boost::filesystem::path(path)))
{
PrintStateBase::StateWithTimeStamp state = print->step_state_with_timestamp(psGCodeExport);
if (! state.enabled || (state.state == PrintStateBase::DONE && boost::filesystem::exists(boost::filesystem::path(path))))
return;
}
// Enabled and either not done, or marked as done while the output file is missing.
print->set_started(psGCodeExport);
// check if any custom gcode contains keywords used by the gcode processor to

View File

@ -45,7 +45,7 @@ namespace FillLightning {
// Print step IDs for keeping track of the print state.
// The Print steps are applied in this order.
enum PrintStep {
enum PrintStep : unsigned int {
psWipeTower,
// Ordering of the tools on PrintObjects for a multi-material print.
// psToolOrdering is a synonym to psWipeTower, as the Wipe Tower calculates and modifies the ToolOrdering,
@ -59,7 +59,7 @@ enum PrintStep {
psCount,
};
enum PrintObjectStep {
enum PrintObjectStep : unsigned int {
posSlice, posPerimeters, posPrepareInfill,
posInfill, posIroning, posSupportMaterial, posCount,
};
@ -350,6 +350,7 @@ public:
private:
// to be called from Print only.
friend class Print;
friend class PrintBaseWithState<PrintStep, psCount>;
PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances);
~PrintObject() override {
@ -537,8 +538,10 @@ public:
std::vector<ObjectID> print_object_ids() const override;
ApplyStatus apply(const Model &model, DynamicPrintConfig config) override;
void set_task(const TaskParams &params) override { PrintBaseWithState<PrintStep, psCount>::set_task_impl(params, m_objects); }
void process() override;
void finalize() override { PrintBaseWithState<PrintStep, psCount>::finalize_impl(m_objects); }
// Exports G-code into a file name based on the path_template, returns the file path of the generated G-code file.
// If preview_data is not null, the preview_data is filled in for the G-code visualization (not used by the command line Slic3r).
std::string export_gcode(const std::string& path_template, GCodeProcessorResult* result, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);

View File

@ -39,9 +39,9 @@ public:
// A new unique timestamp is being assigned to the step every time the step changes its state.
struct StateWithTimeStamp
{
StateWithTimeStamp() : state(INVALID), timestamp(0) {}
State state;
TimeStamp timestamp;
State state { INVALID };
TimeStamp timestamp { 0 };
bool enabled { true };
};
struct Warning
@ -112,10 +112,24 @@ public:
return this->state_with_timestamp_unguarded(step).state == DONE;
}
void enable_unguarded(StepType step, bool enable) {
m_state[step].enabled = enable;
}
void enable_all_unguarded(bool enable) {
for (size_t istep = 0; istep < COUNT; ++ istep)
m_state[istep].enabled = enable;
}
bool is_enabled_unguarded(StepType step) const {
return this->state_with_timestamp_unguarded(step).enabled;
}
// Set the step as started. Block on mutex while the Print / PrintObject / PrintRegion objects are being
// modified by the UI thread.
// This is necessary to block until the Print::apply() updates its state, which may
// influence the processing step being entered.
// Returns false if the step is not enabled or if the step has already been finished (it is done).
template<typename ThrowIfCanceled>
bool set_started(StepType step, std::mutex &mtx, ThrowIfCanceled throw_if_canceled) {
std::scoped_lock<std::mutex> lock(mtx);
@ -134,9 +148,9 @@ public:
// for (int i = 0; i < int(COUNT); ++ i)
// assert(m_state[i].state != STARTED);
#endif // NDEBUG
if (m_state[step].state == DONE)
return false;
PrintStateBase::StateWithWarnings &state = m_state[step];
if (! state.enabled || state.state == DONE)
return false;
state.state = STARTED;
state.timestamp = ++ g_last_timestamp;
state.mark_warnings_non_current();
@ -388,12 +402,12 @@ public:
int to_print_step;
};
// After calling the apply() function, call set_task() to limit the task to be processed by process().
virtual void set_task(const TaskParams &params) {}
virtual void set_task(const TaskParams &params) = 0;
// Perform the calculation. This is the only method that is to be called at a worker thread.
virtual void process() = 0;
// Clean up after process() finished, either with success, error or if canceled.
// The adjustments on the Print / PrintObject data due to set_task() are to be reverted here.
virtual void finalize() {}
virtual void finalize() = 0;
struct SlicingStatus {
SlicingStatus(int percent, const std::string &text, unsigned int flags = 0) : percent(percent), text(text), flags(flags) {}
@ -511,10 +525,15 @@ private:
friend PrintTryCancel;
};
template<typename PrintStepEnum, const size_t COUNT>
template<typename PrintStepEnumType, const size_t COUNT>
class PrintBaseWithState : public PrintBase
{
public:
using PrintStepEnum = PrintStepEnumType;
static constexpr const size_t PrintStepEnumSize = COUNT;
PrintBaseWithState() = default;
bool is_step_done(PrintStepEnum step) const { return m_state.is_done(step, this->state_mutex()); }
PrintStateBase::StateWithTimeStamp step_state_with_timestamp(PrintStepEnum step) const { return m_state.state_with_timestamp(step, this->state_mutex()); }
PrintStateBase::StateWithWarnings step_state_with_warnings(PrintStepEnum step) const { return m_state.state_with_warnings(step, this->state_mutex()); }
@ -549,14 +568,120 @@ protected:
this->status_update_warnings(static_cast<int>(active_step.first), warning_level, message);
}
// After calling the apply() function, set_task() may be called to limit the task to be processed by process().
template<typename PrintObject>
void set_task_impl(const TaskParams &params, std::vector<PrintObject*> &print_objects)
{
static constexpr const auto PrintObjectStepEnumSize = int(PrintObject::PrintObjectStepEnumSize);
using PrintObjectStepEnum = typename PrintObject::PrintObjectStepEnum;
// Grab the lock for the Print / PrintObject milestones.
std::scoped_lock<std::mutex> lock(this->state_mutex());
int n_object_steps = int(params.to_object_step) + 1;
if (n_object_steps == 0)
n_object_steps = PrintObjectStepEnumSize;
if (params.single_model_object.valid()) {
// Find the print object to be processed with priority.
PrintObject *print_object = nullptr;
size_t idx_print_object = 0;
for (; idx_print_object < print_objects.size(); ++ idx_print_object)
if (print_objects[idx_print_object]->model_object()->id() == params.single_model_object) {
print_object = print_objects[idx_print_object];
break;
}
assert(print_object != nullptr);
// Find out whether the priority print object is being currently processed.
bool running = false;
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->is_step_enabled_unguarded(PrintObjectStepEnum(istep)))
// Step was skipped, cancel.
break;
if (print_object->is_step_started_unguarded(PrintObjectStepEnum(istep))) {
// No step was skipped, and a wanted step is being processed. Don't cancel.
running = true;
break;
}
}
if (! running)
this->call_cancel_callback();
// Now the background process is either stopped, or it is inside one of the print object steps to be calculated anyway.
if (params.single_model_instance_only) {
// Suppress all the steps of other instances.
for (PrintObject *po : print_objects)
for (size_t istep = 0; istep < PrintObjectStepEnumSize; ++ istep)
po->enable_step_unguarded(PrintObjectStepEnum(istep), false);
} else if (! running) {
// Swap the print objects, so that the selected print_object is first in the row.
// At this point the background processing must be stopped, so it is safe to shuffle print objects.
if (idx_print_object != 0)
std::swap(print_objects.front(), print_objects[idx_print_object]);
}
// and set the steps for the current object.
for (int istep = 0; istep < n_object_steps; ++ istep)
print_object->enable_step_unguarded(PrintObjectStepEnum(istep), true);
for (int istep = n_object_steps; istep < PrintObjectStepEnumSize; ++ istep)
print_object->enable_step_unguarded(PrintObjectStepEnum(istep), false);
} else {
// Slicing all objects.
bool running = false;
for (PrintObject *print_object : print_objects)
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->is_step_enabled_unguarded(PrintObjectStepEnum(istep))) {
// Step may have been skipped. Restart.
goto loop_end;
}
if (print_object->is_step_started_unguarded(PrintObjectStepEnum(istep))) {
// This step is running, and the state cannot be changed due to the this->state_mutex() being locked.
// It is safe to manipulate m_stepmask of other PrintObjects and Print now.
running = true;
goto loop_end;
}
}
loop_end:
if (! running)
this->call_cancel_callback();
for (PrintObject *po : print_objects) {
for (int istep = 0; istep < n_object_steps; ++ istep)
po->enable_step_unguarded(PrintObjectStepEnum(istep), true);
for (int istep = n_object_steps; istep < PrintObjectStepEnumSize; ++ istep)
po->enable_step_unguarded(PrintObjectStepEnum(istep), false);
}
}
if (params.to_object_step != -1 || params.to_print_step != -1) {
// Limit the print steps.
size_t istep = (params.to_object_step != -1) ? 0 : size_t(params.to_print_step) + 1;
for (; istep < PrintStepEnumSize; ++ istep)
m_state.enable_unguarded(PrintStepEnum(istep), false);
}
}
// Clean up after process() finished, either with success, error or if canceled.
// The adjustments on the Print / PrintObject m_stepmask data due to set_task() are to be reverted here.
template<typename PrintObject>
void finalize_impl(std::vector<PrintObject*> &print_objects)
{
// Grab the lock for the Print / PrintObject milestones.
std::scoped_lock<std::mutex> lock(this->state_mutex());
for (auto *po : print_objects)
po->enable_all_steps_unguarded(true);
m_state.enable_all_unguarded(true);
}
private:
PrintState<PrintStepEnum, COUNT> m_state;
};
template<typename PrintType, typename PrintObjectStepEnum, const size_t COUNT>
template<typename PrintType, typename PrintObjectStepEnumType, const size_t COUNT>
class PrintObjectBaseWithState : public PrintObjectBase
{
public:
using PrintObjectStepEnum = PrintObjectStepEnumType;
static constexpr const size_t PrintObjectStepEnumSize = COUNT;
PrintType* print() { return m_print; }
const PrintType* print() const { return m_print; }
@ -590,6 +715,10 @@ protected:
bool is_step_started_unguarded(PrintObjectStepEnum step) const { return m_state.is_started_unguarded(step); }
bool is_step_done_unguarded(PrintObjectStepEnum step) const { return m_state.is_done_unguarded(step); }
bool is_step_enabled_unguarded(PrintObjectStepEnum step) const { return m_state.is_enabled_unguarded(step); }
void enable_step_unguarded(PrintObjectStepEnum step, bool enable) { m_state.enable_unguarded(step, enable); }
void enable_all_steps_unguarded(bool enable) { m_state.enable_all_unguarded(enable); }
// Add a slicing warning to the active PrintObject step and send a status notification.
// This method could be called multiple times between this->set_started() and this->set_done().
void active_step_add_warning(PrintStateBase::WarningLevel warning_level, const std::string &message, int message_id = 0) {

View File

@ -513,104 +513,6 @@ SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig con
return static_cast<ApplyStatus>(apply_status);
}
// After calling the apply() function, set_task() may be called to limit the task to be processed by process().
void SLAPrint::set_task(const TaskParams &params)
{
// Grab the lock for the Print / PrintObject milestones.
std::scoped_lock<std::mutex> lock(this->state_mutex());
int n_object_steps = int(params.to_object_step) + 1;
if (n_object_steps == 0)
n_object_steps = int(slaposCount);
if (params.single_model_object.valid()) {
// Find the print object to be processed with priority.
SLAPrintObject *print_object = nullptr;
size_t idx_print_object = 0;
for (; idx_print_object < m_objects.size(); ++ idx_print_object)
if (m_objects[idx_print_object]->model_object()->id() == params.single_model_object) {
print_object = m_objects[idx_print_object];
break;
}
assert(print_object != nullptr);
// Find out whether the priority print object is being currently processed.
bool running = false;
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[size_t(istep)])
// Step was skipped, cancel.
break;
if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
// No step was skipped, and a wanted step is being processed. Don't cancel.
running = true;
break;
}
}
if (! running)
this->call_cancel_callback();
// Now the background process is either stopped, or it is inside one of the print object steps to be calculated anyway.
if (params.single_model_instance_only) {
// Suppress all the steps of other instances.
for (SLAPrintObject *po : m_objects)
for (size_t istep = 0; istep < slaposCount; ++ istep)
po->m_stepmask[istep] = false;
} else if (! running) {
// Swap the print objects, so that the selected print_object is first in the row.
// At this point the background processing must be stopped, so it is safe to shuffle print objects.
if (idx_print_object != 0)
std::swap(m_objects.front(), m_objects[idx_print_object]);
}
// and set the steps for the current object.
for (int istep = 0; istep < n_object_steps; ++ istep)
print_object->m_stepmask[size_t(istep)] = true;
for (int istep = n_object_steps; istep < int(slaposCount); ++ istep)
print_object->m_stepmask[size_t(istep)] = false;
} else {
// Slicing all objects.
bool running = false;
for (SLAPrintObject *print_object : m_objects)
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[size_t(istep)]) {
// Step may have been skipped. Restart.
goto loop_end;
}
if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
// This step is running, and the state cannot be changed due to the this->state_mutex() being locked.
// It is safe to manipulate m_stepmask of other SLAPrintObjects and SLAPrint now.
running = true;
goto loop_end;
}
}
loop_end:
if (! running)
this->call_cancel_callback();
for (SLAPrintObject *po : m_objects) {
for (int istep = 0; istep < n_object_steps; ++ istep)
po->m_stepmask[size_t(istep)] = true;
for (auto istep = size_t(n_object_steps); istep < slaposCount; ++ istep)
po->m_stepmask[istep] = false;
}
}
if (params.to_object_step != -1 || params.to_print_step != -1) {
// Limit the print steps.
size_t istep = (params.to_object_step != -1) ? 0 : size_t(params.to_print_step) + 1;
for (; istep < m_stepmask.size(); ++ istep)
m_stepmask[istep] = false;
}
}
// Clean up after process() finished, either with success, error or if canceled.
// The adjustments on the SLAPrint / SLAPrintObject data due to set_task() are to be reverted here.
void SLAPrint::finalize()
{
for (SLAPrintObject *po : m_objects)
for (size_t istep = 0; istep < slaposCount; ++ istep)
po->m_stepmask[istep] = true;
for (size_t istep = 0; istep < slapsCount; ++ istep)
m_stepmask[istep] = true;
}
// Generate a recommended output file name based on the format template, default extension, and template parameters
// (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
// Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before the output is finalized).
@ -741,7 +643,7 @@ void SLAPrint::process()
st += incr;
if (po->m_stepmask[step] && po->set_started(step)) {
if (po->set_started(step)) {
m_report_status(*this, st, printsteps.label(step));
bench.start();
printsteps.execute(step, *po);
@ -759,14 +661,11 @@ void SLAPrint::process()
apply_steps_on_objects(level1_obj_steps);
apply_steps_on_objects(level2_obj_steps);
// this would disable the rasterization step
// std::fill(m_stepmask.begin(), m_stepmask.end(), false);
st = Steps::max_objstatus;
for(SLAPrintStep currentstep : print_steps) {
throw_if_canceled();
if (m_stepmask[currentstep] && set_started(currentstep)) {
if (set_started(currentstep)) {
m_report_status(*this, st, printsteps.label(currentstep));
bench.start();
printsteps.execute(currentstep);
@ -898,7 +797,6 @@ bool SLAPrint::is_step_done(SLAPrintObjectStep step) const
SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object)
: Inherited(print, model_object)
, m_stepmask(slaposCount, true)
, m_transformed_rmesh([this](TriangleMesh &obj) {
obj = m_model_object->raw_mesh();
if (!obj.empty()) {

View File

@ -265,6 +265,7 @@ public:
protected:
// to be called from SLAPrint only.
friend class SLAPrint;
friend class PrintBaseWithState<SLAPrintStep, slapsCount>;
SLAPrintObject(SLAPrint* print, ModelObject* model_object);
~SLAPrintObject();
@ -285,10 +286,6 @@ protected:
// Invalidate steps based on a set of parameters changed.
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
// Which steps have to be performed. Implicitly: all
// to be accessible from SLAPrint
std::vector<bool> m_stepmask;
private:
// Object specific configuration, pulled from the configuration layer.
SLAPrintObjectConfig m_config;
@ -408,7 +405,7 @@ private: // Prevents erroneous use by other classes.
public:
SLAPrint(): m_stepmask(slapsCount, true) {}
SLAPrint() = default;
virtual ~SLAPrint() override { this->clear(); }
@ -419,9 +416,9 @@ public:
// List of existing PrintObject IDs, to remove notifications for non-existent IDs.
std::vector<ObjectID> print_object_ids() const override;
ApplyStatus apply(const Model &model, DynamicPrintConfig config) override;
void set_task(const TaskParams &params) override;
void set_task(const TaskParams &params) override { PrintBaseWithState<SLAPrintStep, slapsCount>::set_task_impl(params, m_objects); }
void process() override;
void finalize() override;
void finalize() override { PrintBaseWithState<SLAPrintStep, slapsCount>::finalize_impl(m_objects); }
// Returns true if an object step is done on all objects and there's at least one object.
bool is_step_done(SLAPrintObjectStep step) const;
// Returns true if the last step was finished with success.
@ -522,7 +519,6 @@ private:
SLAPrintObjectConfig m_default_object_config;
PrintObjects m_objects;
std::vector<bool> m_stepmask;
// Ready-made data for rasterization.
std::vector<PrintLayer> m_printer_input;

View File

@ -6269,7 +6269,7 @@ void Plater::reslice_SLA_hollowing(const ModelObject &object, bool postpone_erro
reslice_SLA_until_step(slaposDrillHoles, object, postpone_error_messages);
}
void Plater::reslice_SLA_until_step(SLAPrintObjectStep step, const ModelObject &object, bool postpone_error_messages)
void Plater::reslice_until_step_inner(int step, const ModelObject &object, bool postpone_error_messages)
{
//FIXME Don't reslice if export of G-code or sending to OctoPrint is running.
// bitmask of UpdateBackgroundProcessReturnState
@ -6295,6 +6295,16 @@ void Plater::reslice_SLA_until_step(SLAPrintObjectStep step, const ModelObject &
this->p->restart_background_process(state | priv::UPDATE_BACKGROUND_PROCESS_FORCE_RESTART);
}
void Plater::reslice_FFF_until_step(PrintObjectStep step, const ModelObject &object, bool postpone_error_messages)
{
this->reslice_until_step_inner(PrintObjectStep(step), object, postpone_error_messages);
}
void Plater::reslice_SLA_until_step(SLAPrintObjectStep step, const ModelObject &object, bool postpone_error_messages)
{
this->reslice_until_step_inner(SLAPrintObjectStep(step), object, postpone_error_messages);
}
void Plater::send_gcode()
{
// if physical_printer is selected, send gcode for this printer

View File

@ -32,6 +32,7 @@ using ModelObjectCutAttributes = enum_bitmask<ModelObjectCutAttribute>;
class ModelInstance;
class Print;
class SLAPrint;
enum PrintObjectStep : unsigned int;
enum SLAPrintObjectStep : unsigned int;
enum class ConversionType : int;
@ -265,6 +266,7 @@ public:
bool has_toolpaths_to_export() const;
void export_toolpaths_to_obj() const;
void reslice();
void reslice_FFF_until_step(PrintObjectStep step, const ModelObject &object, bool postpone_error_messages = false);
void reslice_SLA_supports(const ModelObject &object, bool postpone_error_messages = false);
void reslice_SLA_hollowing(const ModelObject &object, bool postpone_error_messages = false);
void reslice_SLA_until_step(SLAPrintObjectStep step, const ModelObject &object, bool postpone_error_messages = false);
@ -477,6 +479,8 @@ public:
static void show_illegal_characters_warning(wxWindow* parent);
private:
void reslice_until_step_inner(int step, const ModelObject &object, bool postpone_error_messages);
struct priv;
std::unique_ptr<priv> p;