This commit is contained in:
Enrico Turri 2020-01-31 12:15:14 +01:00
commit 61e9cb0f72
8 changed files with 244 additions and 223 deletions

View File

@ -1113,7 +1113,7 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b
if (keep_upper) {
upper->set_model(nullptr);
upper->sla_support_points.clear();
lower->sla_drain_holes.clear();
upper->sla_drain_holes.clear();
upper->sla_points_status = sla::PointsStatus::NoPoints;
upper->clear_volumes();
upper->input_file = "";

View File

@ -678,7 +678,7 @@ void SLAPrint::process()
// We want to first process all objects...
std::vector<SLAPrintObjectStep> level1_obj_steps = {
slaposHollowing, slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad
slaposHollowing, slaposDrillHoles, slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad
};
// and then slice all supports to allow preview to be displayed ASAP
@ -984,10 +984,10 @@ bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step)
// propagate to dependent steps
if (step == slaposHollowing) {
invalidated |= this->invalidate_all_steps();
} else if (step == slaposObjectSlice) {
invalidated |= this->invalidate_steps({ slaposDrillHolesIfHollowed, slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
} else if (step == slaposDrillHoles) {
invalidated |= this->invalidate_steps({ slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposDrillHolesIfHollowed) {
} else if (step == slaposObjectSlice) {
invalidated |= this->invalidate_steps({ slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSupportPoints) {

View File

@ -20,8 +20,8 @@ enum SLAPrintStep : unsigned int {
enum SLAPrintObjectStep : unsigned int {
slaposHollowing,
slaposDrillHoles,
slaposObjectSlice,
slaposDrillHolesIfHollowed,
slaposSupportPoints,
slaposSupportTree,
slaposPad,

View File

@ -26,9 +26,9 @@ namespace Slic3r {
namespace {
const std::array<unsigned, slaposCount> OBJ_STEP_LEVELS = {
5, // slaposHollowing,
20, // slaposObjectSlice,
5, // slaposDrillHolesIfHollowed
10, // slaposHollowing,
10, // slaposDrillHolesIfHollowed
10, // slaposObjectSlice,
20, // slaposSupportPoints,
10, // slaposSupportTree,
10, // slaposPad,
@ -38,9 +38,9 @@ const std::array<unsigned, slaposCount> OBJ_STEP_LEVELS = {
std::string OBJ_STEP_LABELS(size_t idx)
{
switch (idx) {
case slaposHollowing: return L("Hollowing and drilling holes");
case slaposHollowing: return L("Hollowing model");
case slaposDrillHoles: return L("Drilling holes into hollowed model.");
case slaposObjectSlice: return L("Slicing model");
case slaposDrillHolesIfHollowed: return L("Drilling holes into hollowed model.");
case slaposSupportPoints: return L("Generating support points");
case slaposSupportTree: return L("Generating support tree");
case slaposPad: return L("Generating pad");
@ -80,9 +80,11 @@ SLAPrint::Steps::Steps(SLAPrint *print)
void SLAPrint::Steps::hollow_model(SLAPrintObject &po)
{
po.m_hollowing_data.reset();
if (! po.m_config.hollowing_enable.getBool())
if (! po.m_config.hollowing_enable.getBool()) {
BOOST_LOG_TRIVIAL(info) << "Skipping hollowing step!";
else {
return;
}
BOOST_LOG_TRIVIAL(info) << "Performing hollowing step!";
double thickness = po.m_config.hollowing_min_thickness.getFloat();
@ -101,12 +103,16 @@ void SLAPrint::Steps::hollow_model(SLAPrintObject &po)
hollowed_mesh.merge(po.m_hollowing_data->interior);
hollowed_mesh.require_shared_vertices();
}
}
void SLAPrint::Steps::drill_holes(SLAPrintObject &po)
{
// Drill holes into the hollowed/original mesh.
if (po.m_model_object->sla_drain_holes.empty()) {
BOOST_LOG_TRIVIAL(info) << "Drilling skipped (no holes).";
return;
}
// Drill holes into the hollowed/original mesh.
if (po.m_model_object->sla_drain_holes.empty())
BOOST_LOG_TRIVIAL(info) << "Drilling skipped (no holes).";
else {
BOOST_LOG_TRIVIAL(info) << "Drilling drainage holes.";
sla::DrainHoles drainholes = po.transformed_drainhole_points();
@ -116,7 +122,7 @@ void SLAPrint::Steps::hollow_model(SLAPrintObject &po)
holes_mesh.merge(sla::to_triangle_mesh(holept.to_mesh()));
holes_mesh.require_shared_vertices();
MeshBoolean::self_union(holes_mesh); //FIXME-fix and use the cgal version
MeshBoolean::cgal::self_union(holes_mesh); //FIXME-fix and use the cgal version
// If there is no hollowed mesh yet, copy the original mesh.
if (! po.m_hollowing_data) {
@ -125,10 +131,16 @@ void SLAPrint::Steps::hollow_model(SLAPrintObject &po)
}
TriangleMesh &hollowed_mesh = po.m_hollowing_data->hollow_mesh_with_holes;
hollowed_mesh = po.get_mesh_to_print();
try {
MeshBoolean::cgal::minus(hollowed_mesh, holes_mesh);
hollowed_mesh.require_shared_vertices();
} catch (const std::runtime_error &ex) {
throw std::runtime_error(L(
"Drilling holes into the mesh failed. "
"This is usually caused by broken model. Try to fix it first."));
}
hollowed_mesh.require_shared_vertices();
}
// The slicing will be performed on an imaginary 1D grid which starts from
@ -850,8 +862,8 @@ void SLAPrint::Steps::execute(SLAPrintObjectStep step, SLAPrintObject &obj)
{
switch(step) {
case slaposHollowing: hollow_model(obj); break;
case slaposDrillHoles: drill_holes(obj); break;
case slaposObjectSlice: slice_model(obj); break;
case slaposDrillHolesIfHollowed: break;
case slaposSupportPoints: support_points(obj); break;
case slaposSupportTree: support_tree(obj); break;
case slaposPad: generate_pad(obj); break;

View File

@ -44,6 +44,7 @@ public:
Steps(SLAPrint *print);
void hollow_model(SLAPrintObject &po);
void drill_holes (SLAPrintObject &po);
void slice_model(SLAPrintObject& po);
void support_points(SLAPrintObject& po);
void support_tree(SLAPrintObject& po);

View File

@ -26,58 +26,6 @@ const char *const SUPPORT_TEST_MODELS[] = {
} // namespace
// Test pair hash for 'nums' random number pairs.
template <class I, class II> void test_pairhash()
{
const constexpr size_t nums = 1000;
I A[nums] = {0}, B[nums] = {0};
std::unordered_set<I> CH;
std::unordered_map<II, std::pair<I, I>> ints;
std::random_device rd;
std::mt19937 gen(rd());
const I Ibits = int(sizeof(I) * CHAR_BIT);
const II IIbits = int(sizeof(II) * CHAR_BIT);
int bits = IIbits / 2 < Ibits ? Ibits / 2 : Ibits;
if (std::is_signed<I>::value) bits -= 1;
const I Imin = 0;
const I Imax = I(std::pow(2., bits) - 1);
std::uniform_int_distribution<I> dis(Imin, Imax);
for (size_t i = 0; i < nums;) {
I a = dis(gen);
if (CH.find(a) == CH.end()) { CH.insert(a); A[i] = a; ++i; }
}
for (size_t i = 0; i < nums;) {
I b = dis(gen);
if (CH.find(b) == CH.end()) { CH.insert(b); B[i] = b; ++i; }
}
for (size_t i = 0; i < nums; ++i) {
I a = A[i], b = B[i];
REQUIRE(a != b);
II hash_ab = sla::pairhash<I, II>(a, b);
II hash_ba = sla::pairhash<I, II>(b, a);
REQUIRE(hash_ab == hash_ba);
auto it = ints.find(hash_ab);
if (it != ints.end()) {
REQUIRE((
(it->second.first == a && it->second.second == b) ||
(it->second.first == b && it->second.second == a)
));
} else
ints[hash_ab] = std::make_pair(a, b);
}
}
TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") {
test_pairhash<int, int>();
test_pairhash<int, long>();
@ -225,69 +173,6 @@ TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") {
REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm));
}
using TPixel = uint8_t;
static constexpr const TPixel FullWhite = 255;
static constexpr const TPixel FullBlack = 0;
template <class A, int N> constexpr int arraysize(const A (&)[N]) { return N; }
static void check_raster_transformations(sla::Raster::Orientation o,
sla::Raster::TMirroring mirroring)
{
double disp_w = 120., disp_h = 68.;
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
sla::Raster::Trafo trafo{o, mirroring};
trafo.origin_x = bb.center().x();
trafo.origin_y = bb.center().y();
sla::Raster raster{res, pixdim, trafo};
// create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
ExPolygon box;
box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
double tr_x = scaled<double>(20.), tr_y = tr_x;
box.translate(tr_x, tr_y);
ExPolygon expected_box = box;
// Now calculate the position of the translated box according to output
// trafo.
if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.);
if (mirroring[X])
for (auto &p : expected_box.contour.points) p.x() = -p.x();
if (mirroring[Y])
for (auto &p : expected_box.contour.points) p.y() = -p.y();
raster.draw(box);
Point expected_coords = expected_box.contour.bounding_box().center();
double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
auto w = size_t(std::floor(rx));
auto h = res.height_px - size_t(std::floor(ry));
REQUIRE((w < res.width_px && h < res.height_px));
auto px = raster.read_pixel(w, h);
if (px != FullWhite) {
sla::PNGImage img;
std::fstream outf("out.png", std::ios::out);
outf << img.serialize(raster);
}
REQUIRE(px == FullWhite);
}
TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") {
sla::Raster::TMirroring mirrorings[] = {sla::Raster::NoMirror,
sla::Raster::MirrorX,
@ -301,54 +186,6 @@ TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") {
check_raster_transformations(orientation, mirror);
}
static ExPolygon square_with_hole(double v)
{
ExPolygon poly;
coord_t V = scaled(v / 2.);
poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
poly.holes.emplace_back();
V = V / 2;
poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
return poly;
}
static double pixel_area(TPixel px, const sla::Raster::PixelDim &pxdim)
{
return (pxdim.h_mm * pxdim.w_mm) * px * 1. / (FullWhite - FullBlack);
}
static double raster_white_area(const sla::Raster &raster)
{
if (raster.empty()) return std::nan("");
auto res = raster.resolution();
double a = 0;
for (size_t x = 0; x < res.width_px; ++x)
for (size_t y = 0; y < res.height_px; ++y) {
auto px = raster.read_pixel(x, y);
a += pixel_area(px, raster.pixel_dimensions());
}
return a;
}
static double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd)
{
auto lines = p.lines();
double pix_err = pixel_area(FullWhite, pd) / 2.;
// Worst case is when a line is parallel to the shorter axis of one pixel,
// when the line will be composed of the max number of pixels
double pix_l = std::min(pd.h_mm, pd.w_mm);
double error = 0.;
for (auto &l : lines)
error += (unscaled(l.length()) / pix_l) * pix_err;
return error;
}
TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") {
double disp_w = 120., disp_h = 68.;
@ -388,8 +225,4 @@ TEST_CASE("Triangle mesh conversions should be correct", "[SLAConversions]")
std::fstream infile{"extruder_idler_quads.obj", std::ios::in};
cntr.from_obj(infile);
}
}

View File

@ -292,3 +292,103 @@ void check_validity(const TriangleMesh &input_mesh, int flags)
REQUIRE(mesh.is_manifold());
}
}
void check_raster_transformations(sla::Raster::Orientation o, sla::Raster::TMirroring mirroring)
{
double disp_w = 120., disp_h = 68.;
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
sla::Raster::Trafo trafo{o, mirroring};
trafo.origin_x = bb.center().x();
trafo.origin_y = bb.center().y();
sla::Raster raster{res, pixdim, trafo};
// create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
ExPolygon box;
box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
double tr_x = scaled<double>(20.), tr_y = tr_x;
box.translate(tr_x, tr_y);
ExPolygon expected_box = box;
// Now calculate the position of the translated box according to output
// trafo.
if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.);
if (mirroring[X])
for (auto &p : expected_box.contour.points) p.x() = -p.x();
if (mirroring[Y])
for (auto &p : expected_box.contour.points) p.y() = -p.y();
raster.draw(box);
Point expected_coords = expected_box.contour.bounding_box().center();
double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
auto w = size_t(std::floor(rx));
auto h = res.height_px - size_t(std::floor(ry));
REQUIRE((w < res.width_px && h < res.height_px));
auto px = raster.read_pixel(w, h);
if (px != FullWhite) {
sla::PNGImage img;
std::fstream outf("out.png", std::ios::out);
outf << img.serialize(raster);
}
REQUIRE(px == FullWhite);
}
ExPolygon square_with_hole(double v)
{
ExPolygon poly;
coord_t V = scaled(v / 2.);
poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
poly.holes.emplace_back();
V = V / 2;
poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
return poly;
}
double raster_white_area(const sla::Raster &raster)
{
if (raster.empty()) return std::nan("");
auto res = raster.resolution();
double a = 0;
for (size_t x = 0; x < res.width_px; ++x)
for (size_t y = 0; y < res.height_px; ++y) {
auto px = raster.read_pixel(x, y);
a += pixel_area(px, raster.pixel_dimensions());
}
return a;
}
double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd)
{
auto lines = p.lines();
double pix_err = pixel_area(FullWhite, pd) / 2.;
// Worst case is when a line is parallel to the shorter axis of one pixel,
// when the line will be composed of the max number of pixels
double pix_l = std::min(pd.h_mm, pd.w_mm);
double error = 0.;
for (auto &l : lines)
error += (unscaled(l.length()) / pix_l) * pix_err;
return error;
}

View File

@ -6,6 +6,7 @@
// Debug
#include <fstream>
#include <unordered_set>
#include "libslic3r/libslic3r.h"
#include "libslic3r/Format/OBJ.hpp"
@ -109,4 +110,78 @@ inline void test_support_model_collision(
test_support_model_collision(obj_filename, input_supportcfg, hcfg, {});
}
// Test pair hash for 'nums' random number pairs.
template <class I, class II> void test_pairhash()
{
const constexpr size_t nums = 1000;
I A[nums] = {0}, B[nums] = {0};
std::unordered_set<I> CH;
std::unordered_map<II, std::pair<I, I>> ints;
std::random_device rd;
std::mt19937 gen(rd());
const I Ibits = int(sizeof(I) * CHAR_BIT);
const II IIbits = int(sizeof(II) * CHAR_BIT);
int bits = IIbits / 2 < Ibits ? Ibits / 2 : Ibits;
if (std::is_signed<I>::value) bits -= 1;
const I Imin = 0;
const I Imax = I(std::pow(2., bits) - 1);
std::uniform_int_distribution<I> dis(Imin, Imax);
for (size_t i = 0; i < nums;) {
I a = dis(gen);
if (CH.find(a) == CH.end()) { CH.insert(a); A[i] = a; ++i; }
}
for (size_t i = 0; i < nums;) {
I b = dis(gen);
if (CH.find(b) == CH.end()) { CH.insert(b); B[i] = b; ++i; }
}
for (size_t i = 0; i < nums; ++i) {
I a = A[i], b = B[i];
REQUIRE(a != b);
II hash_ab = sla::pairhash<I, II>(a, b);
II hash_ba = sla::pairhash<I, II>(b, a);
REQUIRE(hash_ab == hash_ba);
auto it = ints.find(hash_ab);
if (it != ints.end()) {
REQUIRE((
(it->second.first == a && it->second.second == b) ||
(it->second.first == b && it->second.second == a)
));
} else
ints[hash_ab] = std::make_pair(a, b);
}
}
// SLA Raster test utils:
using TPixel = uint8_t;
static constexpr const TPixel FullWhite = 255;
static constexpr const TPixel FullBlack = 0;
template <class A, int N> constexpr int arraysize(const A (&)[N]) { return N; }
void check_raster_transformations(sla::Raster::Orientation o,
sla::Raster::TMirroring mirroring);
ExPolygon square_with_hole(double v);
inline double pixel_area(TPixel px, const sla::Raster::PixelDim &pxdim)
{
return (pxdim.h_mm * pxdim.w_mm) * px * 1. / (FullWhite - FullBlack);
}
double raster_white_area(const sla::Raster &raster);
double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd);
#endif // SLA_TEST_UTILS_HPP