Removed the x(), y(), z() Point/Pointf/Point3/Pointf3 accessors.
This commit is contained in:
parent
1ba64da3fe
commit
65011f9382
@ -137,25 +137,25 @@ struct PointLike {
|
||||
template<class RawPoint>
|
||||
static TCoord<RawPoint> x(const RawPoint& p)
|
||||
{
|
||||
return p.x();
|
||||
return p(0);
|
||||
}
|
||||
|
||||
template<class RawPoint>
|
||||
static TCoord<RawPoint> y(const RawPoint& p)
|
||||
{
|
||||
return p.y();
|
||||
return p(1);
|
||||
}
|
||||
|
||||
template<class RawPoint>
|
||||
static TCoord<RawPoint>& x(RawPoint& p)
|
||||
{
|
||||
return p.x();
|
||||
return p(0);
|
||||
}
|
||||
|
||||
template<class RawPoint>
|
||||
static TCoord<RawPoint>& y(RawPoint& p)
|
||||
{
|
||||
return p.y();
|
||||
return p(1);
|
||||
}
|
||||
|
||||
template<class RawPoint>
|
||||
|
@ -27,14 +27,14 @@ BoundingBox::polygon(Polygon* polygon) const
|
||||
{
|
||||
polygon->points.clear();
|
||||
polygon->points.resize(4);
|
||||
polygon->points[0].x() = this->min.x();
|
||||
polygon->points[0].y() = this->min.y();
|
||||
polygon->points[1].x() = this->max.x();
|
||||
polygon->points[1].y() = this->min.y();
|
||||
polygon->points[2].x() = this->max.x();
|
||||
polygon->points[2].y() = this->max.y();
|
||||
polygon->points[3].x() = this->min.x();
|
||||
polygon->points[3].y() = this->max.y();
|
||||
polygon->points[0](0) = this->min(0);
|
||||
polygon->points[0](1) = this->min(1);
|
||||
polygon->points[1](0) = this->max(0);
|
||||
polygon->points[1](1) = this->min(1);
|
||||
polygon->points[2](0) = this->max(0);
|
||||
polygon->points[2](1) = this->max(1);
|
||||
polygon->points[3](0) = this->min(0);
|
||||
polygon->points[3](1) = this->max(1);
|
||||
}
|
||||
|
||||
Polygon
|
||||
@ -50,8 +50,8 @@ BoundingBox BoundingBox::rotated(double angle) const
|
||||
BoundingBox out;
|
||||
out.merge(this->min.rotated(angle));
|
||||
out.merge(this->max.rotated(angle));
|
||||
out.merge(Point(this->min.x(), this->max.y()).rotated(angle));
|
||||
out.merge(Point(this->max.x(), this->min.y()).rotated(angle));
|
||||
out.merge(Point(this->min(0), this->max(1)).rotated(angle));
|
||||
out.merge(Point(this->max(0), this->min(1)).rotated(angle));
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -60,8 +60,8 @@ BoundingBox BoundingBox::rotated(double angle, const Point ¢er) const
|
||||
BoundingBox out;
|
||||
out.merge(this->min.rotated(angle, center));
|
||||
out.merge(this->max.rotated(angle, center));
|
||||
out.merge(Point(this->min.x(), this->max.y()).rotated(angle, center));
|
||||
out.merge(Point(this->max.x(), this->min.y()).rotated(angle, center));
|
||||
out.merge(Point(this->min(0), this->max(1)).rotated(angle, center));
|
||||
out.merge(Point(this->max(0), this->min(1)).rotated(angle, center));
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -79,10 +79,10 @@ template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min.x() = std::min(point.x(), this->min.x());
|
||||
this->min.y() = std::min(point.y(), this->min.y());
|
||||
this->max.x() = std::max(point.x(), this->max.x());
|
||||
this->max.y() = std::max(point.y(), this->max.y());
|
||||
this->min(0) = std::min(point(0), this->min(0));
|
||||
this->min(1) = std::min(point(1), this->min(1));
|
||||
this->max(0) = std::max(point(0), this->max(0));
|
||||
this->max(1) = std::max(point(1), this->max(1));
|
||||
} else {
|
||||
this->min = this->max = point;
|
||||
this->defined = true;
|
||||
@ -102,13 +102,13 @@ template void BoundingBoxBase<Pointf>::merge(const Pointfs &points);
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
||||
{
|
||||
assert(bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y());
|
||||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min.x() = std::min(bb.min.x(), this->min.x());
|
||||
this->min.y() = std::min(bb.min.y(), this->min.y());
|
||||
this->max.x() = std::max(bb.max.x(), this->max.x());
|
||||
this->max.y() = std::max(bb.max.y(), this->max.y());
|
||||
this->min(0) = std::min(bb.min(0), this->min(0));
|
||||
this->min(1) = std::min(bb.min(1), this->min(1));
|
||||
this->max(0) = std::max(bb.max(0), this->max(0));
|
||||
this->max(1) = std::max(bb.max(1), this->max(1));
|
||||
} else {
|
||||
this->min = bb.min;
|
||||
this->max = bb.max;
|
||||
@ -123,8 +123,8 @@ template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min.z() = std::min(point.z(), this->min.z());
|
||||
this->max.z() = std::max(point.z(), this->max.z());
|
||||
this->min(2) = std::min(point(2), this->min(2));
|
||||
this->max(2) = std::max(point(2), this->max(2));
|
||||
}
|
||||
BoundingBoxBase<PointClass>::merge(point);
|
||||
}
|
||||
@ -140,11 +140,11 @@ template void BoundingBox3Base<Pointf3>::merge(const Pointf3s &points);
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
|
||||
{
|
||||
assert(bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y() || bb.min.z() >= bb.max.z());
|
||||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1) || bb.min(2) >= bb.max(2));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min.z() = std::min(bb.min.z(), this->min.z());
|
||||
this->max.z() = std::max(bb.max.z(), this->max.z());
|
||||
this->min(2) = std::min(bb.min(2), this->min(2));
|
||||
this->max(2) = std::max(bb.max(2), this->max(2));
|
||||
}
|
||||
BoundingBoxBase<PointClass>::merge(bb);
|
||||
}
|
||||
@ -154,7 +154,7 @@ template void BoundingBox3Base<Pointf3>::merge(const BoundingBox3Base<Pointf3> &
|
||||
template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::size() const
|
||||
{
|
||||
return PointClass(this->max.x() - this->min.x(), this->max.y() - this->min.y());
|
||||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1));
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::size() const;
|
||||
template Pointf BoundingBoxBase<Pointf>::size() const;
|
||||
@ -162,15 +162,15 @@ template Pointf BoundingBoxBase<Pointf>::size() const;
|
||||
template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::size() const
|
||||
{
|
||||
return PointClass(this->max.x() - this->min.x(), this->max.y() - this->min.y(), this->max.z() - this->min.z());
|
||||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1), this->max(2) - this->min(2));
|
||||
}
|
||||
template Pointf3 BoundingBox3Base<Pointf3>::size() const;
|
||||
|
||||
template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
|
||||
{
|
||||
assert(this->defined);
|
||||
double x = this->max.x() - this->min.x();
|
||||
double y = this->max.y() - this->min.y();
|
||||
double x = this->max(0) - this->min(0);
|
||||
double y = this->max(1) - this->min(1);
|
||||
return 0.5 * sqrt(x*x+y*y);
|
||||
}
|
||||
template double BoundingBoxBase<Point>::radius() const;
|
||||
@ -178,9 +178,9 @@ template double BoundingBoxBase<Pointf>::radius() const;
|
||||
|
||||
template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
|
||||
{
|
||||
double x = this->max.x() - this->min.x();
|
||||
double y = this->max.y() - this->min.y();
|
||||
double z = this->max.z() - this->min.z();
|
||||
double x = this->max(0) - this->min(0);
|
||||
double y = this->max(1) - this->min(1);
|
||||
double z = this->max(2) - this->min(2);
|
||||
return 0.5 * sqrt(x*x+y*y+z*z);
|
||||
}
|
||||
template double BoundingBox3Base<Pointf3>::radius() const;
|
||||
@ -208,8 +208,8 @@ template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::center() const
|
||||
{
|
||||
return PointClass(
|
||||
(this->max.x() + this->min.x())/2,
|
||||
(this->max.y() + this->min.y())/2
|
||||
(this->max(0) + this->min(0))/2,
|
||||
(this->max(1) + this->min(1))/2
|
||||
);
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::center() const;
|
||||
@ -219,9 +219,9 @@ template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::center() const
|
||||
{
|
||||
return PointClass(
|
||||
(this->max.x() + this->min.x())/2,
|
||||
(this->max.y() + this->min.y())/2,
|
||||
(this->max.z() + this->min.z())/2
|
||||
(this->max(0) + this->min(0))/2,
|
||||
(this->max(1) + this->min(1))/2,
|
||||
(this->max(2) + this->min(2))/2
|
||||
);
|
||||
}
|
||||
template Pointf3 BoundingBox3Base<Pointf3>::center() const;
|
||||
@ -230,7 +230,7 @@ template <class PointClass> coordf_t
|
||||
BoundingBox3Base<PointClass>::max_size() const
|
||||
{
|
||||
PointClass s = size();
|
||||
return std::max(s.x(), std::max(s.y(), s.z()));
|
||||
return std::max(s(0), std::max(s(1), s(2)));
|
||||
}
|
||||
template coordf_t BoundingBox3Base<Pointf3>::max_size() const;
|
||||
|
||||
@ -250,8 +250,8 @@ static inline coord_t _align_to_grid(const coord_t coord, const coord_t spacing)
|
||||
void BoundingBox::align_to_grid(const coord_t cell_size)
|
||||
{
|
||||
if (this->defined) {
|
||||
min.x() = _align_to_grid(min.x(), cell_size);
|
||||
min.y() = _align_to_grid(min.y(), cell_size);
|
||||
min(0) = _align_to_grid(min(0), cell_size);
|
||||
min(1) = _align_to_grid(min(1), cell_size);
|
||||
}
|
||||
}
|
||||
|
||||
@ -259,14 +259,14 @@ BoundingBoxf3 BoundingBoxf3::transformed(const Transform3f& matrix) const
|
||||
{
|
||||
Eigen::Matrix<float, 3, 8, Eigen::DontAlign> vertices;
|
||||
|
||||
vertices(0, 0) = (float)min.x(); vertices(1, 0) = (float)min.y(); vertices(2, 0) = (float)min.z();
|
||||
vertices(0, 1) = (float)max.x(); vertices(1, 1) = (float)min.y(); vertices(2, 1) = (float)min.z();
|
||||
vertices(0, 2) = (float)max.x(); vertices(1, 2) = (float)max.y(); vertices(2, 2) = (float)min.z();
|
||||
vertices(0, 3) = (float)min.x(); vertices(1, 3) = (float)max.y(); vertices(2, 3) = (float)min.z();
|
||||
vertices(0, 4) = (float)min.x(); vertices(1, 4) = (float)min.y(); vertices(2, 4) = (float)max.z();
|
||||
vertices(0, 5) = (float)max.x(); vertices(1, 5) = (float)min.y(); vertices(2, 5) = (float)max.z();
|
||||
vertices(0, 6) = (float)max.x(); vertices(1, 6) = (float)max.y(); vertices(2, 6) = (float)max.z();
|
||||
vertices(0, 7) = (float)min.x(); vertices(1, 7) = (float)max.y(); vertices(2, 7) = (float)max.z();
|
||||
vertices(0, 0) = (float)min(0); vertices(1, 0) = (float)min(1); vertices(2, 0) = (float)min(2);
|
||||
vertices(0, 1) = (float)max(0); vertices(1, 1) = (float)min(1); vertices(2, 1) = (float)min(2);
|
||||
vertices(0, 2) = (float)max(0); vertices(1, 2) = (float)max(1); vertices(2, 2) = (float)min(2);
|
||||
vertices(0, 3) = (float)min(0); vertices(1, 3) = (float)max(1); vertices(2, 3) = (float)min(2);
|
||||
vertices(0, 4) = (float)min(0); vertices(1, 4) = (float)min(1); vertices(2, 4) = (float)max(2);
|
||||
vertices(0, 5) = (float)max(0); vertices(1, 5) = (float)min(1); vertices(2, 5) = (float)max(2);
|
||||
vertices(0, 6) = (float)max(0); vertices(1, 6) = (float)max(1); vertices(2, 6) = (float)max(2);
|
||||
vertices(0, 7) = (float)min(0); vertices(1, 7) = (float)max(1); vertices(2, 7) = (float)max(2);
|
||||
|
||||
Eigen::Matrix<float, 3, 8, Eigen::DontAlign> transf_vertices = matrix * vertices.colwise().homogeneous();
|
||||
|
||||
|
@ -22,23 +22,23 @@ public:
|
||||
|
||||
BoundingBoxBase() : defined(false) {};
|
||||
BoundingBoxBase(const PointClass &pmin, const PointClass &pmax) :
|
||||
min(pmin), max(pmax), defined(pmin.x() < pmax.x() && pmin.y() < pmax.y()) {}
|
||||
min(pmin), max(pmax), defined(pmin(0) < pmax(0) && pmin(1) < pmax(1)) {}
|
||||
BoundingBoxBase(const std::vector<PointClass>& points)
|
||||
{
|
||||
if (points.empty())
|
||||
CONFESS("Empty point set supplied to BoundingBoxBase constructor");
|
||||
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min.x() = this->max.x() = it->x();
|
||||
this->min.y() = this->max.y() = it->y();
|
||||
this->min(0) = this->max(0) = (*it)(0);
|
||||
this->min(1) = this->max(1) = (*it)(1);
|
||||
for (++it; it != points.end(); ++it)
|
||||
{
|
||||
this->min.x() = std::min(it->x(), this->min.x());
|
||||
this->min.y() = std::min(it->y(), this->min.y());
|
||||
this->max.x() = std::max(it->x(), this->max.x());
|
||||
this->max.y() = std::max(it->y(), this->max.y());
|
||||
this->min(0) = std::min((*it)(0), this->min(0));
|
||||
this->min(1) = std::min((*it)(1), this->min(1));
|
||||
this->max(0) = std::max((*it)(0), this->max(0));
|
||||
this->max(1) = std::max((*it)(1), this->max(1));
|
||||
}
|
||||
this->defined = (this->min.x() < this->max.x()) && (this->min.y() < this->max.y());
|
||||
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1));
|
||||
}
|
||||
void merge(const PointClass &point);
|
||||
void merge(const std::vector<PointClass> &points);
|
||||
@ -51,12 +51,12 @@ public:
|
||||
void offset(coordf_t delta);
|
||||
PointClass center() const;
|
||||
bool contains(const PointClass &point) const {
|
||||
return point.x() >= this->min.x() && point.x() <= this->max.x()
|
||||
&& point.y() >= this->min.y() && point.y() <= this->max.y();
|
||||
return point(0) >= this->min(0) && point(0) <= this->max(0)
|
||||
&& point(1) >= this->min(1) && point(1) <= this->max(1);
|
||||
}
|
||||
bool overlap(const BoundingBoxBase<PointClass> &other) const {
|
||||
return ! (this->max.x() < other.min.x() || this->min.x() > other.max.x() ||
|
||||
this->max.y() < other.min.y() || this->min.y() > other.max.y());
|
||||
return ! (this->max(0) < other.min(0) || this->min(0) > other.max(0) ||
|
||||
this->max(1) < other.min(1) || this->min(1) > other.max(1));
|
||||
}
|
||||
bool operator==(const BoundingBoxBase<PointClass> &rhs) { return this->min == rhs.min && this->max == rhs.max; }
|
||||
bool operator!=(const BoundingBoxBase<PointClass> &rhs) { return ! (*this == rhs); }
|
||||
@ -69,7 +69,7 @@ public:
|
||||
BoundingBox3Base() : BoundingBoxBase<PointClass>() {};
|
||||
BoundingBox3Base(const PointClass &pmin, const PointClass &pmax) :
|
||||
BoundingBoxBase<PointClass>(pmin, pmax)
|
||||
{ if (pmin.z() >= pmax.z()) BoundingBoxBase<PointClass>::defined = false; }
|
||||
{ if (pmin(2) >= pmax(2)) BoundingBoxBase<PointClass>::defined = false; }
|
||||
BoundingBox3Base(const std::vector<PointClass>& points)
|
||||
: BoundingBoxBase<PointClass>(points)
|
||||
{
|
||||
@ -77,13 +77,13 @@ public:
|
||||
CONFESS("Empty point set supplied to BoundingBox3Base constructor");
|
||||
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min.z() = this->max.z() = it->z();
|
||||
this->min(2) = this->max(2) = (*it)(2);
|
||||
for (++it; it != points.end(); ++it)
|
||||
{
|
||||
this->min.z() = std::min(it->z(), this->min.z());
|
||||
this->max.z() = std::max(it->z(), this->max.z());
|
||||
this->min(2) = std::min((*it)(2), this->min(2));
|
||||
this->max(2) = std::max((*it)(2), this->max(2));
|
||||
}
|
||||
this->defined &= (this->min.z() < this->max.z());
|
||||
this->defined &= (this->min(2) < this->max(2));
|
||||
}
|
||||
void merge(const PointClass &point);
|
||||
void merge(const std::vector<PointClass> &points);
|
||||
@ -97,7 +97,7 @@ public:
|
||||
coordf_t max_size() const;
|
||||
|
||||
bool contains(const PointClass &point) const {
|
||||
return BoundingBoxBase<PointClass>::contains(point) && point.z() >= this->min.z() && point.z() <= this->max.z();
|
||||
return BoundingBoxBase<PointClass>::contains(point) && point(2) >= this->min(2) && point(2) <= this->max(2);
|
||||
}
|
||||
|
||||
bool contains(const BoundingBox3Base<PointClass>& other) const {
|
||||
@ -105,7 +105,7 @@ public:
|
||||
}
|
||||
|
||||
bool intersects(const BoundingBox3Base<PointClass>& other) const {
|
||||
return (this->min.x() < other.max.x()) && (this->max.x() > other.min.x()) && (this->min.y() < other.max.y()) && (this->max.y() > other.min.y()) && (this->min.z() < other.max.z()) && (this->max.z() > other.min.z());
|
||||
return (this->min(0) < other.max(0)) && (this->max(0) > other.min(0)) && (this->min(1) < other.max(1)) && (this->max(1) > other.min(1)) && (this->min(2) < other.max(2)) && (this->max(2) > other.min(2));
|
||||
}
|
||||
};
|
||||
|
||||
@ -159,13 +159,13 @@ public:
|
||||
template<typename VT>
|
||||
inline bool empty(const BoundingBoxBase<VT> &bb)
|
||||
{
|
||||
return ! bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y();
|
||||
return ! bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1);
|
||||
}
|
||||
|
||||
template<typename VT>
|
||||
inline bool empty(const BoundingBox3Base<VT> &bb)
|
||||
{
|
||||
return ! bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y() || bb.min.z() >= bb.max.z();
|
||||
return ! bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1) || bb.min(2) >= bb.max(2);
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -102,16 +102,16 @@ bool BridgeDetector::detect_angle(double bridge_direction_override)
|
||||
// Get an oriented bounding box around _anchor_regions.
|
||||
BoundingBox bbox = get_extents_rotated(this->_anchor_regions, - angle);
|
||||
// Cover the region with line segments.
|
||||
lines.reserve((bbox.max.y() - bbox.min.y() + this->spacing) / this->spacing);
|
||||
lines.reserve((bbox.max(1) - bbox.min(1) + this->spacing) / this->spacing);
|
||||
double s = sin(angle);
|
||||
double c = cos(angle);
|
||||
//FIXME Vojtech: The lines shall be spaced half the line width from the edge, but then
|
||||
// some of the test cases fail. Need to adjust the test cases then?
|
||||
// for (coord_t y = bbox.min.y() + this->spacing / 2; y <= bbox.max.y(); y += this->spacing)
|
||||
for (coord_t y = bbox.min.y(); y <= bbox.max.y(); y += this->spacing)
|
||||
// for (coord_t y = bbox.min(1) + this->spacing / 2; y <= bbox.max(1); y += this->spacing)
|
||||
for (coord_t y = bbox.min(1); y <= bbox.max(1); y += this->spacing)
|
||||
lines.push_back(Line(
|
||||
Point((coord_t)round(c * bbox.min.x() - s * y), (coord_t)round(c * y + s * bbox.min.x())),
|
||||
Point((coord_t)round(c * bbox.max.x() - s * y), (coord_t)round(c * y + s * bbox.max.x()))));
|
||||
Point((coord_t)round(c * bbox.min(0) - s * y), (coord_t)round(c * y + s * bbox.min(0))),
|
||||
Point((coord_t)round(c * bbox.max(0) - s * y), (coord_t)round(c * y + s * bbox.max(0)))));
|
||||
}
|
||||
|
||||
double total_length = 0;
|
||||
|
@ -171,7 +171,7 @@ Slic3rMultiPoint_to_ClipperPath(const MultiPoint &input)
|
||||
{
|
||||
ClipperLib::Path retval;
|
||||
for (Points::const_iterator pit = input.points.begin(); pit != input.points.end(); ++pit)
|
||||
retval.push_back(ClipperLib::IntPoint( (*pit).x(), (*pit).y() ));
|
||||
retval.push_back(ClipperLib::IntPoint( (*pit)(0), (*pit)(1) ));
|
||||
return retval;
|
||||
}
|
||||
|
||||
@ -181,7 +181,7 @@ Slic3rMultiPoint_to_ClipperPath_reversed(const Slic3r::MultiPoint &input)
|
||||
ClipperLib::Path output;
|
||||
output.reserve(input.points.size());
|
||||
for (Slic3r::Points::const_reverse_iterator pit = input.points.rbegin(); pit != input.points.rend(); ++pit)
|
||||
output.push_back(ClipperLib::IntPoint( (*pit).x(), (*pit).y() ));
|
||||
output.push_back(ClipperLib::IntPoint( (*pit)(0), (*pit)(1) ));
|
||||
return output;
|
||||
}
|
||||
|
||||
|
@ -637,9 +637,9 @@ public:
|
||||
std::string serialize() const override
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << this->value.x();
|
||||
ss << this->value(0);
|
||||
ss << ",";
|
||||
ss << this->value.y();
|
||||
ss << this->value(1);
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -647,8 +647,8 @@ public:
|
||||
{
|
||||
UNUSED(append);
|
||||
char dummy;
|
||||
return sscanf(str.data(), " %lf , %lf %c", &this->value.x(), &this->value.y(), &dummy) == 2 ||
|
||||
sscanf(str.data(), " %lf x %lf %c", &this->value.x(), &this->value.y(), &dummy) == 2;
|
||||
return sscanf(str.data(), " %lf , %lf %c", &this->value(0), &this->value(1), &dummy) == 2 ||
|
||||
sscanf(str.data(), " %lf x %lf %c", &this->value(0), &this->value(1), &dummy) == 2;
|
||||
}
|
||||
};
|
||||
|
||||
@ -671,9 +671,9 @@ public:
|
||||
std::ostringstream ss;
|
||||
for (Pointfs::const_iterator it = this->values.begin(); it != this->values.end(); ++it) {
|
||||
if (it - this->values.begin() != 0) ss << ",";
|
||||
ss << it->x();
|
||||
ss << (*it)(0);
|
||||
ss << "x";
|
||||
ss << it->y();
|
||||
ss << (*it)(1);
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
@ -700,9 +700,9 @@ public:
|
||||
std::istringstream iss(point_str);
|
||||
std::string coord_str;
|
||||
if (std::getline(iss, coord_str, 'x')) {
|
||||
std::istringstream(coord_str) >> point.x();
|
||||
std::istringstream(coord_str) >> point(0);
|
||||
if (std::getline(iss, coord_str, 'x')) {
|
||||
std::istringstream(coord_str) >> point.y();
|
||||
std::istringstream(coord_str) >> point(1);
|
||||
}
|
||||
}
|
||||
this->values.push_back(point);
|
||||
|
@ -117,15 +117,15 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
m_bbox.merge(pts[j]);
|
||||
}
|
||||
coord_t eps = 16;
|
||||
m_bbox.min.x() -= eps;
|
||||
m_bbox.min.y() -= eps;
|
||||
m_bbox.max.x() += eps;
|
||||
m_bbox.max.y() += eps;
|
||||
m_bbox.min(0) -= eps;
|
||||
m_bbox.min(1) -= eps;
|
||||
m_bbox.max(0) += eps;
|
||||
m_bbox.max(1) += eps;
|
||||
|
||||
// 2) Initialize the edge grid.
|
||||
m_resolution = resolution;
|
||||
m_cols = (m_bbox.max.x() - m_bbox.min.x() + m_resolution - 1) / m_resolution;
|
||||
m_rows = (m_bbox.max.y() - m_bbox.min.y() + m_resolution - 1) / m_resolution;
|
||||
m_cols = (m_bbox.max(0) - m_bbox.min(0) + m_resolution - 1) / m_resolution;
|
||||
m_rows = (m_bbox.max(1) - m_bbox.min(1) + m_resolution - 1) / m_resolution;
|
||||
m_cells.assign(m_rows * m_cols, Cell());
|
||||
|
||||
// 3) First round of contour rasterization, count the edges per grid cell.
|
||||
@ -135,15 +135,15 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
// End points of the line segment.
|
||||
Slic3r::Point p1(pts[j]);
|
||||
Slic3r::Point p2 = pts[(j + 1 == pts.size()) ? 0 : j + 1];
|
||||
p1.x() -= m_bbox.min.x();
|
||||
p1.y() -= m_bbox.min.y();
|
||||
p2.x() -= m_bbox.min.x();
|
||||
p2.y() -= m_bbox.min.y();
|
||||
p1(0) -= m_bbox.min(0);
|
||||
p1(1) -= m_bbox.min(1);
|
||||
p2(0) -= m_bbox.min(0);
|
||||
p2(1) -= m_bbox.min(1);
|
||||
// Get the cells of the end points.
|
||||
coord_t ix = p1.x() / m_resolution;
|
||||
coord_t iy = p1.y() / m_resolution;
|
||||
coord_t ixb = p2.x() / m_resolution;
|
||||
coord_t iyb = p2.y() / m_resolution;
|
||||
coord_t ix = p1(0) / m_resolution;
|
||||
coord_t iy = p1(1) / m_resolution;
|
||||
coord_t ixb = p2(0) / m_resolution;
|
||||
coord_t iyb = p2(1) / m_resolution;
|
||||
assert(ix >= 0 && ix < m_cols);
|
||||
assert(iy >= 0 && iy < m_rows);
|
||||
assert(ixb >= 0 && ixb < m_cols);
|
||||
@ -154,13 +154,13 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
// Both ends fall into the same cell.
|
||||
continue;
|
||||
// Raster the centeral part of the line.
|
||||
coord_t dx = std::abs(p2.x() - p1.x());
|
||||
coord_t dy = std::abs(p2.y() - p1.y());
|
||||
if (p1.x() < p2.x()) {
|
||||
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x()) * int64_t(dy);
|
||||
if (p1.y() < p2.y()) {
|
||||
coord_t dx = std::abs(p2(0) - p1(0));
|
||||
coord_t dy = std::abs(p2(1) - p1(1));
|
||||
if (p1(0) < p2(0)) {
|
||||
int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy);
|
||||
if (p1(1) < p2(1)) {
|
||||
// x positive, y positive
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
||||
do {
|
||||
assert(ix <= ixb && iy <= iyb);
|
||||
if (ex < ey) {
|
||||
@ -185,7 +185,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
}
|
||||
else {
|
||||
// x positive, y non positive
|
||||
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
|
||||
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
||||
do {
|
||||
assert(ix <= ixb && iy >= iyb);
|
||||
if (ex <= ey) {
|
||||
@ -203,10 +203,10 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
}
|
||||
}
|
||||
else {
|
||||
int64_t ex = int64_t(p1.x() - ix*m_resolution) * int64_t(dy);
|
||||
if (p1.y() < p2.y()) {
|
||||
int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy);
|
||||
if (p1(1) < p2(1)) {
|
||||
// x non positive, y positive
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
||||
do {
|
||||
assert(ix >= ixb && iy <= iyb);
|
||||
if (ex < ey) {
|
||||
@ -225,7 +225,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
}
|
||||
else {
|
||||
// x non positive, y non positive
|
||||
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
|
||||
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
||||
do {
|
||||
assert(ix >= ixb && iy >= iyb);
|
||||
if (ex < ey) {
|
||||
@ -279,15 +279,15 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
// End points of the line segment.
|
||||
Slic3r::Point p1(pts[j]);
|
||||
Slic3r::Point p2 = pts[(j + 1 == pts.size()) ? 0 : j + 1];
|
||||
p1.x() -= m_bbox.min.x();
|
||||
p1.y() -= m_bbox.min.y();
|
||||
p2.x() -= m_bbox.min.x();
|
||||
p2.y() -= m_bbox.min.y();
|
||||
p1(0) -= m_bbox.min(0);
|
||||
p1(1) -= m_bbox.min(1);
|
||||
p2(0) -= m_bbox.min(0);
|
||||
p2(1) -= m_bbox.min(1);
|
||||
// Get the cells of the end points.
|
||||
coord_t ix = p1.x() / m_resolution;
|
||||
coord_t iy = p1.y() / m_resolution;
|
||||
coord_t ixb = p2.x() / m_resolution;
|
||||
coord_t iyb = p2.y() / m_resolution;
|
||||
coord_t ix = p1(0) / m_resolution;
|
||||
coord_t iy = p1(1) / m_resolution;
|
||||
coord_t ixb = p2(0) / m_resolution;
|
||||
coord_t iyb = p2(1) / m_resolution;
|
||||
assert(ix >= 0 && ix < m_cols);
|
||||
assert(iy >= 0 && iy < m_rows);
|
||||
assert(ixb >= 0 && ixb < m_cols);
|
||||
@ -298,13 +298,13 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
// Both ends fall into the same cell.
|
||||
continue;
|
||||
// Raster the centeral part of the line.
|
||||
coord_t dx = std::abs(p2.x() - p1.x());
|
||||
coord_t dy = std::abs(p2.y() - p1.y());
|
||||
if (p1.x() < p2.x()) {
|
||||
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x()) * int64_t(dy);
|
||||
if (p1.y() < p2.y()) {
|
||||
coord_t dx = std::abs(p2(0) - p1(0));
|
||||
coord_t dy = std::abs(p2(1) - p1(1));
|
||||
if (p1(0) < p2(0)) {
|
||||
int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy);
|
||||
if (p1(1) < p2(1)) {
|
||||
// x positive, y positive
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
||||
do {
|
||||
assert(ix <= ixb && iy <= iyb);
|
||||
if (ex < ey) {
|
||||
@ -329,7 +329,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
}
|
||||
else {
|
||||
// x positive, y non positive
|
||||
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
|
||||
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
||||
do {
|
||||
assert(ix <= ixb && iy >= iyb);
|
||||
if (ex <= ey) {
|
||||
@ -347,10 +347,10 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
}
|
||||
}
|
||||
else {
|
||||
int64_t ex = int64_t(p1.x() - ix*m_resolution) * int64_t(dy);
|
||||
if (p1.y() < p2.y()) {
|
||||
int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy);
|
||||
if (p1(1) < p2(1)) {
|
||||
// x non positive, y positive
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
||||
do {
|
||||
assert(ix >= ixb && iy <= iyb);
|
||||
if (ex < ey) {
|
||||
@ -369,7 +369,7 @@ void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
||||
}
|
||||
else {
|
||||
// x non positive, y non positive
|
||||
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
|
||||
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
||||
do {
|
||||
assert(ix >= ixb && iy >= iyb);
|
||||
if (ex < ey) {
|
||||
@ -429,15 +429,15 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
|
||||
Point p1 = p1src;
|
||||
Point p2 = p2src;
|
||||
// Discretize the line segment p1, p2.
|
||||
p1.x() -= m_bbox.min.x();
|
||||
p1.y() -= m_bbox.min.y();
|
||||
p2.x() -= m_bbox.min.x();
|
||||
p2.y() -= m_bbox.min.y();
|
||||
p1(0) -= m_bbox.min(0);
|
||||
p1(1) -= m_bbox.min(1);
|
||||
p2(0) -= m_bbox.min(0);
|
||||
p2(1) -= m_bbox.min(1);
|
||||
// Get the cells of the end points.
|
||||
coord_t ix = div_floor(p1.x(), m_resolution);
|
||||
coord_t iy = div_floor(p1.y(), m_resolution);
|
||||
coord_t ixb = div_floor(p2.x(), m_resolution);
|
||||
coord_t iyb = div_floor(p2.y(), m_resolution);
|
||||
coord_t ix = div_floor(p1(0), m_resolution);
|
||||
coord_t iy = div_floor(p1(1), m_resolution);
|
||||
coord_t ixb = div_floor(p2(0), m_resolution);
|
||||
coord_t iyb = div_floor(p2(1), m_resolution);
|
||||
// assert(ix >= 0 && ix < m_cols);
|
||||
// assert(iy >= 0 && iy < m_rows);
|
||||
// assert(ixb >= 0 && ixb < m_cols);
|
||||
@ -449,12 +449,12 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
|
||||
// Both ends fall into the same cell.
|
||||
continue;
|
||||
// Raster the centeral part of the line.
|
||||
coord_t dx = std::abs(p2.x() - p1.x());
|
||||
coord_t dy = std::abs(p2.y() - p1.y());
|
||||
if (p1.x() < p2.x()) {
|
||||
int64_t ex = int64_t((ix + 1)*m_resolution - p1.x()) * int64_t(dy);
|
||||
if (p1.y() < p2.y()) {
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
|
||||
coord_t dx = std::abs(p2(0) - p1(0));
|
||||
coord_t dy = std::abs(p2(1) - p1(1));
|
||||
if (p1(0) < p2(0)) {
|
||||
int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy);
|
||||
if (p1(1) < p2(1)) {
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
||||
do {
|
||||
assert(ix <= ixb && iy <= iyb);
|
||||
if (ex < ey) {
|
||||
@ -479,7 +479,7 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
|
||||
} while (ix != ixb || iy != iyb);
|
||||
}
|
||||
else {
|
||||
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
|
||||
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
||||
do {
|
||||
assert(ix <= ixb && iy >= iyb);
|
||||
if (ex <= ey) {
|
||||
@ -498,9 +498,9 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
|
||||
}
|
||||
}
|
||||
else {
|
||||
int64_t ex = int64_t(p1.x() - ix*m_resolution) * int64_t(dy);
|
||||
if (p1.y() < p2.y()) {
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1.y()) * int64_t(dx);
|
||||
int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy);
|
||||
if (p1(1) < p2(1)) {
|
||||
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
||||
do {
|
||||
assert(ix >= ixb && iy <= iyb);
|
||||
if (ex < ey) {
|
||||
@ -519,7 +519,7 @@ bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
|
||||
} while (ix != ixb || iy != iyb);
|
||||
}
|
||||
else {
|
||||
int64_t ey = int64_t(p1.y() - iy*m_resolution) * int64_t(dx);
|
||||
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
||||
do {
|
||||
assert(ix >= ixb && iy >= iyb);
|
||||
if (ex < ey) {
|
||||
@ -556,8 +556,8 @@ bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, con
|
||||
{
|
||||
BoundingBox bbox(p1a, p1a);
|
||||
bbox.merge(p2a);
|
||||
int64_t va_x = p2a.x() - p1a.x();
|
||||
int64_t va_y = p2a.y() - p1a.y();
|
||||
int64_t va_x = p2a(0) - p1a(0);
|
||||
int64_t va_y = p2a(1) - p1a(1);
|
||||
for (size_t i = cell.begin; i != cell.end; ++ i) {
|
||||
const std::pair<size_t, size_t> &cell_data = m_cell_data[i];
|
||||
// Contour indexed by the ith line of this cell.
|
||||
@ -576,21 +576,21 @@ bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, con
|
||||
if (! bbox.overlap(bbox2))
|
||||
continue;
|
||||
// Now intersect the two line segments using exact arithmetics.
|
||||
int64_t w1_x = p1b.x() - p1a.x();
|
||||
int64_t w1_y = p1b.y() - p1a.y();
|
||||
int64_t w2_x = p2b.x() - p1a.x();
|
||||
int64_t w2_y = p2b.y() - p1a.y();
|
||||
int64_t w1_x = p1b(0) - p1a(0);
|
||||
int64_t w1_y = p1b(1) - p1a(1);
|
||||
int64_t w2_x = p2b(0) - p1a(0);
|
||||
int64_t w2_y = p2b(1) - p1a(1);
|
||||
int64_t side1 = va_x * w1_y - va_y * w1_x;
|
||||
int64_t side2 = va_x * w2_y - va_y * w2_x;
|
||||
if (side1 == side2 && side1 != 0)
|
||||
// The line segments don't intersect.
|
||||
continue;
|
||||
w1_x = p1a.x() - p1b.x();
|
||||
w1_y = p1a.y() - p1b.y();
|
||||
w2_x = p2a.x() - p1b.x();
|
||||
w2_y = p2a.y() - p1b.y();
|
||||
int64_t vb_x = p2b.x() - p1b.x();
|
||||
int64_t vb_y = p2b.y() - p1b.y();
|
||||
w1_x = p1a(0) - p1b(0);
|
||||
w1_y = p1a(1) - p1b(1);
|
||||
w2_x = p2a(0) - p1b(0);
|
||||
w2_y = p2a(1) - p1b(1);
|
||||
int64_t vb_x = p2b(0) - p1b(0);
|
||||
int64_t vb_y = p2b(1) - p1b(1);
|
||||
side1 = vb_x * w1_y - vb_y * w1_x;
|
||||
side2 = vb_x * w2_y - vb_y * w2_x;
|
||||
if (side1 == side2 && side1 != 0)
|
||||
@ -607,13 +607,13 @@ bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, con
|
||||
bool EdgeGrid::Grid::inside(const Point &pt_src)
|
||||
{
|
||||
Point p = pt_src;
|
||||
p.x() -= m_bbox.min.x();
|
||||
p.y() -= m_bbox.min.y();
|
||||
p(0) -= m_bbox.min(0);
|
||||
p(1) -= m_bbox.min(1);
|
||||
// Get the cell of the point.
|
||||
if (p.x() < 0 || p.y() < 0)
|
||||
if (p(0) < 0 || p(1) < 0)
|
||||
return false;
|
||||
coord_t ix = p.x() / m_resolution;
|
||||
coord_t iy = p.y() / m_resolution;
|
||||
coord_t ix = p(0) / m_resolution;
|
||||
coord_t iy = p(1) / m_resolution;
|
||||
if (ix >= this->m_cols || iy >= this->m_rows)
|
||||
return false;
|
||||
|
||||
@ -634,21 +634,21 @@ bool EdgeGrid::Grid::inside(const Point &pt_src)
|
||||
idx2 = 0;
|
||||
const Point &p1 = contour[idx1];
|
||||
const Point &p2 = contour[idx2];
|
||||
if (p1.y() < p2.y()) {
|
||||
if (p.y() < p1.y() || p.y() > p2.y())
|
||||
if (p1(1) < p2(1)) {
|
||||
if (p(1) < p1(1) || p(1) > p2(1))
|
||||
continue;
|
||||
//FIXME finish this!
|
||||
int64_t vx = 0;// pt_src
|
||||
//FIXME finish this!
|
||||
int64_t det = 0;
|
||||
} else if (p1.y() != p2.y()) {
|
||||
assert(p1.y() > p2.y());
|
||||
if (p.y() < p2.y() || p.y() > p1.y())
|
||||
} else if (p1(1) != p2(1)) {
|
||||
assert(p1(1) > p2(1));
|
||||
if (p(1) < p2(1) || p(1) > p1(1))
|
||||
continue;
|
||||
} else {
|
||||
assert(p1.y() == p2.y());
|
||||
if (p1.y() == p.y()) {
|
||||
if (p.x() >= p1.x() && p.x() <= p2.x())
|
||||
assert(p1(1) == p2(1));
|
||||
if (p1(1) == p(1)) {
|
||||
if (p(0) >= p1(0) && p(0) <= p2(0))
|
||||
// On the segment.
|
||||
return true;
|
||||
// Before or after the segment.
|
||||
@ -769,7 +769,7 @@ void EdgeGrid::Grid::calculate_sdf()
|
||||
// Segment vector
|
||||
const Slic3r::Point v_seg = p2 - p1;
|
||||
// l2 of v_seg
|
||||
const int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y());
|
||||
const int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
|
||||
// For each corner of this cell and its 1 ring neighbours:
|
||||
for (int corner_y = -1; corner_y < 3; ++ corner_y) {
|
||||
coord_t corner_r = r + corner_y;
|
||||
@ -780,28 +780,28 @@ void EdgeGrid::Grid::calculate_sdf()
|
||||
if (corner_c < 0 || corner_c >= ncols)
|
||||
continue;
|
||||
float &d_min = m_signed_distance_field[corner_r * ncols + corner_c];
|
||||
Slic3r::Point pt(m_bbox.min.x() + corner_c * m_resolution, m_bbox.min.y() + corner_r * m_resolution);
|
||||
Slic3r::Point pt(m_bbox.min(0) + corner_c * m_resolution, m_bbox.min(1) + corner_r * m_resolution);
|
||||
Slic3r::Point v_pt = pt - p1;
|
||||
// dot(p2-p1, pt-p1)
|
||||
int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y());
|
||||
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
|
||||
if (t_pt < 0) {
|
||||
// Closest to p1.
|
||||
double dabs = sqrt(int64_t(v_pt.x()) * int64_t(v_pt.x()) + int64_t(v_pt.y()) * int64_t(v_pt.y()));
|
||||
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
|
||||
if (dabs < d_min) {
|
||||
// Previous point.
|
||||
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
|
||||
Slic3r::Point v_seg_prev = p1 - p0;
|
||||
int64_t t2_pt = int64_t(v_seg_prev.x()) * int64_t(v_pt.x()) + int64_t(v_seg_prev.y()) * int64_t(v_pt.y());
|
||||
int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1));
|
||||
if (t2_pt > 0) {
|
||||
// Inside the wedge between the previous and the next segment.
|
||||
// Set the signum depending on whether the vertex is convex or reflex.
|
||||
int64_t det = int64_t(v_seg_prev.x()) * int64_t(v_seg.y()) - int64_t(v_seg_prev.y()) * int64_t(v_seg.x());
|
||||
int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0));
|
||||
assert(det != 0);
|
||||
d_min = dabs;
|
||||
// Fill in an unsigned vector towards the zero iso surface.
|
||||
float *l = &L[(corner_r * ncols + corner_c) << 1];
|
||||
l[0] = std::abs(v_pt.x());
|
||||
l[1] = std::abs(v_pt.y());
|
||||
l[0] = std::abs(v_pt(0));
|
||||
l[1] = std::abs(v_pt(1));
|
||||
#ifdef _DEBUG
|
||||
double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]);
|
||||
assert(std::abs(dabs-dabs2) < 1e-4 * std::max(dabs, dabs2));
|
||||
@ -816,7 +816,7 @@ void EdgeGrid::Grid::calculate_sdf()
|
||||
} else {
|
||||
// Closest to the segment.
|
||||
assert(t_pt >= 0 && t_pt <= l2_seg);
|
||||
int64_t d_seg = int64_t(v_seg.y()) * int64_t(v_pt.x()) - int64_t(v_seg.x()) * int64_t(v_pt.y());
|
||||
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
|
||||
double d = double(d_seg) / sqrt(double(l2_seg));
|
||||
double dabs = std::abs(d);
|
||||
if (dabs < d_min) {
|
||||
@ -824,8 +824,8 @@ void EdgeGrid::Grid::calculate_sdf()
|
||||
// Fill in an unsigned vector towards the zero iso surface.
|
||||
float *l = &L[(corner_r * ncols + corner_c) << 1];
|
||||
float linv = float(d_seg) / float(l2_seg);
|
||||
l[0] = std::abs(float(v_seg.y()) * linv);
|
||||
l[1] = std::abs(float(v_seg.x()) * linv);
|
||||
l[0] = std::abs(float(v_seg(1)) * linv);
|
||||
l[1] = std::abs(float(v_seg(0)) * linv);
|
||||
#ifdef _DEBUG
|
||||
double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]);
|
||||
assert(std::abs(dabs-dabs2) <= 1e-4 * std::max(dabs, dabs2));
|
||||
@ -1059,8 +1059,8 @@ void EdgeGrid::Grid::calculate_sdf()
|
||||
|
||||
float EdgeGrid::Grid::signed_distance_bilinear(const Point &pt) const
|
||||
{
|
||||
coord_t x = pt.x() - m_bbox.min.x();
|
||||
coord_t y = pt.y() - m_bbox.min.y();
|
||||
coord_t x = pt(0) - m_bbox.min(0);
|
||||
coord_t y = pt(1) - m_bbox.min(1);
|
||||
coord_t w = m_resolution * m_cols;
|
||||
coord_t h = m_resolution * m_rows;
|
||||
bool clamped = false;
|
||||
@ -1124,39 +1124,39 @@ float EdgeGrid::Grid::signed_distance_bilinear(const Point &pt) const
|
||||
|
||||
bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment) const {
|
||||
BoundingBox bbox;
|
||||
bbox.min = bbox.max = Point(pt.x() - m_bbox.min.x(), pt.y() - m_bbox.min.y());
|
||||
bbox.min = bbox.max = Point(pt(0) - m_bbox.min(0), pt(1) - m_bbox.min(1));
|
||||
bbox.defined = true;
|
||||
// Upper boundary, round to grid and test validity.
|
||||
bbox.max.x() += search_radius;
|
||||
bbox.max.y() += search_radius;
|
||||
if (bbox.max.x() < 0 || bbox.max.y() < 0)
|
||||
bbox.max(0) += search_radius;
|
||||
bbox.max(1) += search_radius;
|
||||
if (bbox.max(0) < 0 || bbox.max(1) < 0)
|
||||
return false;
|
||||
bbox.max.x() /= m_resolution;
|
||||
bbox.max.y() /= m_resolution;
|
||||
if (bbox.max.x() >= m_cols)
|
||||
bbox.max.x() = m_cols - 1;
|
||||
if (bbox.max.y() >= m_rows)
|
||||
bbox.max.y() = m_rows - 1;
|
||||
bbox.max(0) /= m_resolution;
|
||||
bbox.max(1) /= m_resolution;
|
||||
if (bbox.max(0) >= m_cols)
|
||||
bbox.max(0) = m_cols - 1;
|
||||
if (bbox.max(1) >= m_rows)
|
||||
bbox.max(1) = m_rows - 1;
|
||||
// Lower boundary, round to grid and test validity.
|
||||
bbox.min.x() -= search_radius;
|
||||
bbox.min.y() -= search_radius;
|
||||
if (bbox.min.x() < 0)
|
||||
bbox.min.x() = 0;
|
||||
if (bbox.min.y() < 0)
|
||||
bbox.min.y() = 0;
|
||||
bbox.min.x() /= m_resolution;
|
||||
bbox.min.y() /= m_resolution;
|
||||
bbox.min(0) -= search_radius;
|
||||
bbox.min(1) -= search_radius;
|
||||
if (bbox.min(0) < 0)
|
||||
bbox.min(0) = 0;
|
||||
if (bbox.min(1) < 0)
|
||||
bbox.min(1) = 0;
|
||||
bbox.min(0) /= m_resolution;
|
||||
bbox.min(1) /= m_resolution;
|
||||
// Is the interval empty?
|
||||
if (bbox.min.x() > bbox.max.x() ||
|
||||
bbox.min.y() > bbox.max.y())
|
||||
if (bbox.min(0) > bbox.max(0) ||
|
||||
bbox.min(1) > bbox.max(1))
|
||||
return false;
|
||||
// Traverse all cells in the bounding box.
|
||||
float d_min = search_radius;
|
||||
// Signum of the distance field at pt.
|
||||
int sign_min = 0;
|
||||
bool on_segment = false;
|
||||
for (int r = bbox.min.y(); r <= bbox.max.y(); ++ r) {
|
||||
for (int c = bbox.min.x(); c <= bbox.max.x(); ++ c) {
|
||||
for (int r = bbox.min(1); r <= bbox.max(1); ++ r) {
|
||||
for (int c = bbox.min(0); c <= bbox.max(0); ++ c) {
|
||||
const Cell &cell = m_cells[r * m_cols + c];
|
||||
for (size_t i = cell.begin; i < cell.end; ++ i) {
|
||||
const Slic3r::Points &pts = *m_contours[m_cell_data[i].first];
|
||||
@ -1167,22 +1167,22 @@ bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radiu
|
||||
Slic3r::Point v_seg = p2 - p1;
|
||||
Slic3r::Point v_pt = pt - p1;
|
||||
// dot(p2-p1, pt-p1)
|
||||
int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y());
|
||||
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
|
||||
// l2 of seg
|
||||
int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y());
|
||||
int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
|
||||
if (t_pt < 0) {
|
||||
// Closest to p1.
|
||||
double dabs = sqrt(int64_t(v_pt.x()) * int64_t(v_pt.x()) + int64_t(v_pt.y()) * int64_t(v_pt.y()));
|
||||
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
|
||||
if (dabs < d_min) {
|
||||
// Previous point.
|
||||
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
|
||||
Slic3r::Point v_seg_prev = p1 - p0;
|
||||
int64_t t2_pt = int64_t(v_seg_prev.x()) * int64_t(v_pt.x()) + int64_t(v_seg_prev.y()) * int64_t(v_pt.y());
|
||||
int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1));
|
||||
if (t2_pt > 0) {
|
||||
// Inside the wedge between the previous and the next segment.
|
||||
d_min = dabs;
|
||||
// Set the signum depending on whether the vertex is convex or reflex.
|
||||
int64_t det = int64_t(v_seg_prev.x()) * int64_t(v_seg.y()) - int64_t(v_seg_prev.y()) * int64_t(v_seg.x());
|
||||
int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0));
|
||||
assert(det != 0);
|
||||
sign_min = (det > 0) ? 1 : -1;
|
||||
on_segment = false;
|
||||
@ -1195,7 +1195,7 @@ bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radiu
|
||||
} else {
|
||||
// Closest to the segment.
|
||||
assert(t_pt >= 0 && t_pt <= l2_seg);
|
||||
int64_t d_seg = int64_t(v_seg.y()) * int64_t(v_pt.x()) - int64_t(v_seg.x()) * int64_t(v_pt.y());
|
||||
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
|
||||
double d = double(d_seg) / sqrt(double(l2_seg));
|
||||
double dabs = std::abs(d);
|
||||
if (dabs < d_min) {
|
||||
@ -1307,7 +1307,7 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
|
||||
const Line &line_next = lines[it->second];
|
||||
const Vector v1 = line_current.vector();
|
||||
const Vector v2 = line_next.vector();
|
||||
int64_t cross = int64_t(v1.x()) * int64_t(v2.y()) - int64_t(v2.x()) * int64_t(v1.y());
|
||||
int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v2(0)) * int64_t(v1(1));
|
||||
if (cross > 0) {
|
||||
// This has to be a convex right angle. There is no better next line.
|
||||
i_next = it->second;
|
||||
@ -1328,10 +1328,10 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
|
||||
Polygon &poly = out[i];
|
||||
for (size_t j = 0; j < poly.points.size(); ++ j) {
|
||||
Point &p = poly.points[j];
|
||||
p.x() *= m_resolution;
|
||||
p.y() *= m_resolution;
|
||||
p.x() += m_bbox.min.x();
|
||||
p.y() += m_bbox.min.y();
|
||||
p(0) *= m_resolution;
|
||||
p(1) *= m_resolution;
|
||||
p(0) += m_bbox.min(0);
|
||||
p(1) += m_bbox.min(1);
|
||||
}
|
||||
// Shrink the contour slightly, so if the same contour gets discretized and simplified again, one will get the same result.
|
||||
// Remove collineaer points.
|
||||
@ -1341,11 +1341,11 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
|
||||
size_t j0 = (j == 0) ? poly.points.size() - 1 : j - 1;
|
||||
size_t j2 = (j + 1 == poly.points.size()) ? 0 : j + 1;
|
||||
Point v = poly.points[j2] - poly.points[j0];
|
||||
if (v.x() != 0 && v.y() != 0) {
|
||||
if (v(0) != 0 && v(1) != 0) {
|
||||
// This is a corner point. Copy it to the output contour.
|
||||
Point p = poly.points[j];
|
||||
p.y() += (v.x() < 0) ? - offset : offset;
|
||||
p.x() += (v.y() > 0) ? - offset : offset;
|
||||
p(1) += (v(0) < 0) ? - offset : offset;
|
||||
p(0) += (v(1) > 0) ? - offset : offset;
|
||||
pts.push_back(p);
|
||||
}
|
||||
}
|
||||
@ -1357,8 +1357,8 @@ Polygons EdgeGrid::Grid::contours_simplified(coord_t offset) const
|
||||
#if 0
|
||||
void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coord_t resolution, const char *path)
|
||||
{
|
||||
unsigned int w = (bbox.max.x() - bbox.min.x() + resolution - 1) / resolution;
|
||||
unsigned int h = (bbox.max.y() - bbox.min.y() + resolution - 1) / resolution;
|
||||
unsigned int w = (bbox.max(0) - bbox.min(0) + resolution - 1) / resolution;
|
||||
unsigned int h = (bbox.max(1) - bbox.min(1) + resolution - 1) / resolution;
|
||||
wxImage img(w, h);
|
||||
unsigned char *data = img.GetData();
|
||||
memset(data, 0, w * h * 3);
|
||||
@ -1371,7 +1371,7 @@ void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coo
|
||||
for (coord_t r = 0; r < h; ++r) {
|
||||
for (coord_t c = 0; c < w; ++ c) {
|
||||
unsigned char *pxl = data + (((h - r - 1) * w) + c) * 3;
|
||||
Point pt(c * resolution + bbox.min.x(), r * resolution + bbox.min.y());
|
||||
Point pt(c * resolution + bbox.min(0), r * resolution + bbox.min(1));
|
||||
coordf_t min_dist;
|
||||
bool on_segment = true;
|
||||
#if 0
|
||||
@ -1409,8 +1409,8 @@ void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coo
|
||||
pxl[2] = 0;
|
||||
}
|
||||
|
||||
float gridx = float(pt.x() - grid.bbox().min.x()) / float(grid.resolution());
|
||||
float gridy = float(pt.y() - grid.bbox().min.y()) / float(grid.resolution());
|
||||
float gridx = float(pt(0) - grid.bbox().min(0)) / float(grid.resolution());
|
||||
float gridy = float(pt(1) - grid.bbox().min(1)) / float(grid.resolution());
|
||||
if (gridx >= -0.4f && gridy >= -0.4f && gridx <= grid.cols() + 0.4f && gridy <= grid.rows() + 0.4f) {
|
||||
int ix = int(floor(gridx + 0.5f));
|
||||
int iy = int(floor(gridy + 0.5f));
|
||||
|
@ -355,14 +355,14 @@ ExPolygon::get_trapezoids2(Polygons* polygons) const
|
||||
// build rectangle
|
||||
Polygon poly;
|
||||
poly.points.resize(4);
|
||||
poly[0].x() = *x;
|
||||
poly[0].y() = bb.min.y();
|
||||
poly[1].x() = next_x;
|
||||
poly[1].y() = bb.min.y();
|
||||
poly[2].x() = next_x;
|
||||
poly[2].y() = bb.max.y();
|
||||
poly[3].x() = *x;
|
||||
poly[3].y() = bb.max.y();
|
||||
poly[0](0) = *x;
|
||||
poly[0](1) = bb.min(1);
|
||||
poly[1](0) = next_x;
|
||||
poly[1](1) = bb.min(1);
|
||||
poly[2](0) = next_x;
|
||||
poly[2](1) = bb.max(1);
|
||||
poly[3](0) = *x;
|
||||
poly[3](1) = bb.max(1);
|
||||
|
||||
// intersect with this expolygon
|
||||
// append results to return value
|
||||
@ -408,9 +408,10 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
|
||||
TPPLPoly p;
|
||||
p.Init(int(ex->contour.points.size()));
|
||||
//printf(PRINTF_ZU "\n0\n", ex->contour.points.size());
|
||||
for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
|
||||
p[ point-ex->contour.points.begin() ].x = point->x();
|
||||
p[ point-ex->contour.points.begin() ].y = point->y();
|
||||
for (const Point &point : ex->contour.points) {
|
||||
size_t i = &point - &ex->contour.points.front();
|
||||
p[i].x = point(0);
|
||||
p[i].y = point(1);
|
||||
//printf("%ld %ld\n", point->x(), point->y());
|
||||
}
|
||||
p.SetHole(false);
|
||||
@ -422,9 +423,10 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
|
||||
TPPLPoly p;
|
||||
p.Init(hole->points.size());
|
||||
//printf(PRINTF_ZU "\n1\n", hole->points.size());
|
||||
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
|
||||
p[ point-hole->points.begin() ].x = point->x();
|
||||
p[ point-hole->points.begin() ].y = point->y();
|
||||
for (const Point &point : hole->points) {
|
||||
size_t i = &point - &hole->points.front();
|
||||
p[i].x = point(0);
|
||||
p[i].y = point(1);
|
||||
//printf("%ld %ld\n", point->x(), point->y());
|
||||
}
|
||||
p.SetHole(true);
|
||||
@ -443,8 +445,8 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
|
||||
Polygon p;
|
||||
p.points.resize(num_points);
|
||||
for (long i = 0; i < num_points; ++i) {
|
||||
p.points[i].x() = coord_t((*poly)[i].x);
|
||||
p.points[i].y() = coord_t((*poly)[i].y);
|
||||
p.points[i](0) = coord_t((*poly)[i].x);
|
||||
p.points[i](1) = coord_t((*poly)[i].y);
|
||||
}
|
||||
polygons->push_back(p);
|
||||
}
|
||||
@ -460,19 +462,17 @@ ExPolygon::triangulate_p2t(Polygons* polygons) const
|
||||
|
||||
// contour
|
||||
std::vector<p2t::Point*> ContourPoints;
|
||||
for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
|
||||
for (const Point &pt : ex->contour.points)
|
||||
// We should delete each p2t::Point object
|
||||
ContourPoints.push_back(new p2t::Point(point->x(), point->y()));
|
||||
}
|
||||
ContourPoints.push_back(new p2t::Point(pt(0), pt(1)));
|
||||
p2t::CDT cdt(ContourPoints);
|
||||
|
||||
// holes
|
||||
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
|
||||
std::vector<p2t::Point*> points;
|
||||
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
|
||||
for (const Point &pt : hole->points)
|
||||
// will be destructed in SweepContext::~SweepContext
|
||||
points.push_back(new p2t::Point(point->x(), point->y()));
|
||||
}
|
||||
points.push_back(new p2t::Point(pt(0), pt(1)));
|
||||
cdt.AddHole(points);
|
||||
}
|
||||
|
||||
|
@ -965,7 +965,7 @@ void ExtrusionSimulator::extrude_to_accumulator(const ExtrusionPath &path, const
|
||||
for (Points::const_iterator it = path.polyline.points.begin(); it != path.polyline.points.end(); ++ it) {
|
||||
// printf("point %d,%d\n", it->x+shift.x(), it->y+shift.y);
|
||||
ExtrusionPoint ept;
|
||||
ept.center = V2f(float(it->x()+shift.x()-bbox.min.x()) * scalex, float(it->y()+shift.y()-bbox.min.y()) * scaley);
|
||||
ept.center = V2f(float((*it)(0)+shift.x()-bbox.min.x()) * scalex, float((*it)(1)+shift.y()-bbox.min.y()) * scaley);
|
||||
ept.radius = w/2.f;
|
||||
ept.height = 0.5f;
|
||||
polyline.push_back(ept.center);
|
||||
|
@ -55,8 +55,8 @@ static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t b
|
||||
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
|
||||
{
|
||||
for (Pointf &pt : pts) {
|
||||
pt.x() = clamp(minX, maxX, pt.x());
|
||||
pt.y() = clamp(minY, maxY, pt.y());
|
||||
pt(0) = clamp(minX, maxX, pt(0));
|
||||
pt(1) = clamp(minY, maxY, pt(1));
|
||||
}
|
||||
}
|
||||
|
||||
@ -128,7 +128,7 @@ static Polylines makeGrid(coord_t z, coord_t gridSize, size_t gridWidth, size_t
|
||||
result.push_back(Polyline());
|
||||
Polyline &polyline = result.back();
|
||||
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
|
||||
polyline.points.push_back(Point(coord_t(it->x() * scaleFactor), coord_t(it->y() * scaleFactor)));
|
||||
polyline.points.push_back(Point(coord_t((*it)(0) * scaleFactor), coord_t((*it)(1) * scaleFactor)));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@ -153,13 +153,13 @@ void Fill3DHoneycomb::_fill_surface_single(
|
||||
Polylines polylines = makeGrid(
|
||||
scale_(this->z),
|
||||
distance,
|
||||
ceil(bb.size().x() / distance) + 1,
|
||||
ceil(bb.size().y() / distance) + 1,
|
||||
ceil(bb.size()(0) / distance) + 1,
|
||||
ceil(bb.size()(1) / distance) + 1,
|
||||
((this->layer_id/thickness_layers) % 2) + 1);
|
||||
|
||||
// move pattern in place
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it)
|
||||
it->translate(bb.min.x(), bb.min.y());
|
||||
it->translate(bb.min(0), bb.min(1));
|
||||
|
||||
// clip pattern to boundaries
|
||||
polylines = intersection_pl(polylines, (Polygons)expolygon);
|
||||
|
@ -121,11 +121,11 @@ public:
|
||||
return aligned;
|
||||
}
|
||||
static Point _align_to_grid(Point coord, Point spacing)
|
||||
{ return Point(_align_to_grid(coord.x(), spacing.x()), _align_to_grid(coord.y(), spacing.y())); }
|
||||
{ return Point(_align_to_grid(coord(0), spacing(0)), _align_to_grid(coord(1), spacing(1))); }
|
||||
static coord_t _align_to_grid(coord_t coord, coord_t spacing, coord_t base)
|
||||
{ return base + _align_to_grid(coord - base, spacing); }
|
||||
static Point _align_to_grid(Point coord, Point spacing, Point base)
|
||||
{ return Point(_align_to_grid(coord.x(), spacing.x(), base.x()), _align_to_grid(coord.y(), spacing.y(), base.y())); }
|
||||
{ return Point(_align_to_grid(coord(0), spacing(0), base(0)), _align_to_grid(coord(1), spacing(1), base(1))); }
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
@ -20,7 +20,7 @@ void FillConcentric::_fill_surface_single(
|
||||
coord_t distance = coord_t(min_spacing / params.density);
|
||||
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
distance = this->_adjust_solid_spacing(bounding_box.size().x(), distance);
|
||||
distance = this->_adjust_solid_spacing(bounding_box.size()(0), distance);
|
||||
this->spacing = unscale(distance);
|
||||
}
|
||||
|
||||
|
@ -34,21 +34,21 @@ static inline Polyline make_wave(
|
||||
double z_cos, double z_sin, bool vertical)
|
||||
{
|
||||
std::vector<Pointf> points = one_period;
|
||||
double period = points.back().x();
|
||||
double period = points.back()(0);
|
||||
points.pop_back();
|
||||
int n = points.size();
|
||||
do {
|
||||
points.emplace_back(Pointf(points[points.size()-n].x() + period, points[points.size()-n].y()));
|
||||
} while (points.back().x() < width);
|
||||
points.back().x() = width;
|
||||
points.emplace_back(Pointf(points[points.size()-n](0) + period, points[points.size()-n](1)));
|
||||
} while (points.back()(0) < width);
|
||||
points.back()(0) = width;
|
||||
|
||||
// and construct the final polyline to return:
|
||||
Polyline polyline;
|
||||
for (auto& point : points) {
|
||||
point.y() += offset;
|
||||
point.y() = clamp(0., height, double(point.y()));
|
||||
point(1) += offset;
|
||||
point(1) = clamp(0., height, double(point(1)));
|
||||
if (vertical)
|
||||
std::swap(point.x(), point.y());
|
||||
std::swap(point(0), point(1));
|
||||
polyline.points.emplace_back((point * scaleFactor).cast<coord_t>());
|
||||
}
|
||||
|
||||
@ -73,12 +73,12 @@ static std::vector<Pointf> make_one_period(double width, double scaleFactor, dou
|
||||
auto& tp = points[i]; // this point
|
||||
auto& rp = points[i+1]; // right point
|
||||
// calculate distance of the point to the line:
|
||||
double dist_mm = unscale(scaleFactor * std::abs( (rp.y() - lp.y())*tp.x() + (lp.x() - rp.x())*tp.y() + (rp.x()*lp.y() - rp.y()*lp.x()) ) / std::hypot((rp.y() - lp.y()),(lp.x() - rp.x())));
|
||||
double dist_mm = unscale(scaleFactor * std::abs( (rp(1) - lp(1))*tp(0) + (lp(0) - rp(0))*tp(1) + (rp(0)*lp(1) - rp(1)*lp(0)) ) / std::hypot((rp(1) - lp(1)),(lp(0) - rp(0))));
|
||||
|
||||
if (dist_mm > tolerance) { // if the difference from straight line is more than this
|
||||
double x = 0.5f * (points[i-1].x() + points[i].x());
|
||||
double x = 0.5f * (points[i-1](0) + points[i](0));
|
||||
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
x = 0.5f * (points[i+1].x() + points[i].x());
|
||||
x = 0.5f * (points[i+1](0) + points[i](0));
|
||||
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
std::sort(points.begin(), points.end()); // we added the points to the end, but need them all in order
|
||||
--i; // decrement i so we also check the first newly added point
|
||||
@ -143,12 +143,12 @@ void FillGyroid::_fill_surface_single(
|
||||
scale_(this->z),
|
||||
density_adjusted,
|
||||
this->spacing,
|
||||
ceil(bb.size().x() / distance) + 1.,
|
||||
ceil(bb.size().y() / distance) + 1.);
|
||||
ceil(bb.size()(0) / distance) + 1.,
|
||||
ceil(bb.size()(1) / distance) + 1.);
|
||||
|
||||
// move pattern in place
|
||||
for (Polyline &polyline : polylines)
|
||||
polyline.translate(bb.min.x(), bb.min.y());
|
||||
polyline.translate(bb.min(0), bb.min(1));
|
||||
|
||||
// clip pattern to boundaries
|
||||
polylines = intersection_pl(polylines, (Polygons)expolygon);
|
||||
|
@ -50,13 +50,13 @@ void FillHoneycomb::_fill_surface_single(
|
||||
bounding_box.merge(_align_to_grid(bounding_box.min, Point(m.hex_width, m.pattern_height)));
|
||||
}
|
||||
|
||||
coord_t x = bounding_box.min.x();
|
||||
while (x <= bounding_box.max.x()) {
|
||||
coord_t x = bounding_box.min(0);
|
||||
while (x <= bounding_box.max(0)) {
|
||||
Polygon p;
|
||||
coord_t ax[2] = { x + m.x_offset, x + m.distance - m.x_offset };
|
||||
for (size_t i = 0; i < 2; ++ i) {
|
||||
std::reverse(p.points.begin(), p.points.end()); // turn first half upside down
|
||||
for (coord_t y = bounding_box.min.y(); y <= bounding_box.max.y(); y += m.y_short + m.hex_side + m.y_short + m.hex_side) {
|
||||
for (coord_t y = bounding_box.min(1); y <= bounding_box.max(1); y += m.y_short + m.hex_side + m.y_short + m.hex_side) {
|
||||
p.points.push_back(Point(ax[1], y + m.y_offset));
|
||||
p.points.push_back(Point(ax[0], y + m.y_short - m.y_offset));
|
||||
p.points.push_back(Point(ax[0], y + m.y_short + m.hex_side + m.y_offset));
|
||||
|
@ -24,14 +24,14 @@ void FillPlanePath::_fill_surface_single(
|
||||
Point shift = this->_centered() ?
|
||||
bounding_box.center() :
|
||||
bounding_box.min;
|
||||
expolygon.translate(-shift.x(), -shift.y());
|
||||
bounding_box.translate(-shift.x(), -shift.y());
|
||||
expolygon.translate(-shift(0), -shift(1));
|
||||
bounding_box.translate(-shift(0), -shift(1));
|
||||
|
||||
Pointfs pts = _generate(
|
||||
coord_t(ceil(coordf_t(bounding_box.min.x()) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.min.y()) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.max.x()) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.max.y()) / distance_between_lines)));
|
||||
coord_t(ceil(coordf_t(bounding_box.min(0)) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.min(1)) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.max(0)) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.max(1)) / distance_between_lines)));
|
||||
|
||||
Polylines polylines;
|
||||
if (pts.size() >= 2) {
|
||||
@ -41,8 +41,8 @@ void FillPlanePath::_fill_surface_single(
|
||||
polyline.points.reserve(pts.size());
|
||||
for (Pointfs::iterator it = pts.begin(); it != pts.end(); ++ it)
|
||||
polyline.points.push_back(Point(
|
||||
coord_t(floor(it->x() * distance_between_lines + 0.5)),
|
||||
coord_t(floor(it->y() * distance_between_lines + 0.5))));
|
||||
coord_t(floor((*it)(0) * distance_between_lines + 0.5)),
|
||||
coord_t(floor((*it)(1) * distance_between_lines + 0.5))));
|
||||
// intersection(polylines_src, offset((Polygons)expolygon, scale_(0.02)), &polylines);
|
||||
polylines = intersection_pl(polylines, to_polygons(expolygon));
|
||||
|
||||
@ -62,7 +62,7 @@ void FillPlanePath::_fill_surface_single(
|
||||
|
||||
// paths must be repositioned and rotated back
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
|
||||
it->translate(shift.x(), shift.y());
|
||||
it->translate(shift(0), shift(1));
|
||||
it->rotate(direction.first);
|
||||
}
|
||||
}
|
||||
@ -162,7 +162,7 @@ Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x,
|
||||
line.reserve(sz2);
|
||||
for (size_t i = 0; i < sz2; ++ i) {
|
||||
Point p = hilbert_n_to_xy(i);
|
||||
line.push_back(Pointf(p.x() + min_x, p.y() + min_y));
|
||||
line.push_back(Pointf(p(0) + min_x, p(1) + min_y));
|
||||
}
|
||||
return line;
|
||||
}
|
||||
|
@ -26,7 +26,7 @@ void FillRectilinear::_fill_surface_single(
|
||||
|
||||
// define flow spacing according to requested density
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x(), this->_line_spacing);
|
||||
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), this->_line_spacing);
|
||||
this->spacing = unscale(this->_line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
@ -38,14 +38,14 @@ void FillRectilinear::_fill_surface_single(
|
||||
}
|
||||
|
||||
// generate the basic pattern
|
||||
coord_t x_max = bounding_box.max.x() + SCALED_EPSILON;
|
||||
coord_t x_max = bounding_box.max(0) + SCALED_EPSILON;
|
||||
Lines lines;
|
||||
for (coord_t x = bounding_box.min.x(); x <= x_max; x += this->_line_spacing)
|
||||
lines.push_back(this->_line(lines.size(), x, bounding_box.min.y(), bounding_box.max.y()));
|
||||
for (coord_t x = bounding_box.min(0); x <= x_max; x += this->_line_spacing)
|
||||
lines.push_back(this->_line(lines.size(), x, bounding_box.min(1), bounding_box.max(1)));
|
||||
if (this->_horizontal_lines()) {
|
||||
coord_t y_max = bounding_box.max.y() + SCALED_EPSILON;
|
||||
for (coord_t y = bounding_box.min.y(); y <= y_max; y += this->_line_spacing)
|
||||
lines.push_back(Line(Point(bounding_box.min.x(), y), Point(bounding_box.max.x(), y)));
|
||||
coord_t y_max = bounding_box.max(1) + SCALED_EPSILON;
|
||||
for (coord_t y = bounding_box.min(1); y <= y_max; y += this->_line_spacing)
|
||||
lines.push_back(Line(Point(bounding_box.min(0), y), Point(bounding_box.max(0), y)));
|
||||
}
|
||||
|
||||
// clip paths against a slightly larger expolygon, so that the first and last paths
|
||||
@ -106,7 +106,7 @@ void FillRectilinear::_fill_surface_single(
|
||||
const Vector distance = last_point - first_point;
|
||||
// TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
// connecting paths on the boundaries of internal regions
|
||||
if (this->_can_connect(std::abs(distance.x()), std::abs(distance.y())) &&
|
||||
if (this->_can_connect(std::abs(distance(0)), std::abs(distance(1))) &&
|
||||
expolygon_off.contains(Line(last_point, first_point))) {
|
||||
// Append the polyline.
|
||||
pts_end.insert(pts_end.end(), it_polyline->points.begin(), it_polyline->points.end());
|
||||
@ -122,7 +122,7 @@ void FillRectilinear::_fill_surface_single(
|
||||
// paths must be rotated back
|
||||
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_old; it != polylines_out.end(); ++ it) {
|
||||
// No need to translate, the absolute position is irrelevant.
|
||||
// it->translate(- direction.second.x(), - direction.second.y());
|
||||
// it->translate(- direction.second(0), - direction.second(1));
|
||||
it->rotate(direction.first);
|
||||
}
|
||||
}
|
||||
|
@ -42,12 +42,12 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po
|
||||
Point px = (i == 0) ? p1 : p2;
|
||||
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
|
||||
Point pb = poly.points[seg];
|
||||
if (pa.x() > pb.x())
|
||||
std::swap(pa.x(), pb.x());
|
||||
if (pa.y() > pb.y())
|
||||
std::swap(pa.y(), pb.y());
|
||||
assert(px.x() >= pa.x() && px.x() <= pb.x());
|
||||
assert(px.y() >= pa.y() && px.y() <= pb.y());
|
||||
if (pa(0) > pb(0))
|
||||
std::swap(pa(0), pb(0));
|
||||
if (pa(1) > pb(1))
|
||||
std::swap(pa(1), pb(1));
|
||||
assert(px(0) >= pa(0) && px(0) <= pb(0));
|
||||
assert(px(1) >= pa(1) && px(1) <= pb(1));
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
const Point *pPrev = &p1;
|
||||
@ -791,7 +791,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
|
||||
// define flow spacing according to requested density
|
||||
if (params.full_infill() && !params.dont_adjust) {
|
||||
line_spacing = this->_adjust_solid_spacing(bounding_box.size().x(), line_spacing);
|
||||
line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
|
||||
this->spacing = unscale(line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
@ -799,7 +799,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
|
||||
// _align_to_grid will not work correctly with positive pattern_shift.
|
||||
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
|
||||
refpt.x() -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
||||
refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
||||
bounding_box.merge(_align_to_grid(
|
||||
bounding_box.min,
|
||||
Point(line_spacing, line_spacing),
|
||||
@ -808,8 +808,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
|
||||
// Intersect a set of euqally spaced vertical lines wiht expolygon.
|
||||
// n_vlines = ceil(bbox_width / line_spacing)
|
||||
size_t n_vlines = (bounding_box.max.x() - bounding_box.min.x() + line_spacing - 1) / line_spacing;
|
||||
coord_t x0 = bounding_box.min.x();
|
||||
size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
|
||||
coord_t x0 = bounding_box.min(0);
|
||||
if (params.full_infill())
|
||||
x0 += (line_spacing + SCALED_EPSILON) / 2;
|
||||
|
||||
@ -842,8 +842,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
const Point &p1 = contour[iPrev];
|
||||
const Point &p2 = contour[iSegment];
|
||||
// Which of the equally spaced vertical lines is intersected by this segment?
|
||||
coord_t l = p1.x();
|
||||
coord_t r = p2.x();
|
||||
coord_t l = p1(0);
|
||||
coord_t r = p2(0);
|
||||
if (l > r)
|
||||
std::swap(l, r);
|
||||
// il, ir are the left / right indices of vertical lines intersecting a segment
|
||||
@ -869,33 +869,33 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
assert(l <= this_x);
|
||||
assert(r >= this_x);
|
||||
// Calculate the intersection position in y axis. x is known.
|
||||
if (p1.x() == this_x) {
|
||||
if (p2.x() == this_x) {
|
||||
if (p1(0) == this_x) {
|
||||
if (p2(0) == this_x) {
|
||||
// Ignore strictly vertical segments.
|
||||
continue;
|
||||
}
|
||||
is.pos_p = p1.y();
|
||||
is.pos_p = p1(1);
|
||||
is.pos_q = 1;
|
||||
} else if (p2.x() == this_x) {
|
||||
is.pos_p = p2.y();
|
||||
} else if (p2(0) == this_x) {
|
||||
is.pos_p = p2(1);
|
||||
is.pos_q = 1;
|
||||
} else {
|
||||
// First calculate the intersection parameter 't' as a rational number with non negative denominator.
|
||||
if (p2.x() > p1.x()) {
|
||||
is.pos_p = this_x - p1.x();
|
||||
is.pos_q = p2.x() - p1.x();
|
||||
if (p2(0) > p1(0)) {
|
||||
is.pos_p = this_x - p1(0);
|
||||
is.pos_q = p2(0) - p1(0);
|
||||
} else {
|
||||
is.pos_p = p1.x() - this_x;
|
||||
is.pos_q = p1.x() - p2.x();
|
||||
is.pos_p = p1(0) - this_x;
|
||||
is.pos_q = p1(0) - p2(0);
|
||||
}
|
||||
assert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
|
||||
// Make an intersection point from the 't'.
|
||||
is.pos_p *= int64_t(p2.y() - p1.y());
|
||||
is.pos_p += p1.y() * int64_t(is.pos_q);
|
||||
is.pos_p *= int64_t(p2(1) - p1(1));
|
||||
is.pos_p += p1(1) * int64_t(is.pos_q);
|
||||
}
|
||||
// +-1 to take rounding into account.
|
||||
assert(is.pos() + 1 >= std::min(p1.y(), p2.y()));
|
||||
assert(is.pos() <= std::max(p1.y(), p2.y()) + 1);
|
||||
assert(is.pos() + 1 >= std::min(p1(1), p2(1)));
|
||||
assert(is.pos() <= std::max(p1(1), p2(1)) + 1);
|
||||
segs[i].intersections.push_back(is);
|
||||
}
|
||||
}
|
||||
@ -919,7 +919,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
const Points &contour = poly_with_offset.contour(iContour).points;
|
||||
size_t iSegment = sil.intersections[i].iSegment;
|
||||
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
|
||||
coord_t dir = contour[iSegment].x() - contour[iPrev].x();
|
||||
coord_t dir = contour[iSegment](0) - contour[iPrev](0);
|
||||
bool low = dir > 0;
|
||||
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
|
||||
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
|
||||
@ -1066,7 +1066,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
intrsctn.consumed_vertical_up :
|
||||
seg.intersections[i-1].consumed_vertical_up;
|
||||
if (! consumed) {
|
||||
coordf_t dist2 = sqr(coordf_t(pointLast.x() - seg.pos)) + sqr(coordf_t(pointLast.y() - intrsctn.pos()));
|
||||
coordf_t dist2 = sqr(coordf_t(pointLast(0) - seg.pos)) + sqr(coordf_t(pointLast(1) - intrsctn.pos()));
|
||||
if (dist2 < dist2min) {
|
||||
dist2min = dist2;
|
||||
i_vline = i_vline2;
|
||||
@ -1356,8 +1356,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
// Handle nearly zero length edges.
|
||||
if (polyline_current->points.size() <= 1 ||
|
||||
(polyline_current->points.size() == 2 &&
|
||||
std::abs(polyline_current->points.front().x() - polyline_current->points.back().x()) < SCALED_EPSILON &&
|
||||
std::abs(polyline_current->points.front().y() - polyline_current->points.back().y()) < SCALED_EPSILON))
|
||||
std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
|
||||
std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
|
||||
polylines_out.pop_back();
|
||||
intrsctn = NULL;
|
||||
i_intersection = -1;
|
||||
@ -1383,7 +1383,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
||||
// paths must be rotated back
|
||||
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
|
||||
// No need to translate, the absolute position is irrelevant.
|
||||
// it->translate(- rotate_vector.second.x(), - rotate_vector.second.y());
|
||||
// it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
|
||||
assert(! it->has_duplicate_points());
|
||||
it->rotate(rotate_vector.first);
|
||||
//FIXME rather simplify the paths to avoid very short edges?
|
||||
|
@ -223,24 +223,24 @@ Point SegmentIntersection::pos() const
|
||||
const Pointf p2(line->pos.cast<coordf_t>());
|
||||
const Pointf v2(line->dir.cast<coordf_t>());
|
||||
// Intersect the two rays.
|
||||
double denom = v1.x() * v2.y() - v2.x() * v1.y();
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
Point out;
|
||||
if (denom == 0.) {
|
||||
// Lines are collinear. As the pos() method is not supposed to be called on collinear vectors,
|
||||
// the source vectors are not quite collinear. Return the center of the contour segment.
|
||||
out = seg_start + seg_end;
|
||||
out.x() >>= 1;
|
||||
out.y() >>= 1;
|
||||
out(0) >>= 1;
|
||||
out(1) >>= 1;
|
||||
} else {
|
||||
// Find the intersection point.
|
||||
double t = (v2.x() * (p1.y() - p2.y()) - v2.y() * (p1.x() - p2.x())) / denom;
|
||||
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
|
||||
if (t < 0.)
|
||||
out = seg_start;
|
||||
else if (t > 1.)
|
||||
out = seg_end;
|
||||
else {
|
||||
out.x() = coord_t(floor(p1.x() + t * v1.x() + 0.5));
|
||||
out.y() = coord_t(floor(p1.y() + t * v1.y() + 0.5));
|
||||
out(0) = coord_t(floor(p1(0) + t * v1(0) + 0.5));
|
||||
out(1) = coord_t(floor(p1(1) + t * v1(1) + 0.5));
|
||||
}
|
||||
}
|
||||
return out;
|
||||
@ -317,8 +317,8 @@ int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) c
|
||||
int64_t denom2 = cross2(this->line->dir.cast<int64_t>(), vec_b);
|
||||
Vec2i64 vx_a = (seg_start_a - this->line->pos).cast<int64_t>();
|
||||
Vec2i64 vx_b = (seg_start_b - this->line->pos).cast<int64_t>();
|
||||
int64_t t1_times_denom1 = vx_a.x() * vec_a.y() - vx_a.y() * vec_a.x();
|
||||
int64_t t2_times_denom2 = vx_b.x() * vec_b.y() - vx_b.y() * vec_b.x();
|
||||
int64_t t1_times_denom1 = vx_a(0) * vec_a(1) - vx_a(1) * vec_a(0);
|
||||
int64_t t2_times_denom2 = vx_b(0) * vec_b(1) - vx_b(1) * vec_b(0);
|
||||
assert(denom1 != 0);
|
||||
assert(denom2 != 0);
|
||||
return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2);
|
||||
@ -389,7 +389,7 @@ static bool prepare_infill_hatching_segments(
|
||||
// Define the flow spacing according to requested density.
|
||||
if (params.full_infill() && ! params.dont_adjust) {
|
||||
// Full infill, adjust the line spacing to fit an integer number of lines.
|
||||
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size().x(), line_spacing);
|
||||
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
|
||||
// Report back the adjusted line spacing.
|
||||
fill_dir_params.spacing = float(unscale(line_spacing));
|
||||
} else {
|
||||
@ -398,7 +398,7 @@ static bool prepare_infill_hatching_segments(
|
||||
Point refpt = rotate_vector.second.rotated(- out.angle);
|
||||
// _align_to_grid will not work correctly with positive pattern_shift.
|
||||
coord_t pattern_shift_scaled = coord_t(scale_(fill_dir_params.pattern_shift)) % line_spacing;
|
||||
refpt.x() -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
||||
refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
||||
bounding_box.merge(Fill::_align_to_grid(
|
||||
bounding_box.min,
|
||||
Point(line_spacing, line_spacing),
|
||||
@ -407,13 +407,13 @@ static bool prepare_infill_hatching_segments(
|
||||
|
||||
// Intersect a set of euqally spaced vertical lines wiht expolygon.
|
||||
// n_vlines = ceil(bbox_width / line_spacing)
|
||||
size_t n_vlines = (bounding_box.max.x() - bounding_box.min.x() + line_spacing - 1) / line_spacing;
|
||||
coord_t x0 = bounding_box.min.x();
|
||||
size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
|
||||
coord_t x0 = bounding_box.min(0);
|
||||
if (params.full_infill())
|
||||
x0 += coord_t((line_spacing + SCALED_EPSILON) / 2);
|
||||
|
||||
out.line_spacing = line_spacing;
|
||||
out.start_point = Point(x0, bounding_box.min.y());
|
||||
out.start_point = Point(x0, bounding_box.min(1));
|
||||
out.start_point.rotate(out.angle);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
@ -436,10 +436,10 @@ static bool prepare_infill_hatching_segments(
|
||||
for (size_t i = 0; i < n_vlines; ++ i) {
|
||||
auto &seg = out.segs[i];
|
||||
seg.idx = i;
|
||||
// seg.x() = x0 + coord_t(i) * line_spacing;
|
||||
// seg(0) = x0 + coord_t(i) * line_spacing;
|
||||
coord_t x = x0 + coord_t(i) * line_spacing;
|
||||
seg.pos.x() = coord_t(floor(cos_a * x - sin_a * bounding_box.min.y() + 0.5));
|
||||
seg.pos.y() = coord_t(floor(cos_a * bounding_box.min.y() + sin_a * x + 0.5));
|
||||
seg.pos(0) = coord_t(floor(cos_a * x - sin_a * bounding_box.min(1) + 0.5));
|
||||
seg.pos(1) = coord_t(floor(cos_a * bounding_box.min(1) + sin_a * x + 0.5));
|
||||
seg.dir = out.direction;
|
||||
}
|
||||
|
||||
@ -454,7 +454,7 @@ static bool prepare_infill_hatching_segments(
|
||||
const Point *pr = &contour[iSegment];
|
||||
// Orient the segment to the direction vector.
|
||||
const Point v = *pr - *pl;
|
||||
int orientation = Int128::sign_determinant_2x2_filtered(v.x(), v.y(), out.direction.x(), out.direction.y());
|
||||
int orientation = Int128::sign_determinant_2x2_filtered(v(0), v(1), out.direction(0), out.direction(1));
|
||||
if (orientation == 0)
|
||||
// Ignore strictly vertical segments.
|
||||
continue;
|
||||
@ -462,8 +462,8 @@ static bool prepare_infill_hatching_segments(
|
||||
// Always orient the input segment consistently towards the hatching direction.
|
||||
std::swap(pl, pr);
|
||||
// Which of the equally spaced vertical lines is intersected by this segment?
|
||||
coord_t l = (coord_t)floor(cos_a * pl->x() + sin_a * pl->y() - SCALED_EPSILON);
|
||||
coord_t r = (coord_t)ceil (cos_a * pr->x() + sin_a * pr->y() + SCALED_EPSILON);
|
||||
coord_t l = (coord_t)floor(cos_a * (*pl)(0) + sin_a * (*pl)(1) - SCALED_EPSILON);
|
||||
coord_t r = (coord_t)ceil (cos_a * (*pr)(0) + sin_a * (*pr)(1) + SCALED_EPSILON);
|
||||
assert(l < r - SCALED_EPSILON);
|
||||
// il, ir are the left / right indices of vertical lines intersecting a segment
|
||||
int il = std::max<int>(0, (l - x0 + line_spacing) / line_spacing);
|
||||
@ -479,9 +479,9 @@ static bool prepare_infill_hatching_segments(
|
||||
// 2) all lines from il to ir intersect <pl, pr>.
|
||||
assert(il >= 0 && ir < int(out.segs.size()));
|
||||
for (int i = il; i <= ir; ++ i) {
|
||||
// assert(out.segs[i].x() == i * line_spacing + x0);
|
||||
// assert(l <= out.segs[i].x());
|
||||
// assert(r >= out.segs[i].x());
|
||||
// assert(out.segs[i](0) == i * line_spacing + x0);
|
||||
// assert(l <= out.segs[i](0));
|
||||
// assert(r >= out.segs[i](0));
|
||||
SegmentIntersection is;
|
||||
is.line = &out.segs[i];
|
||||
is.expoly_with_offset = &poly_with_offset;
|
||||
@ -491,10 +491,10 @@ static bool prepare_infill_hatching_segments(
|
||||
// +-1 to take rounding into account.
|
||||
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
|
||||
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
|
||||
assert(is.pos().x() + 1 >= std::min(pl->x(), pr->x()));
|
||||
assert(is.pos().y() + 1 >= std::min(pl->y(), pr->y()));
|
||||
assert(is.pos().x() <= std::max(pl->x(), pr->x()) + 1);
|
||||
assert(is.pos().y() <= std::max(pl->y(), pr->y()) + 1);
|
||||
assert(is.pos()(0) + 1 >= std::min((*pl)(0), (*pr)(0)));
|
||||
assert(is.pos()(1) + 1 >= std::min((*pl)(1), (*pr)(1)));
|
||||
assert(is.pos()(0) <= std::max((*pl)(0), (*pr)(0)) + 1);
|
||||
assert(is.pos()(1) <= std::max((*pl)(1), (*pr)(1)) + 1);
|
||||
out.segs[i].intersections.push_back(is);
|
||||
}
|
||||
}
|
||||
@ -659,12 +659,12 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po
|
||||
Point px = (i == 0) ? p1 : p2;
|
||||
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
|
||||
Point pb = poly.points[seg];
|
||||
if (pa.x() > pb.x())
|
||||
std::swap(pa.x(), pb.x());
|
||||
if (pa.y() > pb.y())
|
||||
std::swap(pa.y(), pb.y());
|
||||
assert(px.x() >= pa.x() && px.x() <= pb.x());
|
||||
assert(px.y() >= pa.y() && px.y() <= pb.y());
|
||||
if (pa(0) > pb(0))
|
||||
std::swap(pa(0), pb(0));
|
||||
if (pa(1) > pb(1))
|
||||
std::swap(pa(1), pb(1));
|
||||
assert(px(0) >= pa(0) && px(0) <= pb(0));
|
||||
assert(px(1) >= pa(1) && px(1) <= pb(1));
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
const Point *pPrev = &p1;
|
||||
@ -1481,8 +1481,8 @@ static bool fill_hatching_segments_legacy(
|
||||
// Handle nearly zero length edges.
|
||||
if (polyline_current->points.size() <= 1 ||
|
||||
(polyline_current->points.size() == 2 &&
|
||||
std::abs(polyline_current->points.front().x() - polyline_current->points.back().x()) < SCALED_EPSILON &&
|
||||
std::abs(polyline_current->points.front().y() - polyline_current->points.back().y()) < SCALED_EPSILON))
|
||||
std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
|
||||
std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
|
||||
polylines_out.pop_back();
|
||||
intrsctn = NULL;
|
||||
i_intersection = -1;
|
||||
@ -1510,7 +1510,7 @@ static bool fill_hatching_segments_legacy(
|
||||
// paths must be rotated back
|
||||
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
|
||||
// No need to translate, the absolute position is irrelevant.
|
||||
// it->translate(- rotate_vector.second.x(), - rotate_vector.second.y());
|
||||
// it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
|
||||
assert(! it->has_duplicate_points());
|
||||
//it->rotate(rotate_vector.first);
|
||||
//FIXME rather simplify the paths to avoid very short edges?
|
||||
|
@ -1352,8 +1352,8 @@ namespace Slic3r {
|
||||
double angle_z = (rotation.axis() == Eigen::Vector3d::UnitZ()) ? rotation.angle() : -rotation.angle();
|
||||
#endif
|
||||
|
||||
instance.offset.x() = offset_x;
|
||||
instance.offset.y() = offset_y;
|
||||
instance.offset(0) = offset_x;
|
||||
instance.offset(1) = offset_y;
|
||||
instance.scaling_factor = sx;
|
||||
instance.rotation = angle_z;
|
||||
}
|
||||
@ -1801,7 +1801,7 @@ namespace Slic3r {
|
||||
}
|
||||
|
||||
Eigen::Affine3f transform;
|
||||
transform = Eigen::Translation3f((float)instance->offset.x(), (float)instance->offset.y(), 0.0f) * Eigen::AngleAxisf((float)instance->rotation, Eigen::Vector3f::UnitZ()) * Eigen::Scaling((float)instance->scaling_factor);
|
||||
transform = Eigen::Translation3f((float)instance->offset(0), (float)instance->offset(1), 0.0f) * Eigen::AngleAxisf((float)instance->rotation, Eigen::Vector3f::UnitZ()) * Eigen::Scaling((float)instance->scaling_factor);
|
||||
build_items.emplace_back(instance_id, transform.matrix());
|
||||
|
||||
stream << " </" << OBJECT_TAG << ">\n";
|
||||
|
@ -496,8 +496,8 @@ void AMFParserContext::endDocument()
|
||||
for (const Instance &instance : object.second.instances)
|
||||
if (instance.deltax_set && instance.deltay_set) {
|
||||
ModelInstance *mi = m_model.objects[object.second.idx]->add_instance();
|
||||
mi->offset.x() = instance.deltax;
|
||||
mi->offset.y() = instance.deltay;
|
||||
mi->offset(0) = instance.deltax;
|
||||
mi->offset(1) = instance.deltay;
|
||||
mi->rotation = instance.rz_set ? instance.rz : 0.f;
|
||||
mi->scaling_factor = instance.scale_set ? instance.scale : 1.f;
|
||||
}
|
||||
@ -829,8 +829,8 @@ bool store_amf(const char *path, Model *model, Print* print, bool export_print_c
|
||||
" <scale>%lf</scale>\n"
|
||||
" </instance>\n",
|
||||
object_id,
|
||||
instance->offset.x(),
|
||||
instance->offset.y(),
|
||||
instance->offset(0),
|
||||
instance->offset(1),
|
||||
instance->rotation,
|
||||
instance->scaling_factor);
|
||||
//FIXME missing instance->scaling_factor
|
||||
|
@ -207,8 +207,8 @@ bool load_prus(const char *path, Model *model)
|
||||
for (size_t c = 0; c < 3; ++ c)
|
||||
trafo[r][c] += mat_trafo(r, c);
|
||||
}
|
||||
instance_offset.x() = position[0] - zero[0];
|
||||
instance_offset.y() = position[1] - zero[1];
|
||||
instance_offset(0) = position[0] - zero[0];
|
||||
instance_offset(1) = position[1] - zero[1];
|
||||
trafo[2][3] = position[2] / instance_scaling_factor;
|
||||
trafo_set = true;
|
||||
}
|
||||
|
@ -49,7 +49,7 @@ Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &
|
||||
// If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
|
||||
// Otherwise perform the path planning in the coordinate system of the active object.
|
||||
bool use_external = this->use_external_mp || this->use_external_mp_once;
|
||||
Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin().x(), gcodegen.origin().y()) : Point(0, 0);
|
||||
Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin()(0), gcodegen.origin()(1)) : Point(0, 0);
|
||||
Polyline result = (use_external ? m_external_mp.get() : m_layer_mp.get())->
|
||||
shortest_path(gcodegen.last_pos() + scaled_origin, point + scaled_origin);
|
||||
if (use_external)
|
||||
@ -65,7 +65,7 @@ std::string OozePrevention::pre_toolchange(GCode &gcodegen)
|
||||
if (!this->standby_points.empty()) {
|
||||
// get current position in print coordinates
|
||||
Pointf3 writer_pos = gcodegen.writer().get_position();
|
||||
Point pos = Point::new_scale(writer_pos.x(), writer_pos.y());
|
||||
Point pos = Point::new_scale(writer_pos(0), writer_pos(1));
|
||||
|
||||
// find standby point
|
||||
Point standby_point;
|
||||
@ -160,7 +160,7 @@ Wipe::wipe(GCode &gcodegen, bool toolchange)
|
||||
|
||||
static inline Point wipe_tower_point_to_object_point(GCode &gcodegen, const WipeTower::xy &wipe_tower_pt)
|
||||
{
|
||||
return Point(scale_(wipe_tower_pt.x - gcodegen.origin().x()), scale_(wipe_tower_pt.y - gcodegen.origin().y()));
|
||||
return Point(scale_(wipe_tower_pt.x - gcodegen.origin()(0)), scale_(wipe_tower_pt.y - gcodegen.origin()(1)));
|
||||
}
|
||||
|
||||
std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const
|
||||
@ -262,7 +262,7 @@ std::string WipeTowerIntegration::tool_change(GCode &gcodegen, int extruder_id,
|
||||
std::string WipeTowerIntegration::finalize(GCode &gcodegen)
|
||||
{
|
||||
std::string gcode;
|
||||
if (std::abs(gcodegen.writer().get_position().z() - m_final_purge.print_z) > EPSILON)
|
||||
if (std::abs(gcodegen.writer().get_position()(2) - m_final_purge.print_z) > EPSILON)
|
||||
gcode += gcodegen.change_layer(m_final_purge.print_z);
|
||||
gcode += append_tcr(gcodegen, m_final_purge, -1);
|
||||
return gcode;
|
||||
@ -699,7 +699,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
||||
for (unsigned int extruder_id : print.extruders()) {
|
||||
const Pointf &extruder_offset = print.config.extruder_offset.get_at(extruder_id);
|
||||
Polygon s(outer_skirt);
|
||||
s.translate(Point::new_scale(- extruder_offset.x(), - extruder_offset.y()));
|
||||
s.translate(Point::new_scale(- extruder_offset(0), - extruder_offset(1)));
|
||||
skirts.emplace_back(std::move(s));
|
||||
}
|
||||
m_ooze_prevention.enable = true;
|
||||
@ -725,7 +725,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
||||
// Print objects from the smallest to the tallest to avoid collisions
|
||||
// when moving onto next object starting point.
|
||||
std::vector<PrintObject*> objects(print.objects);
|
||||
std::sort(objects.begin(), objects.end(), [](const PrintObject* po1, const PrintObject* po2) { return po1->size.z() < po2->size.z(); });
|
||||
std::sort(objects.begin(), objects.end(), [](const PrintObject* po1, const PrintObject* po2) { return po1->size(2) < po2->size(2); });
|
||||
size_t finished_objects = 0;
|
||||
for (size_t object_id = initial_print_object_id; object_id < objects.size(); ++ object_id) {
|
||||
const PrintObject &object = *objects[object_id];
|
||||
@ -742,7 +742,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
||||
final_extruder_id = tool_ordering.last_extruder();
|
||||
assert(final_extruder_id != (unsigned int)-1);
|
||||
}
|
||||
this->set_origin(unscale(copy.x()), unscale(copy.y()));
|
||||
this->set_origin(unscale(copy(0)), unscale(copy(1)));
|
||||
if (finished_objects > 0) {
|
||||
// Move to the origin position for the copy we're going to print.
|
||||
// This happens before Z goes down to layer 0 again, so that no collision happens hopefully.
|
||||
@ -849,7 +849,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
||||
{
|
||||
DynamicConfig config;
|
||||
config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index));
|
||||
config.set_key_value("layer_z", new ConfigOptionFloat(m_writer.get_position().z() - m_config.z_offset.value));
|
||||
config.set_key_value("layer_z", new ConfigOptionFloat(m_writer.get_position()(2) - m_config.z_offset.value));
|
||||
if (print.config.single_extruder_multi_material) {
|
||||
// Process the end_filament_gcode for the active filament only.
|
||||
_writeln(file, this->placeholder_parser_process("end_filament_gcode", print.config.end_filament_gcode.get_at(m_writer.extruder()->id()), m_writer.extruder()->id(), &config));
|
||||
@ -1304,8 +1304,8 @@ void GCode::process_layer(
|
||||
layer_surface_bboxes.push_back(get_extents(expoly.contour));
|
||||
auto point_inside_surface = [&layer, &layer_surface_bboxes](const size_t i, const Point &point) {
|
||||
const BoundingBox &bbox = layer_surface_bboxes[i];
|
||||
return point.x() >= bbox.min.x() && point.x() < bbox.max.x() &&
|
||||
point.y() >= bbox.min.y() && point.y() < bbox.max.y() &&
|
||||
return point(0) >= bbox.min(0) && point(0) < bbox.max(0) &&
|
||||
point(1) >= bbox.min(1) && point(1) < bbox.max(1) &&
|
||||
layer.slices.expolygons[i].contour.contains(point);
|
||||
};
|
||||
|
||||
@ -1455,7 +1455,7 @@ void GCode::process_layer(
|
||||
if (m_last_obj_copy != this_object_copy)
|
||||
m_avoid_crossing_perimeters.use_external_mp_once = true;
|
||||
m_last_obj_copy = this_object_copy;
|
||||
this->set_origin(unscale(copy.x()), unscale(copy.y()));
|
||||
this->set_origin(unscale(copy(0)), unscale(copy(1)));
|
||||
if (object_by_extruder.support != nullptr && !print_wipe_extrusions) {
|
||||
m_layer = layers[layer_id].support_layer;
|
||||
gcode += this->extrude_support(
|
||||
@ -1544,8 +1544,8 @@ void GCode::set_origin(const Pointf &pointf)
|
||||
{
|
||||
// if origin increases (goes towards right), last_pos decreases because it goes towards left
|
||||
const Point translate(
|
||||
scale_(m_origin.x() - pointf.x()),
|
||||
scale_(m_origin.y() - pointf.y())
|
||||
scale_(m_origin(0) - pointf(0)),
|
||||
scale_(m_origin(1) - pointf(1))
|
||||
);
|
||||
m_last_pos += translate;
|
||||
m_wipe.path.translate(translate);
|
||||
@ -1680,11 +1680,11 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co
|
||||
const Point &p2 = polygon.points[j];
|
||||
const Slic3r::Point v_seg = p2 - p1;
|
||||
const Slic3r::Point v_pt = pt - p1;
|
||||
const int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y());
|
||||
int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y());
|
||||
const int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
|
||||
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
|
||||
if (t_pt < 0) {
|
||||
// Closest to p1.
|
||||
double dabs = sqrt(int64_t(v_pt.x()) * int64_t(v_pt.x()) + int64_t(v_pt.y()) * int64_t(v_pt.y()));
|
||||
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
|
||||
if (dabs < d_min) {
|
||||
d_min = dabs;
|
||||
i_min = i;
|
||||
@ -1697,7 +1697,7 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co
|
||||
} else {
|
||||
// Closest to the segment.
|
||||
assert(t_pt >= 0 && t_pt <= l2_seg);
|
||||
int64_t d_seg = int64_t(v_seg.y()) * int64_t(v_pt.x()) - int64_t(v_seg.x()) * int64_t(v_pt.y());
|
||||
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
|
||||
double d = double(d_seg) / sqrt(double(l2_seg));
|
||||
double dabs = std::abs(d);
|
||||
if (dabs < d_min) {
|
||||
@ -1706,8 +1706,8 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co
|
||||
// Evaluate the foot point.
|
||||
pt_min = p1;
|
||||
double linv = double(d_seg) / double(l2_seg);
|
||||
pt_min.x() = pt.x() - coord_t(floor(double(v_seg.y()) * linv + 0.5));
|
||||
pt_min.y() = pt.y() + coord_t(floor(double(v_seg.x()) * linv + 0.5));
|
||||
pt_min(0) = pt(0) - coord_t(floor(double(v_seg(1)) * linv + 0.5));
|
||||
pt_min(1) = pt(1) + coord_t(floor(double(v_seg(0)) * linv + 0.5));
|
||||
assert(Line(p1, p2).distance_to(pt_min) < scale_(1e-5));
|
||||
}
|
||||
}
|
||||
@ -1777,8 +1777,8 @@ std::vector<float> polygon_angles_at_vertices(const Polygon &polygon, const std:
|
||||
const Point &p2 = polygon.points[idx_next];
|
||||
const Point v1 = p1 - p0;
|
||||
const Point v2 = p2 - p1;
|
||||
int64_t dot = int64_t(v1.x())*int64_t(v2.x()) + int64_t(v1.y())*int64_t(v2.y());
|
||||
int64_t cross = int64_t(v1.x())*int64_t(v2.y()) - int64_t(v1.y())*int64_t(v2.x());
|
||||
int64_t dot = int64_t(v1(0))*int64_t(v2(0)) + int64_t(v1(1))*int64_t(v2(1));
|
||||
int64_t cross = int64_t(v1(0))*int64_t(v2(1)) - int64_t(v1(1))*int64_t(v2(0));
|
||||
float angle = float(atan2(double(cross), double(dot)));
|
||||
angles[idx_curr] = angle;
|
||||
}
|
||||
@ -1802,10 +1802,10 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
|
||||
{
|
||||
static int iRun = 0;
|
||||
BoundingBox bbox = (*lower_layer_edge_grid)->bbox();
|
||||
bbox.min.x() -= scale_(5.f);
|
||||
bbox.min.y() -= scale_(5.f);
|
||||
bbox.max.x() += scale_(5.f);
|
||||
bbox.max.y() += scale_(5.f);
|
||||
bbox.min(0) -= scale_(5.f);
|
||||
bbox.min(1) -= scale_(5.f);
|
||||
bbox.max(0) += scale_(5.f);
|
||||
bbox.max(1) += scale_(5.f);
|
||||
EdgeGrid::save_png(*(*lower_layer_edge_grid), bbox, scale_(0.1f), debug_out_path("GCode_extrude_loop_edge_grid-%d.png", iRun++));
|
||||
}
|
||||
#endif
|
||||
@ -1841,7 +1841,7 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
|
||||
break;
|
||||
case spRear:
|
||||
last_pos = m_layer->object()->bounding_box().center();
|
||||
last_pos.y() += coord_t(3. * m_layer->object()->bounding_box().radius());
|
||||
last_pos(1) += coord_t(3. * m_layer->object()->bounding_box().radius());
|
||||
last_pos_weight = 5.f;
|
||||
break;
|
||||
}
|
||||
@ -1974,7 +1974,7 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou
|
||||
//FIXME Better parametrize the loop by its length.
|
||||
Polygon polygon = loop.polygon();
|
||||
Point centroid = polygon.centroid();
|
||||
last_pos = Point(polygon.bounding_box().max.x(), centroid.y());
|
||||
last_pos = Point(polygon.bounding_box().max(0), centroid(1));
|
||||
last_pos.rotate(fmod((float)rand()/16.0, 2.0*PI), centroid);
|
||||
}
|
||||
// Find the closest point, avoid overhangs.
|
||||
@ -2530,8 +2530,8 @@ Pointf GCode::point_to_gcode(const Point &point) const
|
||||
{
|
||||
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return Pointf(
|
||||
unscale(point.x()) + m_origin.x() - extruder_offset.x(),
|
||||
unscale(point.y()) + m_origin.y() - extruder_offset.y());
|
||||
unscale(point(0)) + m_origin(0) - extruder_offset(0),
|
||||
unscale(point(1)) + m_origin(1) - extruder_offset(1));
|
||||
}
|
||||
|
||||
// convert a model-space scaled point into G-code coordinates
|
||||
@ -2539,8 +2539,8 @@ Point GCode::gcode_to_point(const Pointf &point) const
|
||||
{
|
||||
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return Point(
|
||||
scale_(point.x() - m_origin.x() + extruder_offset.x()),
|
||||
scale_(point.y() - m_origin.y() + extruder_offset.y()));
|
||||
scale_(point(0) - m_origin(0) + extruder_offset(0)),
|
||||
scale_(point(1) - m_origin(1) + extruder_offset(1)));
|
||||
}
|
||||
|
||||
|
||||
|
@ -24,9 +24,9 @@ void CoolingBuffer::reset()
|
||||
{
|
||||
m_current_pos.assign(5, 0.f);
|
||||
Pointf3 pos = m_gcodegen.writer().get_position();
|
||||
m_current_pos[0] = float(pos.x());
|
||||
m_current_pos[1] = float(pos.y());
|
||||
m_current_pos[2] = float(pos.z());
|
||||
m_current_pos[0] = float(pos(0));
|
||||
m_current_pos[1] = float(pos(1));
|
||||
m_current_pos[2] = float(pos(2));
|
||||
m_current_pos[4] = float(m_gcodegen.config().travel_speed.value);
|
||||
}
|
||||
|
||||
|
@ -19,10 +19,10 @@ static inline BoundingBox extrusion_polyline_extents(const Polyline &polyline, c
|
||||
if (! polyline.points.empty())
|
||||
bbox.merge(polyline.points.front());
|
||||
for (const Point &pt : polyline.points) {
|
||||
bbox.min.x() = std::min(bbox.min.x(), pt.x() - radius);
|
||||
bbox.min.y() = std::min(bbox.min.y(), pt.y() - radius);
|
||||
bbox.max.x() = std::max(bbox.max.x(), pt.x() + radius);
|
||||
bbox.max.y() = std::max(bbox.max.y(), pt.y() + radius);
|
||||
bbox.min(0) = std::min(bbox.min(0), pt(0) - radius);
|
||||
bbox.min(1) = std::min(bbox.min(1), pt(1) - radius);
|
||||
bbox.max(0) = std::max(bbox.max(0), pt(0) + radius);
|
||||
bbox.max(1) = std::max(bbox.max(1), pt(1) + radius);
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
@ -146,10 +146,10 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
|
||||
Pointf p2(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1);
|
||||
coordf_t radius = 0.5 * e.width;
|
||||
bbox.min.x() = std::min(bbox.min.x(), std::min(p1.x(), p2.x()) - radius);
|
||||
bbox.min.y() = std::min(bbox.min.y(), std::min(p1.y(), p2.y()) - radius);
|
||||
bbox.max.x() = std::max(bbox.max.x(), std::max(p1.x(), p2.x()) + radius);
|
||||
bbox.max.y() = std::max(bbox.max.y(), std::max(p1.y(), p2.y()) + radius);
|
||||
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
|
||||
bbox.min(1) = std::min(bbox.min(1), std::min(p1(1), p2(1)) - radius);
|
||||
bbox.max(0) = std::max(bbox.max(0), std::max(p1(0), p2(0)) + radius);
|
||||
bbox.max(1) = std::max(bbox.max(1), std::max(p1(1), p2(1)) + radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -170,10 +170,10 @@ BoundingBoxf get_wipe_tower_priming_extrusions_extents(const Print &print)
|
||||
Pointf p2(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1);
|
||||
coordf_t radius = 0.5 * e.width;
|
||||
bbox.min.x() = std::min(bbox.min.x(), std::min(p1.x(), p2.x()) - radius);
|
||||
bbox.min.y() = std::min(bbox.min.y(), std::min(p1.y(), p2.y()) - radius);
|
||||
bbox.max.x() = std::max(bbox.max.x(), std::max(p1.x(), p2.x()) + radius);
|
||||
bbox.max.y() = std::max(bbox.max.y(), std::max(p1.y(), p2.y()) + radius);
|
||||
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
|
||||
bbox.min(1) = std::min(bbox.min(1), std::min(p1(1), p2(1)) - radius);
|
||||
bbox.max(0) = std::max(bbox.max(0), std::max(p1(0), p2(0)) + radius);
|
||||
bbox.max(1) = std::max(bbox.max(1), std::max(p1(1), p2(1)) + radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -278,12 +278,12 @@ std::string GCodeWriter::set_speed(double F, const std::string &comment, const s
|
||||
|
||||
std::string GCodeWriter::travel_to_xy(const Pointf &point, const std::string &comment)
|
||||
{
|
||||
m_pos.x() = point.x();
|
||||
m_pos.y() = point.y();
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point.x())
|
||||
<< " Y" << XYZF_NUM(point.y())
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " F" << XYZF_NUM(this->config.travel_speed.value * 60.0);
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
@ -296,9 +296,9 @@ std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &
|
||||
don't perform the Z move but we only move in the XY plane and
|
||||
adjust the nominal Z by reducing the lift amount that will be
|
||||
used for unlift. */
|
||||
if (!this->will_move_z(point.z())) {
|
||||
double nominal_z = m_pos.z() - m_lifted;
|
||||
m_lifted = m_lifted - (point.z() - nominal_z);
|
||||
if (!this->will_move_z(point(2))) {
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
m_lifted = m_lifted - (point(2) - nominal_z);
|
||||
return this->travel_to_xy(point.xy());
|
||||
}
|
||||
|
||||
@ -308,9 +308,9 @@ std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &
|
||||
m_pos = point;
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point.x())
|
||||
<< " Y" << XYZF_NUM(point.y())
|
||||
<< " Z" << XYZF_NUM(point.z())
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " Z" << XYZF_NUM(point(2))
|
||||
<< " F" << XYZF_NUM(this->config.travel_speed.value * 60.0);
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
@ -323,7 +323,7 @@ std::string GCodeWriter::travel_to_z(double z, const std::string &comment)
|
||||
we don't perform the move but we only adjust the nominal Z by
|
||||
reducing the lift amount that will be used for unlift. */
|
||||
if (!this->will_move_z(z)) {
|
||||
double nominal_z = m_pos.z() - m_lifted;
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
m_lifted = m_lifted - (z - nominal_z);
|
||||
return "";
|
||||
}
|
||||
@ -336,7 +336,7 @@ std::string GCodeWriter::travel_to_z(double z, const std::string &comment)
|
||||
|
||||
std::string GCodeWriter::_travel_to_z(double z, const std::string &comment)
|
||||
{
|
||||
m_pos.z() = z;
|
||||
m_pos(2) = z;
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 Z" << XYZF_NUM(z)
|
||||
@ -351,8 +351,8 @@ bool GCodeWriter::will_move_z(double z) const
|
||||
/* If target Z is lower than current Z but higher than nominal Z
|
||||
we don't perform an actual Z move. */
|
||||
if (m_lifted > 0) {
|
||||
double nominal_z = m_pos.z() - m_lifted;
|
||||
if (z >= nominal_z && z <= m_pos.z())
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
if (z >= nominal_z && z <= m_pos(2))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
@ -360,13 +360,13 @@ bool GCodeWriter::will_move_z(double z) const
|
||||
|
||||
std::string GCodeWriter::extrude_to_xy(const Pointf &point, double dE, const std::string &comment)
|
||||
{
|
||||
m_pos.x() = point.x();
|
||||
m_pos.y() = point.y();
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
m_extruder->extrude(dE);
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point.x())
|
||||
<< " Y" << XYZF_NUM(point.y())
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
@ -380,9 +380,9 @@ std::string GCodeWriter::extrude_to_xyz(const Pointf3 &point, double dE, const s
|
||||
m_extruder->extrude(dE);
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point.x())
|
||||
<< " Y" << XYZF_NUM(point.y())
|
||||
<< " Z" << XYZF_NUM(point.z())
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " Z" << XYZF_NUM(point(2))
|
||||
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
@ -486,12 +486,12 @@ std::string GCodeWriter::lift()
|
||||
{
|
||||
double above = this->config.retract_lift_above.get_at(m_extruder->id());
|
||||
double below = this->config.retract_lift_below.get_at(m_extruder->id());
|
||||
if (m_pos.z() >= above && (below == 0 || m_pos.z() <= below))
|
||||
if (m_pos(2) >= above && (below == 0 || m_pos(2) <= below))
|
||||
target_lift = this->config.retract_lift.get_at(m_extruder->id());
|
||||
}
|
||||
if (m_lifted == 0 && target_lift > 0) {
|
||||
m_lifted = target_lift;
|
||||
return this->_travel_to_z(m_pos.z() + target_lift, "lift Z");
|
||||
return this->_travel_to_z(m_pos(2) + target_lift, "lift Z");
|
||||
}
|
||||
return "";
|
||||
}
|
||||
@ -500,7 +500,7 @@ std::string GCodeWriter::unlift()
|
||||
{
|
||||
std::string gcode;
|
||||
if (m_lifted > 0) {
|
||||
gcode += this->_travel_to_z(m_pos.z() - m_lifted, "restore layer Z");
|
||||
gcode += this->_travel_to_z(m_pos(2) - m_lifted, "restore layer Z");
|
||||
m_lifted = 0;
|
||||
}
|
||||
return gcode;
|
||||
|
@ -198,7 +198,7 @@ namespace Slic3r { namespace Geometry {
|
||||
static bool
|
||||
sort_points (Point a, Point b)
|
||||
{
|
||||
return (a.x() < b.x()) || (a.x() == b.x() && a.y() < b.y());
|
||||
return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1));
|
||||
}
|
||||
|
||||
/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
|
||||
@ -349,30 +349,30 @@ struct ArrangeItem {
|
||||
coordf_t weight;
|
||||
bool operator<(const ArrangeItem &other) const {
|
||||
return weight < other.weight ||
|
||||
((weight == other.weight) && (pos.y() < other.pos.y() || (pos.y() == other.pos.y() && pos.x() < other.pos.x())));
|
||||
((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
|
||||
}
|
||||
};
|
||||
|
||||
Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
|
||||
{
|
||||
// Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
|
||||
const Pointf cell_size(part_size.x() + gap, part_size.y() + gap);
|
||||
const Pointf cell_size(part_size(0) + gap, part_size(1) + gap);
|
||||
|
||||
const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
|
||||
*bed_bounding_box :
|
||||
// Bogus bed size, large enough not to trigger the unsufficient bed size error.
|
||||
BoundingBoxf(
|
||||
Pointf(0, 0),
|
||||
Pointf(cell_size.x() * num_parts, cell_size.y() * num_parts));
|
||||
Pointf(cell_size(0) * num_parts, cell_size(1) * num_parts));
|
||||
|
||||
// This is how many cells we have available into which to put parts.
|
||||
size_t cellw = size_t(floor((bed_bbox.size().x() + gap) / cell_size.x()));
|
||||
size_t cellh = size_t(floor((bed_bbox.size().y() + gap) / cell_size.y()));
|
||||
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
|
||||
size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
|
||||
if (num_parts > cellw * cellh)
|
||||
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
|
||||
|
||||
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
|
||||
Pointf cells_size(cellw * cell_size.x() - gap, cellh * cell_size.y() - gap);
|
||||
Pointf cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
||||
Pointf cells_offset(bed_bbox.center() - 0.5 * cells_size);
|
||||
BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
|
||||
|
||||
@ -380,19 +380,19 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
|
||||
std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
|
||||
for (size_t j = 0; j < cellh; ++ j) {
|
||||
// Center of the jth row on the bed.
|
||||
coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min.y(), cells_bb.max.y());
|
||||
coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
|
||||
// Offset from the bed center.
|
||||
coordf_t yd = cells_bb.center().y() - cy;
|
||||
coordf_t yd = cells_bb.center()(1) - cy;
|
||||
for (size_t i = 0; i < cellw; ++ i) {
|
||||
// Center of the ith column on the bed.
|
||||
coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min.x(), cells_bb.max.x());
|
||||
coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
|
||||
// Offset from the bed center.
|
||||
coordf_t xd = cells_bb.center().x() - cx;
|
||||
coordf_t xd = cells_bb.center()(0) - cx;
|
||||
// Cell with a distance from the bed center.
|
||||
ArrangeItem &ci = cellsorder[j * cellw + i];
|
||||
// Cell center
|
||||
ci.pos.x() = cx;
|
||||
ci.pos.y() = cy;
|
||||
ci.pos(0) = cx;
|
||||
ci.pos(1) = cy;
|
||||
// Square distance of the cell center to the bed center.
|
||||
ci.weight = xd * xd + yd * yd;
|
||||
}
|
||||
@ -405,7 +405,7 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
|
||||
Pointfs positions;
|
||||
positions.reserve(num_parts);
|
||||
for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
|
||||
positions.push_back(Pointf(it->pos.x() - 0.5 * part_size.x(), it->pos.y() - 0.5 * part_size.y()));
|
||||
positions.push_back(Pointf(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
|
||||
return positions;
|
||||
}
|
||||
#else
|
||||
@ -430,26 +430,26 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
||||
Pointf part = part_size;
|
||||
|
||||
// use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
|
||||
part.x() += dist;
|
||||
part.y() += dist;
|
||||
part(0) += dist;
|
||||
part(1) += dist;
|
||||
|
||||
Pointf area;
|
||||
if (bb != NULL && bb->defined) {
|
||||
area = bb->size();
|
||||
} else {
|
||||
// bogus area size, large enough not to trigger the error below
|
||||
area.x() = part.x() * total_parts;
|
||||
area.y() = part.y() * total_parts;
|
||||
area(0) = part(0) * total_parts;
|
||||
area(1) = part(1) * total_parts;
|
||||
}
|
||||
|
||||
// this is how many cells we have available into which to put parts
|
||||
size_t cellw = floor((area.x() + dist) / part.x());
|
||||
size_t cellh = floor((area.y() + dist) / part.y());
|
||||
size_t cellw = floor((area(0) + dist) / part(0));
|
||||
size_t cellh = floor((area(1) + dist) / part(1));
|
||||
if (total_parts > (cellw * cellh))
|
||||
return false;
|
||||
|
||||
// total space used by cells
|
||||
Pointf cells(cellw * part.x(), cellh * part.y());
|
||||
Pointf cells(cellw * part(0), cellh * part(1));
|
||||
|
||||
// bounding box of total space used by cells
|
||||
BoundingBoxf cells_bb;
|
||||
@ -458,8 +458,8 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
||||
|
||||
// center bounding box to area
|
||||
cells_bb.translate(
|
||||
(area.x() - cells.x()) / 2,
|
||||
(area.y() - cells.y()) / 2
|
||||
(area(0) - cells(0)) / 2,
|
||||
(area(1) - cells(1)) / 2
|
||||
);
|
||||
|
||||
// list of cells, sorted by distance from center
|
||||
@ -468,15 +468,15 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
||||
// work out distance for all cells, sort into list
|
||||
for (size_t i = 0; i <= cellw-1; ++i) {
|
||||
for (size_t j = 0; j <= cellh-1; ++j) {
|
||||
coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x(), cells_bb.max.x());
|
||||
coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min.y(), cells_bb.max.y());
|
||||
coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
|
||||
coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
|
||||
|
||||
coordf_t xd = fabs((area.x() / 2) - cx);
|
||||
coordf_t yd = fabs((area.y() / 2) - cy);
|
||||
coordf_t xd = fabs((area(0) / 2) - cx);
|
||||
coordf_t yd = fabs((area(1) / 2) - cy);
|
||||
|
||||
ArrangeItem c;
|
||||
c.pos.x() = cx;
|
||||
c.pos.y() = cy;
|
||||
c.pos(0) = cx;
|
||||
c.pos(1) = cy;
|
||||
c.index_x = i;
|
||||
c.index_y = j;
|
||||
c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
|
||||
@ -533,13 +533,13 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
||||
coordf_t cx = c.item.index_x - lx;
|
||||
coordf_t cy = c.item.index_y - ty;
|
||||
|
||||
positions.push_back(Pointf(cx * part.x(), cy * part.y()));
|
||||
positions.push_back(Pointf(cx * part(0), cy * part(1)));
|
||||
}
|
||||
|
||||
if (bb != NULL && bb->defined) {
|
||||
for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
|
||||
p->x() += bb->min.x();
|
||||
p->y() += bb->min.y();
|
||||
p->x() += bb->min(0);
|
||||
p->y() += bb->min(1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -608,15 +608,15 @@ namespace Voronoi { namespace Internal {
|
||||
if (cell1.contains_point() && cell2.contains_point()) {
|
||||
point_type p1 = retrieve_point(segments, cell1);
|
||||
point_type p2 = retrieve_point(segments, cell2);
|
||||
origin.x((p1.x() + p2.x()) * 0.5);
|
||||
origin.y((p1.y() + p2.y()) * 0.5);
|
||||
direction.x(p1.y() - p2.y());
|
||||
direction.y(p2.x() - p1.x());
|
||||
origin.x((p1(0) + p2(0)) * 0.5);
|
||||
origin.y((p1(1) + p2(1)) * 0.5);
|
||||
direction.x(p1(1) - p2(1));
|
||||
direction.y(p2(0) - p1(0));
|
||||
} else {
|
||||
origin = cell1.contains_segment() ? retrieve_point(segments, cell2) : retrieve_point(segments, cell1);
|
||||
segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()];
|
||||
coordinate_type dx = high(segment).x() - low(segment).x();
|
||||
coordinate_type dy = high(segment).y() - low(segment).y();
|
||||
coordinate_type dx = high(segment)(0) - low(segment)(0);
|
||||
coordinate_type dy = high(segment)(1) - low(segment)(1);
|
||||
if ((low(segment) == origin) ^ cell1.contains_point()) {
|
||||
direction.x(dy);
|
||||
direction.y(-dx);
|
||||
@ -625,19 +625,19 @@ namespace Voronoi { namespace Internal {
|
||||
direction.y(dx);
|
||||
}
|
||||
}
|
||||
coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y()));
|
||||
coordinate_type koef = bbox_max_size / (std::max)(fabs(direction(0)), fabs(direction(1)));
|
||||
if (edge.vertex0() == NULL) {
|
||||
clipped_edge->push_back(point_type(
|
||||
origin.x() - direction.x() * koef,
|
||||
origin.y() - direction.y() * koef));
|
||||
origin(0) - direction(0) * koef,
|
||||
origin(1) - direction(1) * koef));
|
||||
} else {
|
||||
clipped_edge->push_back(
|
||||
point_type(edge.vertex0()->x(), edge.vertex0()->y()));
|
||||
}
|
||||
if (edge.vertex1() == NULL) {
|
||||
clipped_edge->push_back(point_type(
|
||||
origin.x() + direction.x() * koef,
|
||||
origin.y() + direction.y() * koef));
|
||||
origin(0) + direction(0) * koef,
|
||||
origin(1) + direction(1) * koef));
|
||||
} else {
|
||||
clipped_edge->push_back(
|
||||
point_type(edge.vertex1()->x(), edge.vertex1()->y()));
|
||||
@ -676,10 +676,10 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
|
||||
const bool primaryEdgesOnly = false;
|
||||
|
||||
BoundingBox bbox = BoundingBox(lines);
|
||||
bbox.min.x() -= coord_t(1. / SCALING_FACTOR);
|
||||
bbox.min.y() -= coord_t(1. / SCALING_FACTOR);
|
||||
bbox.max.x() += coord_t(1. / SCALING_FACTOR);
|
||||
bbox.max.y() += coord_t(1. / SCALING_FACTOR);
|
||||
bbox.min(0) -= coord_t(1. / SCALING_FACTOR);
|
||||
bbox.min(1) -= coord_t(1. / SCALING_FACTOR);
|
||||
bbox.max(0) += coord_t(1. / SCALING_FACTOR);
|
||||
bbox.max(1) += coord_t(1. / SCALING_FACTOR);
|
||||
|
||||
::Slic3r::SVG svg(path, bbox);
|
||||
|
||||
@ -689,7 +689,7 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
|
||||
// bbox.scale(1.2);
|
||||
// For clipping of half-lines to some reasonable value.
|
||||
// The line will then be clipped by the SVG viewer anyway.
|
||||
const double bbox_dim_max = double(bbox.max.x() - bbox.min.x()) + double(bbox.max.y() - bbox.min.y());
|
||||
const double bbox_dim_max = double(bbox.max(0) - bbox.min(0)) + double(bbox.max(1) - bbox.min(1));
|
||||
// For the discretization of the Voronoi parabolic segments.
|
||||
const double discretization_step = 0.0005 * bbox_dim_max;
|
||||
|
||||
@ -697,8 +697,8 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
|
||||
std::vector<Voronoi::Internal::segment_type> segments;
|
||||
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
|
||||
segments.push_back(Voronoi::Internal::segment_type(
|
||||
Voronoi::Internal::point_type(double(it->a.x()), double(it->a.y())),
|
||||
Voronoi::Internal::point_type(double(it->b.x()), double(it->b.y()))));
|
||||
Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))),
|
||||
Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1)))));
|
||||
|
||||
// Color exterior edges.
|
||||
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
|
||||
@ -712,13 +712,13 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
|
||||
}
|
||||
// Draw the input polygon.
|
||||
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
|
||||
svg.draw(Line(Point(coord_t(it->a.x()), coord_t(it->a.y())), Point(coord_t(it->b.x()), coord_t(it->b.y()))), inputSegmentColor, inputSegmentLineWidth);
|
||||
svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth);
|
||||
|
||||
#if 1
|
||||
// Draw voronoi vertices.
|
||||
for (voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
|
||||
if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR)
|
||||
svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius);
|
||||
svg.draw(Point(coord_t((*it)(0)), coord_t((*it)(1))), voronoiPointColor, voronoiPointRadius);
|
||||
|
||||
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
|
||||
if (primaryEdgesOnly && !it->is_primary())
|
||||
@ -743,7 +743,7 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
|
||||
color = voronoiLineColorSecondary;
|
||||
}
|
||||
for (std::size_t i = 0; i + 1 < samples.size(); ++i)
|
||||
svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth);
|
||||
svg.draw(Line(Point(coord_t(samples[i](0)), coord_t(samples[i](1))), Point(coord_t(samples[i+1](0)), coord_t(samples[i+1](1)))), color, voronoiLineWidth);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -758,8 +758,8 @@ static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_d
|
||||
template<typename T>
|
||||
T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
|
||||
{
|
||||
T dx = p2.x() - p1.x();
|
||||
T dy = p2.y() - p1.y();
|
||||
T dx = p2(0) - p1(0);
|
||||
T dy = p2(1) - p1(1);
|
||||
return sqrt(dx*dx+dy*dy);
|
||||
}
|
||||
|
||||
@ -770,11 +770,11 @@ inline point_type project_point_to_segment(segment_type &seg, point_type &px)
|
||||
typedef typename point_type::coordinate_type T;
|
||||
const point_type &p0 = low(seg);
|
||||
const point_type &p1 = high(seg);
|
||||
const point_type dir(p1.x()-p0.x(), p1.y()-p0.y());
|
||||
const point_type dproj(px.x()-p0.x(), px.y()-p0.y());
|
||||
const T t = (dir.x()*dproj.x() + dir.y()*dproj.y()) / (dir.x()*dir.x() + dir.y()*dir.y());
|
||||
const point_type dir(p1(0)-p0(0), p1(1)-p0(1));
|
||||
const point_type dproj(px(0)-p0(0), px(1)-p0(1));
|
||||
const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
|
||||
assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
|
||||
return point_type(p0.x() + t*dir.x(), p0.y() + t*dir.y());
|
||||
return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
|
||||
}
|
||||
|
||||
template<typename VD, typename SEGMENTS>
|
||||
@ -828,8 +828,8 @@ public:
|
||||
Lines2VDSegments(const Lines &alines) : lines(alines) {}
|
||||
typename VD::segment_type operator[](size_t idx) const {
|
||||
return typename VD::segment_type(
|
||||
typename VD::point_type(typename VD::coord_type(lines[idx].a.x()), typename VD::coord_type(lines[idx].a.y())),
|
||||
typename VD::point_type(typename VD::coord_type(lines[idx].b.x()), typename VD::coord_type(lines[idx].b.y())));
|
||||
typename VD::point_type(typename VD::coord_type(lines[idx].a(0)), typename VD::coord_type(lines[idx].a(1))),
|
||||
typename VD::point_type(typename VD::coord_type(lines[idx].b(0)), typename VD::coord_type(lines[idx].b(1))));
|
||||
}
|
||||
private:
|
||||
const Lines &lines;
|
||||
|
@ -30,9 +30,9 @@ enum Orientation
|
||||
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
{
|
||||
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
||||
int64_t u = int64_t(b.x()) * int64_t(c.y()) - int64_t(b.y()) * int64_t(c.x());
|
||||
int64_t v = int64_t(a.x()) * int64_t(c.y()) - int64_t(a.y()) * int64_t(c.x());
|
||||
int64_t w = int64_t(a.x()) * int64_t(b.y()) - int64_t(a.y()) * int64_t(b.x());
|
||||
int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
|
||||
int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
|
||||
int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
|
||||
int64_t d = u - v + w;
|
||||
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
|
||||
}
|
||||
@ -52,7 +52,7 @@ static inline bool is_ccw(const Polygon &poly)
|
||||
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
|
||||
const Point &pmin = poly.points[imin];
|
||||
const Point &p = poly.points[i];
|
||||
if (p.x() < pmin.x() || (p.x() == pmin.x() && p.y() < pmin.y()))
|
||||
if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
|
||||
imin = i;
|
||||
}
|
||||
|
||||
@ -68,24 +68,24 @@ static inline bool is_ccw(const Polygon &poly)
|
||||
|
||||
inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
|
||||
{
|
||||
double denom = v1.x() * v2.y() - v2.x() * v1.y();
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
return false;
|
||||
double t = (v2.x() * (p1.y() - p2.y()) - v2.y() * (p1.x() - p2.x())) / denom;
|
||||
res.x() = p1.x() + t * v1.x();
|
||||
res.y() = p1.y() + t * v1.y();
|
||||
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
|
||||
res(0) = p1(0) + t * v1(0);
|
||||
res(1) = p1(1) + t * v1(1);
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
|
||||
{
|
||||
double denom = v1.x() * v2.y() - v2.x() * v1.y();
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
// Lines are collinear.
|
||||
return false;
|
||||
double s12_x = p1.x() - p2.x();
|
||||
double s12_y = p1.y() - p2.y();
|
||||
double s_numer = v1.x() * s12_y - v1.y() * s12_x;
|
||||
double s12_x = p1(0) - p2(0);
|
||||
double s12_y = p1(1) - p2(1);
|
||||
double s_numer = v1(0) * s12_y - v1(1) * s12_x;
|
||||
bool denom_is_positive = false;
|
||||
if (denom < 0.) {
|
||||
denom_is_positive = true;
|
||||
@ -95,7 +95,7 @@ inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, co
|
||||
if (s_numer < 0.)
|
||||
// Intersection outside of the 1st segment.
|
||||
return false;
|
||||
double t_numer = v2.x() * s12_y - v2.y() * s12_x;
|
||||
double t_numer = v2(0) * s12_y - v2(1) * s12_x;
|
||||
if (! denom_is_positive)
|
||||
t_numer = - t_numer;
|
||||
if (t_numer < 0. || s_numer > denom || t_numer > denom)
|
||||
@ -103,8 +103,8 @@ inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, co
|
||||
return false;
|
||||
// Intersection inside both of the segments.
|
||||
double t = t_numer / denom;
|
||||
res.x() = p1.x() + t * v1.x();
|
||||
res.y() = p1.y() + t * v1.y();
|
||||
res(0) = p1(0) + t * v1(0);
|
||||
res(1) = p1(1) + t * v1(1);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -168,8 +168,8 @@ void Layer::export_region_slices_to_svg(const char *path) const
|
||||
for (Surfaces::const_iterator surface = (*region)->slices.surfaces.begin(); surface != (*region)->slices.surfaces.end(); ++surface)
|
||||
bbox.merge(get_extents(surface->expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min.x(), bbox.max.y());
|
||||
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
@ -194,8 +194,8 @@ void Layer::export_region_fill_surfaces_to_svg(const char *path) const
|
||||
for (Surfaces::const_iterator surface = (*region)->fill_surfaces.surfaces.begin(); surface != (*region)->fill_surfaces.surfaces.end(); ++surface)
|
||||
bbox.merge(get_extents(surface->expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min.x(), bbox.max.y());
|
||||
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
|
@ -395,8 +395,8 @@ void LayerRegion::export_region_slices_to_svg(const char *path) const
|
||||
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
|
||||
bbox.merge(get_extents(surface->expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min.x(), bbox.max.y());
|
||||
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
@ -422,8 +422,8 @@ void LayerRegion::export_region_fill_surfaces_to_svg(const char *path) const
|
||||
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
|
||||
bbox.merge(get_extents(surface->expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min.x(), bbox.max.y());
|
||||
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
|
@ -10,8 +10,8 @@ namespace Slic3r {
|
||||
std::string Line::wkt() const
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << "LINESTRING(" << this->a.x() << " " << this->a.y() << ","
|
||||
<< this->b.x() << " " << this->b.y() << ")";
|
||||
ss << "LINESTRING(" << this->a(0) << " " << this->a(1) << ","
|
||||
<< this->b(0) << " " << this->b(1) << ")";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -108,8 +108,8 @@ bool Line::intersection(const Line &l2, Point *intersection) const
|
||||
Pointf3 Linef3::intersect_plane(double z) const
|
||||
{
|
||||
auto v = (this->b - this->a).cast<double>();
|
||||
double t = (z - this->a.z()) / v.z();
|
||||
return Pointf3(this->a.x() + v.x() * t, this->a.y() + v.y() * t, z);
|
||||
double t = (z - this->a(2)) / v(2);
|
||||
return Pointf3(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -34,11 +34,11 @@ public:
|
||||
double perp_distance_to(const Point &point) const;
|
||||
bool parallel_to(double angle) const;
|
||||
bool parallel_to(const Line &line) const { return this->parallel_to(line.direction()); }
|
||||
double atan2_() const { return atan2(this->b.y() - this->a.y(), this->b.x() - this->a.x()); }
|
||||
double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
|
||||
double orientation() const;
|
||||
double direction() const;
|
||||
Vector vector() const { return this->b - this->a; }
|
||||
Vector normal() const { return Vector((this->b.y() - this->a.y()), -(this->b.x() - this->a.x())); }
|
||||
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
|
||||
bool intersection(const Line& line, Point* intersection) const;
|
||||
double ccw(const Point& point) const { return point.ccw(*this); }
|
||||
|
||||
|
@ -335,11 +335,11 @@ std::string toString(const Model& model, bool holes = true) {
|
||||
ss << "\t\t{\n";
|
||||
|
||||
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
||||
<< v.x() << ", "
|
||||
<< v.y() << "},\n";
|
||||
<< v(0) << ", "
|
||||
<< v(1) << "},\n";
|
||||
{
|
||||
auto v = expoly.contour.points.front();
|
||||
ss << "\t\t\t{" << v.x() << ", " << v.y() << "},\n";
|
||||
ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
|
||||
}
|
||||
ss << "\t\t},\n";
|
||||
|
||||
@ -348,11 +348,11 @@ std::string toString(const Model& model, bool holes = true) {
|
||||
if(holes) for(auto h : expoly.holes) {
|
||||
ss << "\t\t\t{\n";
|
||||
for(auto v : h.points) ss << "\t\t\t\t{"
|
||||
<< v.x() << ", "
|
||||
<< v.y() << "},\n";
|
||||
<< v(0) << ", "
|
||||
<< v(1) << "},\n";
|
||||
{
|
||||
auto v = h.points.front();
|
||||
ss << "\t\t\t\t{" << v.x() << ", " << v.y() << "},\n";
|
||||
ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
|
||||
}
|
||||
ss << "\t\t\t},\n";
|
||||
}
|
||||
@ -427,8 +427,8 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
||||
if(item.vertexCount() > 3) {
|
||||
item.rotation(objinst->rotation);
|
||||
item.translation( {
|
||||
ClipperLib::cInt(objinst->offset.x()/SCALING_FACTOR),
|
||||
ClipperLib::cInt(objinst->offset.y()/SCALING_FACTOR)
|
||||
ClipperLib::cInt(objinst->offset(0)/SCALING_FACTOR),
|
||||
ClipperLib::cInt(objinst->offset(1)/SCALING_FACTOR)
|
||||
});
|
||||
ret.emplace_back(objinst, item);
|
||||
}
|
||||
@ -499,12 +499,12 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
||||
bbb.scale(1.0/SCALING_FACTOR);
|
||||
|
||||
bin = Box({
|
||||
static_cast<libnest2d::Coord>(bbb.min.x()),
|
||||
static_cast<libnest2d::Coord>(bbb.min.y())
|
||||
static_cast<libnest2d::Coord>(bbb.min(0)),
|
||||
static_cast<libnest2d::Coord>(bbb.min(1))
|
||||
},
|
||||
{
|
||||
static_cast<libnest2d::Coord>(bbb.max.x()),
|
||||
static_cast<libnest2d::Coord>(bbb.max.y())
|
||||
static_cast<libnest2d::Coord>(bbb.max(0)),
|
||||
static_cast<libnest2d::Coord>(bbb.max(1))
|
||||
});
|
||||
}
|
||||
|
||||
@ -718,8 +718,8 @@ void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
|
||||
for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
|
||||
for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
|
||||
ModelInstance* instance = object->add_instance();
|
||||
instance->offset.x() = (size.x() + dist) * (x_copy-1);
|
||||
instance->offset.y() = (size.y() + dist) * (y_copy-1);
|
||||
instance->offset(0) = (size(0) + dist) * (x_copy-1);
|
||||
instance->offset(1) = (size(1) + dist) * (y_copy-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -733,7 +733,7 @@ bool Model::looks_like_multipart_object() const
|
||||
if (obj->volumes.size() > 1 || obj->config.keys().size() > 1)
|
||||
return false;
|
||||
for (const ModelVolume *vol : obj->volumes) {
|
||||
double zmin_this = vol->mesh.bounding_box().min.z();
|
||||
double zmin_this = vol->mesh.bounding_box().min(2);
|
||||
if (zmin == std::numeric_limits<double>::max())
|
||||
zmin = zmin_this;
|
||||
else if (std::abs(zmin - zmin_this) > EPSILON)
|
||||
@ -777,13 +777,13 @@ void Model::adjust_min_z()
|
||||
if (objects.empty())
|
||||
return;
|
||||
|
||||
if (bounding_box().min.z() < 0.0)
|
||||
if (bounding_box().min(2) < 0.0)
|
||||
{
|
||||
for (ModelObject* obj : objects)
|
||||
{
|
||||
if (obj != nullptr)
|
||||
{
|
||||
coordf_t obj_min_z = obj->bounding_box().min.z();
|
||||
coordf_t obj_min_z = obj->bounding_box().min(2);
|
||||
if (obj_min_z < 0.0)
|
||||
obj->translate(0.0, 0.0, -obj_min_z);
|
||||
}
|
||||
@ -983,19 +983,19 @@ BoundingBoxf3 ModelObject::tight_bounding_box(bool include_modifiers) const
|
||||
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
||||
|
||||
// scale
|
||||
p.x() *= inst->scaling_factor;
|
||||
p.y() *= inst->scaling_factor;
|
||||
p.z() *= inst->scaling_factor;
|
||||
p(0) *= inst->scaling_factor;
|
||||
p(1) *= inst->scaling_factor;
|
||||
p(2) *= inst->scaling_factor;
|
||||
|
||||
// rotate Z
|
||||
double x = p.x();
|
||||
double y = p.y();
|
||||
p.x() = c * x - s * y;
|
||||
p.y() = s * x + c * y;
|
||||
double x = p(0);
|
||||
double y = p(1);
|
||||
p(0) = c * x - s * y;
|
||||
p(1) = s * x + c * y;
|
||||
|
||||
// translate
|
||||
p.x() += inst->offset.x();
|
||||
p.y() += inst->offset.y();
|
||||
p(0) += inst->offset(0);
|
||||
p(1) += inst->offset(1);
|
||||
|
||||
bb.merge(p);
|
||||
}
|
||||
@ -1065,12 +1065,12 @@ void ModelObject::center_around_origin()
|
||||
bb.merge(v->mesh.bounding_box());
|
||||
|
||||
// first align to origin on XYZ
|
||||
Vectorf3 vector(-bb.min.x(), -bb.min.y(), -bb.min.z());
|
||||
Vectorf3 vector(-bb.min(0), -bb.min(1), -bb.min(2));
|
||||
|
||||
// then center it on XY
|
||||
Sizef3 size = bb.size();
|
||||
vector.x() -= size.x()/2;
|
||||
vector.y() -= size.y()/2;
|
||||
vector(0) -= size(0)/2;
|
||||
vector(1) -= size(1)/2;
|
||||
|
||||
this->translate(vector);
|
||||
this->origin_translation += vector;
|
||||
@ -1256,19 +1256,19 @@ void ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_
|
||||
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
||||
|
||||
// scale
|
||||
p.x() *= inst->scaling_factor;
|
||||
p.y() *= inst->scaling_factor;
|
||||
p.z() *= inst->scaling_factor;
|
||||
p(0) *= inst->scaling_factor;
|
||||
p(1) *= inst->scaling_factor;
|
||||
p(2) *= inst->scaling_factor;
|
||||
|
||||
// rotate Z
|
||||
double x = p.x();
|
||||
double y = p.y();
|
||||
p.x() = c * x - s * y;
|
||||
p.y() = s * x + c * y;
|
||||
double x = p(0);
|
||||
double y = p(1);
|
||||
p(0) = c * x - s * y;
|
||||
p(1) = s * x + c * y;
|
||||
|
||||
// translate
|
||||
p.x() += inst->offset.x();
|
||||
p.y() += inst->offset.y();
|
||||
p(0) += inst->offset(0);
|
||||
p(1) += inst->offset(1);
|
||||
|
||||
bb.merge(p);
|
||||
}
|
||||
@ -1295,15 +1295,15 @@ void ModelObject::print_info() const
|
||||
mesh.check_topology();
|
||||
BoundingBoxf3 bb = mesh.bounding_box();
|
||||
Sizef3 size = bb.size();
|
||||
cout << "size_x = " << size.x() << endl;
|
||||
cout << "size_y = " << size.y() << endl;
|
||||
cout << "size_z = " << size.z() << endl;
|
||||
cout << "min_x = " << bb.min.x() << endl;
|
||||
cout << "min_y = " << bb.min.y() << endl;
|
||||
cout << "min_z = " << bb.min.z() << endl;
|
||||
cout << "max_x = " << bb.max.x() << endl;
|
||||
cout << "max_y = " << bb.max.y() << endl;
|
||||
cout << "max_z = " << bb.max.z() << endl;
|
||||
cout << "size_x = " << size(0) << endl;
|
||||
cout << "size_y = " << size(1) << endl;
|
||||
cout << "size_z = " << size(2) << endl;
|
||||
cout << "min_x = " << bb.min(0) << endl;
|
||||
cout << "min_y = " << bb.min(1) << endl;
|
||||
cout << "min_z = " << bb.min(2) << endl;
|
||||
cout << "max_x = " << bb.max(0) << endl;
|
||||
cout << "max_y = " << bb.max(1) << endl;
|
||||
cout << "max_z = " << bb.max(2) << endl;
|
||||
cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl;
|
||||
cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl;
|
||||
|
||||
@ -1394,7 +1394,7 @@ void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) cons
|
||||
mesh->rotate_z(this->rotation); // rotate around mesh origin
|
||||
mesh->scale(this->scaling_factor); // scale around mesh origin
|
||||
if (!dont_translate)
|
||||
mesh->translate(this->offset.x(), this->offset.y(), 0);
|
||||
mesh->translate(this->offset(0), this->offset(1), 0);
|
||||
}
|
||||
|
||||
BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mesh, bool dont_translate) const
|
||||
@ -1417,19 +1417,19 @@ BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mes
|
||||
if (! empty(bbox)) {
|
||||
// Scale the bounding box uniformly.
|
||||
if (std::abs(this->scaling_factor - 1.) > EPSILON) {
|
||||
bbox.min.x() *= float(this->scaling_factor);
|
||||
bbox.min.y() *= float(this->scaling_factor);
|
||||
bbox.min.z() *= float(this->scaling_factor);
|
||||
bbox.max.x() *= float(this->scaling_factor);
|
||||
bbox.max.y() *= float(this->scaling_factor);
|
||||
bbox.max.z() *= float(this->scaling_factor);
|
||||
bbox.min(0) *= float(this->scaling_factor);
|
||||
bbox.min(1) *= float(this->scaling_factor);
|
||||
bbox.min(2) *= float(this->scaling_factor);
|
||||
bbox.max(0) *= float(this->scaling_factor);
|
||||
bbox.max(1) *= float(this->scaling_factor);
|
||||
bbox.max(2) *= float(this->scaling_factor);
|
||||
}
|
||||
// Translate the bounding box.
|
||||
if (! dont_translate) {
|
||||
bbox.min.x() += float(this->offset.x());
|
||||
bbox.min.y() += float(this->offset.y());
|
||||
bbox.max.x() += float(this->offset.x());
|
||||
bbox.max.y() += float(this->offset.y());
|
||||
bbox.min(0) += float(this->offset(0));
|
||||
bbox.min(1) += float(this->offset(1));
|
||||
bbox.max(0) += float(this->offset(0));
|
||||
bbox.max(1) += float(this->offset(1));
|
||||
}
|
||||
}
|
||||
return bbox;
|
||||
@ -1439,7 +1439,7 @@ BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, b
|
||||
{
|
||||
auto matrix = Transform3f::Identity();
|
||||
if (!dont_translate)
|
||||
matrix.translate(Vec3f((float)offset.x(), (float)offset.y(), 0.0f));
|
||||
matrix.translate(Vec3f((float)offset(0), (float)offset(1), 0.0f));
|
||||
matrix.rotate(Eigen::AngleAxisf(rotation, Vec3f::UnitZ()));
|
||||
matrix.scale(scaling_factor);
|
||||
return bbox.transformed(matrix);
|
||||
|
@ -120,7 +120,7 @@ public:
|
||||
// A snug bounding box around the transformed non-modifier object volumes.
|
||||
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
|
||||
void center_around_origin();
|
||||
void translate(const Vectorf3 &vector) { this->translate(vector.x(), vector.y(), vector.z()); }
|
||||
void translate(const Vectorf3 &vector) { this->translate(vector(0), vector(1), vector(2)); }
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z);
|
||||
void scale(const Pointf3 &versor);
|
||||
void rotate(float angle, const Axis &axis);
|
||||
|
@ -30,10 +30,10 @@ void MultiPoint::translate(const Point &v)
|
||||
void MultiPoint::rotate(double cos_angle, double sin_angle)
|
||||
{
|
||||
for (Point &pt : this->points) {
|
||||
double cur_x = double(pt.x());
|
||||
double cur_y = double(pt.y());
|
||||
pt.x() = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
|
||||
pt.y() = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
|
||||
double cur_x = double(pt(0));
|
||||
double cur_y = double(pt(1));
|
||||
pt(0) = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
|
||||
pt(1) = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
|
||||
}
|
||||
}
|
||||
|
||||
@ -43,8 +43,8 @@ void MultiPoint::rotate(double angle, const Point ¢er)
|
||||
double c = cos(angle);
|
||||
for (Point &pt : points) {
|
||||
Vec2crd v(pt - center);
|
||||
pt.x() = (coord_t)round(double(center.x()) + c * v[0] - s * v[1]);
|
||||
pt.y() = (coord_t)round(double(center.y()) + c * v[1] + s * v[0]);
|
||||
pt(0) = (coord_t)round(double(center(0)) + c * v[0] - s * v[1]);
|
||||
pt(1) = (coord_t)round(double(center(1)) + c * v[1] + s * v[0]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -210,14 +210,14 @@ MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
|
||||
void MultiPoint3::translate(double x, double y)
|
||||
{
|
||||
for (Point3 &p : points) {
|
||||
p.x() += x;
|
||||
p.y() += y;
|
||||
p(0) += x;
|
||||
p(1) += y;
|
||||
}
|
||||
}
|
||||
|
||||
void MultiPoint3::translate(const Point& vector)
|
||||
{
|
||||
this->translate(vector.x(), vector.y());
|
||||
this->translate(vector(0), vector(1));
|
||||
}
|
||||
|
||||
double MultiPoint3::length() const
|
||||
@ -267,19 +267,19 @@ BoundingBox get_extents_rotated(const Points &points, double angle)
|
||||
double s = sin(angle);
|
||||
double c = cos(angle);
|
||||
Points::const_iterator it = points.begin();
|
||||
double cur_x = (double)it->x();
|
||||
double cur_y = (double)it->y();
|
||||
bbox.min.x() = bbox.max.x() = (coord_t)round(c * cur_x - s * cur_y);
|
||||
bbox.min.y() = bbox.max.y() = (coord_t)round(c * cur_y + s * cur_x);
|
||||
double cur_x = (double)(*it)(0);
|
||||
double cur_y = (double)(*it)(1);
|
||||
bbox.min(0) = bbox.max(0) = (coord_t)round(c * cur_x - s * cur_y);
|
||||
bbox.min(1) = bbox.max(1) = (coord_t)round(c * cur_y + s * cur_x);
|
||||
for (++it; it != points.end(); ++it) {
|
||||
double cur_x = (double)it->x();
|
||||
double cur_y = (double)it->y();
|
||||
double cur_x = (double)(*it)(0);
|
||||
double cur_y = (double)(*it)(1);
|
||||
coord_t x = (coord_t)round(c * cur_x - s * cur_y);
|
||||
coord_t y = (coord_t)round(c * cur_y + s * cur_x);
|
||||
bbox.min.x() = std::min(x, bbox.min.x());
|
||||
bbox.min.y() = std::min(y, bbox.min.y());
|
||||
bbox.max.x() = std::max(x, bbox.max.x());
|
||||
bbox.max.y() = std::max(y, bbox.max.y());
|
||||
bbox.min(0) = std::min(x, bbox.min(0));
|
||||
bbox.min(1) = std::min(y, bbox.min(1));
|
||||
bbox.max(0) = std::max(x, bbox.max(0));
|
||||
bbox.max(1) = std::max(y, bbox.max(1));
|
||||
}
|
||||
bbox.defined = true;
|
||||
}
|
||||
|
@ -9,42 +9,42 @@ namespace Slic3r {
|
||||
std::string Point::wkt() const
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << "POINT(" << this->x() << " " << this->y() << ")";
|
||||
ss << "POINT(" << (*this)(0) << " " << (*this)(1) << ")";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string Point::dump_perl() const
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << "[" << this->x() << "," << this->y() << "]";
|
||||
ss << "[" << (*this)(0) << "," << (*this)(1) << "]";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void Point::rotate(double angle)
|
||||
{
|
||||
double cur_x = (double)this->x();
|
||||
double cur_y = (double)this->y();
|
||||
double cur_x = (double)(*this)(0);
|
||||
double cur_y = (double)(*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
this->x() = (coord_t)round(c * cur_x - s * cur_y);
|
||||
this->y() = (coord_t)round(c * cur_y + s * cur_x);
|
||||
(*this)(0) = (coord_t)round(c * cur_x - s * cur_y);
|
||||
(*this)(1) = (coord_t)round(c * cur_y + s * cur_x);
|
||||
}
|
||||
|
||||
void Point::rotate(double angle, const Point ¢er)
|
||||
{
|
||||
double cur_x = (double)this->x();
|
||||
double cur_y = (double)this->y();
|
||||
double cur_x = (double)(*this)(0);
|
||||
double cur_y = (double)(*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
double dx = cur_x - (double)center.x();
|
||||
double dy = cur_y - (double)center.y();
|
||||
this->x() = (coord_t)round( (double)center.x() + c * dx - s * dy );
|
||||
this->y() = (coord_t)round( (double)center.y() + c * dy + s * dx );
|
||||
double dx = cur_x - (double)center(0);
|
||||
double dy = cur_y - (double)center(1);
|
||||
(*this)(0) = (coord_t)round( (double)center(0) + c * dx - s * dy );
|
||||
(*this)(1) = (coord_t)round( (double)center(1) + c * dy + s * dx );
|
||||
}
|
||||
|
||||
bool Point::coincides_with_epsilon(const Point &point) const
|
||||
{
|
||||
return std::abs(this->x() - point.x()) < SCALED_EPSILON && std::abs(this->y() - point.y()) < SCALED_EPSILON;
|
||||
return std::abs((*this)(0) - point(0)) < SCALED_EPSILON && std::abs((*this)(1) - point(1)) < SCALED_EPSILON;
|
||||
}
|
||||
|
||||
int Point::nearest_point_index(const Points &points) const
|
||||
@ -64,12 +64,12 @@ int Point::nearest_point_index(const PointConstPtrs &points) const
|
||||
for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
|
||||
/* If the X distance of the candidate is > than the total distance of the
|
||||
best previous candidate, we know we don't want it */
|
||||
double d = sqr<double>(this->x() - (*it)->x());
|
||||
double d = sqr<double>((*this)(0) - (*it)->x());
|
||||
if (distance != -1 && d > distance) continue;
|
||||
|
||||
/* If the Y distance of the candidate is > than the total distance of the
|
||||
best previous candidate, we know we don't want it */
|
||||
d += sqr<double>(this->y() - (*it)->y());
|
||||
d += sqr<double>((*this)(1) - (*it)->y());
|
||||
if (distance != -1 && d > distance) continue;
|
||||
|
||||
idx = it - points.begin();
|
||||
@ -107,7 +107,7 @@ bool Point::nearest_point(const Points &points, Point* point) const
|
||||
*/
|
||||
double Point::ccw(const Point &p1, const Point &p2) const
|
||||
{
|
||||
return (double)(p2.x() - p1.x())*(double)(this->y() - p1.y()) - (double)(p2.y() - p1.y())*(double)(this->x() - p1.x());
|
||||
return (double)(p2(0) - p1(0))*(double)((*this)(1) - p1(1)) - (double)(p2(1) - p1(1))*(double)((*this)(0) - p1(0));
|
||||
}
|
||||
|
||||
double Point::ccw(const Line &line) const
|
||||
@ -119,8 +119,8 @@ double Point::ccw(const Line &line) const
|
||||
// i.e. this assumes a CCW rotation from p1 to p2 around this
|
||||
double Point::ccw_angle(const Point &p1, const Point &p2) const
|
||||
{
|
||||
double angle = atan2(p1.x() - this->x(), p1.y() - this->y())
|
||||
- atan2(p2.x() - this->x(), p2.y() - this->y());
|
||||
double angle = atan2(p1(0) - (*this)(0), p1(1) - (*this)(1))
|
||||
- atan2(p2(0) - (*this)(0), p2(1) - (*this)(1));
|
||||
|
||||
// we only want to return only positive angles
|
||||
return angle <= 0 ? angle + 2*PI : angle;
|
||||
@ -155,9 +155,9 @@ Point Point::projection_onto(const Line &line) const
|
||||
If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
|
||||
must be closest to calling Point.
|
||||
*/
|
||||
double lx = (double)(line.b.x() - line.a.x());
|
||||
double ly = (double)(line.b.y() - line.a.y());
|
||||
double theta = ( (double)(line.b.x() - this->x())*lx + (double)(line.b.y()- this->y())*ly )
|
||||
double lx = (double)(line.b(0) - line.a(0));
|
||||
double ly = (double)(line.b(1) - line.a(1));
|
||||
double theta = ( (double)(line.b(0) - (*this)(0))*lx + (double)(line.b(1)- (*this)(1))*ly )
|
||||
/ ( sqr<double>(lx) + sqr<double>(ly) );
|
||||
|
||||
if (0.0 <= theta && theta <= 1.0)
|
||||
@ -169,43 +169,43 @@ Point Point::projection_onto(const Line &line) const
|
||||
|
||||
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf)
|
||||
{
|
||||
return stm << pointf.x() << "," << pointf.y();
|
||||
return stm << pointf(0) << "," << pointf(1);
|
||||
}
|
||||
|
||||
std::string Pointf::wkt() const
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << "POINT(" << this->x() << " " << this->y() << ")";
|
||||
ss << "POINT(" << (*this)(0) << " " << (*this)(1) << ")";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string Pointf::dump_perl() const
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << "[" << this->x() << "," << this->y() << "]";
|
||||
ss << "[" << (*this)(0) << "," << (*this)(1) << "]";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void Pointf::rotate(double angle)
|
||||
{
|
||||
double cur_x = this->x();
|
||||
double cur_y = this->y();
|
||||
double cur_x = (*this)(0);
|
||||
double cur_y = (*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
this->x() = c * cur_x - s * cur_y;
|
||||
this->y() = c * cur_y + s * cur_x;
|
||||
(*this)(0) = c * cur_x - s * cur_y;
|
||||
(*this)(1) = c * cur_y + s * cur_x;
|
||||
}
|
||||
|
||||
void Pointf::rotate(double angle, const Pointf ¢er)
|
||||
{
|
||||
double cur_x = this->x();
|
||||
double cur_y = this->y();
|
||||
double cur_x = (*this)(0);
|
||||
double cur_y = (*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
double dx = cur_x - center.x();
|
||||
double dy = cur_y - center.y();
|
||||
this->x() = center.x() + c * dx - s * dy;
|
||||
this->y() = center.y() + c * dy + s * dx;
|
||||
double dx = cur_x - center(0);
|
||||
double dy = cur_y - center(1);
|
||||
(*this)(0) = center(0) + c * dx - s * dy;
|
||||
(*this)(1) = center(1) + c * dy + s * dx;
|
||||
}
|
||||
|
||||
namespace int128 {
|
||||
@ -214,12 +214,12 @@ int orient(const Point &p1, const Point &p2, const Point &p3)
|
||||
{
|
||||
Slic3r::Vector v1(p2 - p1);
|
||||
Slic3r::Vector v2(p3 - p1);
|
||||
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
|
||||
return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
|
||||
}
|
||||
|
||||
int cross(const Point &v1, const Point &v2)
|
||||
{
|
||||
return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
|
||||
return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -49,10 +49,10 @@ typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d
|
||||
typedef Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign> Transform3f;
|
||||
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;
|
||||
|
||||
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
|
||||
inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
|
||||
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
|
||||
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
|
||||
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
|
||||
class Point : public Vec2crd
|
||||
{
|
||||
@ -77,18 +77,13 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
const coord_t& x() const { return (*this)(0); }
|
||||
coord_t& x() { return (*this)(0); }
|
||||
const coord_t& y() const { return (*this)(1); }
|
||||
coord_t& y() { return (*this)(1); }
|
||||
|
||||
bool operator==(const Point& rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
|
||||
bool operator==(const Point& rhs) const { return (*this)(0) == rhs(0) && (*this)(1) == rhs(1); }
|
||||
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
|
||||
bool operator< (const Point& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
|
||||
bool operator< (const Point& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
|
||||
|
||||
Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
|
||||
Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
|
||||
Point& operator*=(const double &rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
|
||||
Point& operator+=(const Point& rhs) { (*this)(0) += rhs(0); (*this)(1) += rhs(1); return *this; }
|
||||
Point& operator-=(const Point& rhs) { (*this)(0) -= rhs(0); (*this)(1) -= rhs(1); return *this; }
|
||||
Point& operator*=(const double &rhs) { (*this)(0) *= rhs; (*this)(1) *= rhs; return *this; }
|
||||
|
||||
std::string wkt() const;
|
||||
std::string dump_perl() const;
|
||||
@ -120,7 +115,7 @@ namespace int128 {
|
||||
// To be used by std::unordered_map, std::unordered_multimap and friends.
|
||||
struct PointHash {
|
||||
size_t operator()(const Point &pt) const {
|
||||
return std::hash<coord_t>()(pt.x()) ^ std::hash<coord_t>()(pt.y());
|
||||
return std::hash<coord_t>()(pt(0)) ^ std::hash<coord_t>()(pt(1));
|
||||
}
|
||||
};
|
||||
|
||||
@ -182,12 +177,12 @@ public:
|
||||
const ValueType *value_min = nullptr;
|
||||
double dist_min = std::numeric_limits<double>::max();
|
||||
// Round pt to a closest grid_cell corner.
|
||||
Point grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
|
||||
Point grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2);
|
||||
// For four neighbors of grid_corner:
|
||||
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
|
||||
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
|
||||
// Range of fragment starts around grid_corner, close to pt.
|
||||
auto range = m_map.equal_range(Point(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
|
||||
auto range = m_map.equal_range(Point(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y));
|
||||
// Find the map entry closest to pt.
|
||||
for (auto it = range.first; it != range.second; ++it) {
|
||||
const ValueType &value = it->second;
|
||||
@ -236,17 +231,10 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
const coord_t& x() const { return (*this)(0); }
|
||||
coord_t& x() { return (*this)(0); }
|
||||
const coord_t& y() const { return (*this)(1); }
|
||||
coord_t& y() { return (*this)(1); }
|
||||
const coord_t& z() const { return (*this)(2); }
|
||||
coord_t& z() { return (*this)(2); }
|
||||
|
||||
bool operator==(const Point3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
|
||||
bool operator==(const Point3 &rhs) const { return (*this)(0) == rhs(0) && (*this)(1) == rhs(1) && (*this)(2) == rhs(2); }
|
||||
bool operator!=(const Point3 &rhs) const { return ! (*this == rhs); }
|
||||
|
||||
Point xy() const { return Point(this->x(), this->y()); }
|
||||
Point xy() const { return Point((*this)(0), (*this)(1)); }
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);
|
||||
@ -262,7 +250,7 @@ public:
|
||||
template<typename OtherDerived>
|
||||
Pointf(const Eigen::MatrixBase<OtherDerived> &other) : Vec2d(other) {}
|
||||
static Pointf new_unscale(coord_t x, coord_t y) { return Pointf(unscale(x), unscale(y)); }
|
||||
static Pointf new_unscale(const Point &p) { return Pointf(unscale(p.x()), unscale(p.y())); }
|
||||
static Pointf new_unscale(const Point &p) { return Pointf(unscale(p(0)), unscale(p(1))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
@ -272,22 +260,14 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
const coordf_t& x() const { return (*this)(0); }
|
||||
coordf_t& x() { return (*this)(0); }
|
||||
const coordf_t& y() const { return (*this)(1); }
|
||||
coordf_t& y() { return (*this)(1); }
|
||||
|
||||
std::string wkt() const;
|
||||
std::string dump_perl() const;
|
||||
void rotate(double angle);
|
||||
void rotate(double angle, const Pointf ¢er);
|
||||
Pointf& operator+=(const Pointf& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
|
||||
Pointf& operator-=(const Pointf& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
|
||||
Pointf& operator*=(const coordf_t& rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
|
||||
|
||||
bool operator==(const Pointf &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
|
||||
bool operator==(const Pointf &rhs) const { return (*this)(0) == rhs(0) && (*this)(1) == rhs(1); }
|
||||
bool operator!=(const Pointf &rhs) const { return ! (*this == rhs); }
|
||||
bool operator< (const Pointf& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
|
||||
bool operator< (const Pointf& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
|
||||
};
|
||||
|
||||
class Pointf3 : public Vec3d
|
||||
@ -302,7 +282,7 @@ public:
|
||||
template<typename OtherDerived>
|
||||
Pointf3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3d(other) {}
|
||||
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) { return Pointf3(unscale(x), unscale(y), unscale(z)); }
|
||||
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p.x()), unscale(p.y()), unscale(p.z())); }
|
||||
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p(0)), unscale(p(1)), unscale(p(2))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
@ -312,17 +292,10 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
const coordf_t& x() const { return (*this)(0); }
|
||||
coordf_t& x() { return (*this)(0); }
|
||||
const coordf_t& y() const { return (*this)(1); }
|
||||
coordf_t& y() { return (*this)(1); }
|
||||
const coordf_t& z() const { return (*this)(2); }
|
||||
coordf_t& z() { return (*this)(2); }
|
||||
|
||||
bool operator==(const Pointf3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
|
||||
bool operator==(const Pointf3 &rhs) const { return (*this)(0) == rhs(0) && (*this)(1) == rhs(1) && (*this)(2) == rhs(2); }
|
||||
bool operator!=(const Pointf3 &rhs) const { return ! (*this == rhs); }
|
||||
|
||||
Pointf xy() const { return Pointf(this->x(), this->y()); }
|
||||
Pointf xy() const { return Pointf((*this)(0), (*this)(1)); }
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
@ -339,7 +312,7 @@ namespace boost { namespace polygon {
|
||||
typedef coord_t coordinate_type;
|
||||
|
||||
static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
|
||||
return (orient == HORIZONTAL) ? (coordinate_type)point.x() : (coordinate_type)point.y();
|
||||
return (orient == HORIZONTAL) ? (coordinate_type)point(0) : (coordinate_type)point(1);
|
||||
}
|
||||
};
|
||||
|
||||
@ -348,14 +321,14 @@ namespace boost { namespace polygon {
|
||||
typedef coord_t coordinate_type;
|
||||
static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
|
||||
if (orient == HORIZONTAL)
|
||||
point.x() = value;
|
||||
point(0) = value;
|
||||
else
|
||||
point.y() = value;
|
||||
point(1) = value;
|
||||
}
|
||||
static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
|
||||
Slic3r::Point retval;
|
||||
retval.x() = x_value;
|
||||
retval.y() = y_value;
|
||||
retval(0) = x_value;
|
||||
retval(1) = y_value;
|
||||
return retval;
|
||||
}
|
||||
};
|
||||
|
@ -86,7 +86,7 @@ int64_t Polygon::area2x() const
|
||||
|
||||
int64_t a = 0;
|
||||
for (size_t i = 0, j = n - 1; i < n; ++i)
|
||||
a += int64_t(poly[j].x() + poly[i].x()) * int64_t(poly[j].y() - poly[i].y());
|
||||
a += int64_t(poly[j](0) + poly[i](0)) * int64_t(poly[j](1) - poly[i](1));
|
||||
j = i;
|
||||
}
|
||||
return -a * 0.5;
|
||||
@ -101,7 +101,7 @@ double Polygon::area() const
|
||||
|
||||
double a = 0.;
|
||||
for (size_t i = 0, j = n - 1; i < n; ++i) {
|
||||
a += ((double)points[j].x() + (double)points[i].x()) * ((double)points[i].y() - (double)points[j].y());
|
||||
a += ((double)points[j](0) + (double)points[i](0)) * ((double)points[i](1) - (double)points[j](1));
|
||||
j = i;
|
||||
}
|
||||
return 0.5 * a;
|
||||
@ -155,17 +155,17 @@ Polygon::contains(const Point &point) const
|
||||
Points::const_iterator i = this->points.begin();
|
||||
Points::const_iterator j = this->points.end() - 1;
|
||||
for (; i != this->points.end(); j = i++) {
|
||||
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y() well.
|
||||
// Does the ray with y == point.y() intersect this line segment?
|
||||
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
|
||||
// Does the ray with y == point(1) intersect this line segment?
|
||||
#if 1
|
||||
if ( ((i->y() > point.y()) != (j->y() > point.y()))
|
||||
&& ((double)point.x() < (double)(j->x() - i->x()) * (double)(point.y() - i->y()) / (double)(j->y() - i->y()) + (double)i->x()) )
|
||||
if ( (((*i)(1) > point(1)) != ((*j)(1) > point(1)))
|
||||
&& ((double)point(0) < (double)((*j)(0) - (*i)(0)) * (double)(point(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1)) + (double)(*i)(0)) )
|
||||
result = !result;
|
||||
#else
|
||||
if ((i->y() > point.y()) != (j->y() > point.y())) {
|
||||
if (((*i)(1) > point(1)) != ((*j)(1) > point(1))) {
|
||||
// Orientation predicated relative to i-th point.
|
||||
double orient = (double)(point.x() - i->x()) * (double)(j->y() - i->y()) - (double)(point.y() - i->y()) * (double)(j->x() - i->x());
|
||||
if ((i->y() > j->y()) ? (orient > 0.) : (orient < 0.))
|
||||
double orient = (double)(point(0) - (*i)(0)) * (double)((*j)(1) - (*i)(1)) - (double)(point(1) - (*i)(1)) * (double)((*j)(0) - (*i)(0));
|
||||
if (((*i)(1) > (*j)(1)) ? (orient > 0.) : (orient < 0.))
|
||||
result = !result;
|
||||
}
|
||||
#endif
|
||||
@ -310,13 +310,13 @@ Point Polygon::point_projection(const Point &point) const
|
||||
dmin = d;
|
||||
proj = pt1;
|
||||
}
|
||||
Pointf v1(coordf_t(pt1.x() - pt0.x()), coordf_t(pt1.y() - pt0.y()));
|
||||
Pointf v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1)));
|
||||
coordf_t div = v1.squaredNorm();
|
||||
if (div > 0.) {
|
||||
Pointf v2(coordf_t(point.x() - pt0.x()), coordf_t(point.y() - pt0.y()));
|
||||
Pointf v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1)));
|
||||
coordf_t t = v1.dot(v2) / div;
|
||||
if (t > 0. && t < 1.) {
|
||||
Point foot(coord_t(floor(coordf_t(pt0.x()) + t * v1.x() + 0.5)), coord_t(floor(coordf_t(pt0.y()) + t * v1.y() + 0.5)));
|
||||
Point foot(coord_t(floor(coordf_t(pt0(0)) + t * v1(0) + 0.5)), coord_t(floor(coordf_t(pt0(1)) + t * v1(1) + 0.5)));
|
||||
d = (point - foot).cast<double>().norm();
|
||||
if (d < dmin) {
|
||||
dmin = d;
|
||||
@ -374,12 +374,12 @@ static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3)
|
||||
{
|
||||
Point v1 = p2 - p1;
|
||||
Point v2 = p3 - p2;
|
||||
int64_t dir = int64_t(v1.x()) * int64_t(v2.x()) + int64_t(v1.y()) * int64_t(v2.y());
|
||||
int64_t dir = int64_t(v1(0)) * int64_t(v2(0)) + int64_t(v1(1)) * int64_t(v2(1));
|
||||
if (dir > 0)
|
||||
// p3 does not turn back to p1. Do not remove p2.
|
||||
return false;
|
||||
double l2_1 = double(v1.x()) * double(v1.x()) + double(v1.y()) * double(v1.y());
|
||||
double l2_2 = double(v2.x()) * double(v2.x()) + double(v2.y()) * double(v2.y());
|
||||
double l2_1 = double(v1(0)) * double(v1(0)) + double(v1(1)) * double(v1(1));
|
||||
double l2_2 = double(v2(0)) * double(v2(0)) + double(v2(1)) * double(v2(1));
|
||||
if (dir == 0)
|
||||
// p1, p2, p3 may make a perpendicular corner, or there is a zero edge length.
|
||||
// Remove p2 if it is coincident with p1 or p2.
|
||||
@ -387,7 +387,7 @@ static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3)
|
||||
// p3 turns back to p1 after p2. Are p1, p2, p3 collinear?
|
||||
// Calculate distance from p3 to a segment (p1, p2) or from p1 to a segment(p2, p3),
|
||||
// whichever segment is longer
|
||||
double cross = double(v1.x()) * double(v2.y()) - double(v2.x()) * double(v1.y());
|
||||
double cross = double(v1(0)) * double(v2(1)) - double(v2(0)) * double(v1(1));
|
||||
double dist2 = cross * cross / std::max(l2_1, l2_2);
|
||||
return dist2 < EPSILON * EPSILON;
|
||||
}
|
||||
|
@ -27,7 +27,7 @@ public:
|
||||
static Polygon new_scale(std::vector<Pointf> points) {
|
||||
Points int_points;
|
||||
for (auto pt : points)
|
||||
int_points.push_back(Point::new_scale(pt.x(), pt.y()));
|
||||
int_points.push_back(Point::new_scale(pt(0), pt(1)));
|
||||
return Polygon(int_points);
|
||||
}
|
||||
Polygon& operator=(const Polygon &other) { points = other.points; return *this; }
|
||||
|
@ -33,7 +33,7 @@ Polyline::leftmost_point() const
|
||||
{
|
||||
Point p = this->points.front();
|
||||
for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++it) {
|
||||
if (it->x() < p.x()) p = *it;
|
||||
if ((*it)(0) < p(0)) p = *it;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
@ -27,7 +27,7 @@ public:
|
||||
Polyline pl;
|
||||
Points int_points;
|
||||
for (auto pt : points)
|
||||
int_points.push_back(Point::new_scale(pt.x(), pt.y()));
|
||||
int_points.push_back(Point::new_scale(pt(0), pt(1)));
|
||||
pl.append(int_points);
|
||||
return pl;
|
||||
}
|
||||
|
@ -15,9 +15,9 @@ inline int nearest_point_index(const std::vector<Chaining> &pairs, const Point &
|
||||
T dmin = std::numeric_limits<T>::max();
|
||||
int idx = 0;
|
||||
for (std::vector<Chaining>::const_iterator it = pairs.begin(); it != pairs.end(); ++it) {
|
||||
T d = sqr(T(start_near.x() - it->first.x()));
|
||||
T d = sqr(T(start_near(0) - it->first(0)));
|
||||
if (d <= dmin) {
|
||||
d += sqr(T(start_near.y() - it->first.y()));
|
||||
d += sqr(T(start_near(1) - it->first(1)));
|
||||
if (d < dmin) {
|
||||
idx = (it - pairs.begin()) * 2;
|
||||
dmin = d;
|
||||
@ -26,9 +26,9 @@ inline int nearest_point_index(const std::vector<Chaining> &pairs, const Point &
|
||||
}
|
||||
}
|
||||
if (! no_reverse) {
|
||||
d = sqr(T(start_near.x() - it->last.x()));
|
||||
d = sqr(T(start_near(0) - it->last(0)));
|
||||
if (d <= dmin) {
|
||||
d += sqr(T(start_near.y() - it->last.y()));
|
||||
d += sqr(T(start_near(1) - it->last(1)));
|
||||
if (d < dmin) {
|
||||
idx = (it - pairs.begin()) * 2 + 1;
|
||||
dmin = d;
|
||||
@ -82,7 +82,7 @@ Point PolylineCollection::leftmost_point(const Polylines &polylines)
|
||||
Point p = it->leftmost_point();
|
||||
for (++ it; it != polylines.end(); ++it) {
|
||||
Point p2 = it->leftmost_point();
|
||||
if (p2.x() < p.x())
|
||||
if (p2(0) < p(0))
|
||||
p = p2;
|
||||
}
|
||||
return p;
|
||||
|
@ -538,9 +538,9 @@ bool Print::has_skirt() const
|
||||
std::string Print::validate() const
|
||||
{
|
||||
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(config.bed_shape.values));
|
||||
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min.x()), unscale(bed_box_2D.min.y()), 0.0), Pointf3(unscale(bed_box_2D.max.x()), unscale(bed_box_2D.max.y()), config.max_print_height));
|
||||
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min(0)), unscale(bed_box_2D.min(1)), 0.0), Pointf3(unscale(bed_box_2D.max(0)), unscale(bed_box_2D.max(1)), config.max_print_height));
|
||||
// Allow the objects to protrude below the print bed, only the part of the object above the print bed will be sliced.
|
||||
print_volume.min.z() = -1e10;
|
||||
print_volume.min(2) = -1e10;
|
||||
unsigned int printable_count = 0;
|
||||
for (PrintObject *po : this->objects) {
|
||||
po->model_object()->check_instances_print_volume_state(print_volume);
|
||||
@ -585,7 +585,7 @@ std::string Print::validate() const
|
||||
{
|
||||
std::vector<coord_t> object_height;
|
||||
for (const PrintObject *object : this->objects)
|
||||
object_height.insert(object_height.end(), object->copies().size(), object->size.z());
|
||||
object_height.insert(object_height.end(), object->copies().size(), object->size(2));
|
||||
std::sort(object_height.begin(), object_height.end());
|
||||
// Ignore the tallest *copy* (this is why we repeat height for all of them):
|
||||
// it will be printed as last one so its height doesn't matter.
|
||||
|
@ -2067,7 +2067,7 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
||||
ConfigOptionPoint p;
|
||||
p.deserialize(value);
|
||||
std::ostringstream oss;
|
||||
oss << "0x0," << p.value.x() << "x0," << p.value.x() << "x" << p.value.y() << ",0x" << p.value.y();
|
||||
oss << "0x0," << p.value(0) << "x0," << p.value(0) << "x" << p.value(1) << ",0x" << p.value(1);
|
||||
value = oss.str();
|
||||
// Maybe one day we will rename octoprint_host to print_host as it has been done in the upstream Slic3r.
|
||||
// Commenting this out fixes github issue #869 for now.
|
||||
|
@ -48,10 +48,10 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
||||
// don't assume it's already aligned and we don't alter the original position in model.
|
||||
// We store the XY translation so that we can place copies correctly in the output G-code
|
||||
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
|
||||
this->_copies_shift = Point::new_scale(modobj_bbox.min.x(), modobj_bbox.min.y());
|
||||
this->_copies_shift = Point::new_scale(modobj_bbox.min(0), modobj_bbox.min(1));
|
||||
// Scale the object size and store it
|
||||
Pointf3 size = modobj_bbox.size();
|
||||
this->size = Point3::new_scale(size.x(), size.y(), size.z());
|
||||
this->size = Point3::new_scale(size(0), size(1), size(2));
|
||||
}
|
||||
|
||||
this->reload_model_instances();
|
||||
@ -62,7 +62,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
||||
bool PrintObject::add_copy(const Pointf &point)
|
||||
{
|
||||
Points points = this->_copies;
|
||||
points.push_back(Point::new_scale(point.x(), point.y()));
|
||||
points.push_back(Point::new_scale(point(0), point(1)));
|
||||
return this->set_copies(points);
|
||||
}
|
||||
|
||||
@ -101,7 +101,7 @@ bool PrintObject::reload_model_instances()
|
||||
for (const ModelInstance *mi : this->_model_object->instances)
|
||||
{
|
||||
if (mi->is_printable())
|
||||
copies.emplace_back(Point::new_scale(mi->offset.x(), mi->offset.y()));
|
||||
copies.emplace_back(Point::new_scale(mi->offset(0), mi->offset(1)));
|
||||
}
|
||||
return this->set_copies(copies);
|
||||
}
|
||||
@ -1119,7 +1119,7 @@ SlicingParameters PrintObject::slicing_parameters() const
|
||||
{
|
||||
return SlicingParameters::create_from_config(
|
||||
this->print()->config, this->config,
|
||||
unscale(this->size.z()), this->print()->object_extruders());
|
||||
unscale(this->size(2)), this->print()->object_extruders());
|
||||
}
|
||||
|
||||
bool PrintObject::update_layer_height_profile(std::vector<coordf_t> &layer_height_profile) const
|
||||
@ -1333,7 +1333,7 @@ std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::
|
||||
// consider the first one
|
||||
this->model_object()->instances.front()->transform_mesh(&mesh, true);
|
||||
// align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
|
||||
mesh.translate(- float(unscale(this->_copies_shift.x())), - float(unscale(this->_copies_shift.y())), -float(this->model_object()->bounding_box().min.z()));
|
||||
mesh.translate(- float(unscale(this->_copies_shift(0))), - float(unscale(this->_copies_shift(1))), -float(this->model_object()->bounding_box().min(2)));
|
||||
// perform actual slicing
|
||||
TriangleMeshSlicer mslicer(&mesh);
|
||||
mslicer.slice(z, &layers);
|
||||
|
@ -32,8 +32,8 @@ bool SVG::open(const char* afilename, const BoundingBox &bbox, const coord_t bbo
|
||||
this->f = boost::nowide::fopen(afilename, "w");
|
||||
if (f == NULL)
|
||||
return false;
|
||||
float w = COORD(bbox.max.x() - bbox.min.x() + 2 * bbox_offset);
|
||||
float h = COORD(bbox.max.y() - bbox.min.y() + 2 * bbox_offset);
|
||||
float w = COORD(bbox.max(0) - bbox.min(0) + 2 * bbox_offset);
|
||||
float h = COORD(bbox.max(1) - bbox.min(1) + 2 * bbox_offset);
|
||||
fprintf(this->f,
|
||||
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
|
||||
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
|
||||
@ -50,7 +50,7 @@ SVG::draw(const Line &line, std::string stroke, coordf_t stroke_width)
|
||||
{
|
||||
fprintf(this->f,
|
||||
" <line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" style=\"stroke: %s; stroke-width: %f\"",
|
||||
COORD(line.a.x() - origin.x()), COORD(line.a.y() - origin.y()), COORD(line.b.x() - origin.x()), COORD(line.b.y() - origin.y()), stroke.c_str(), (stroke_width == 0) ? 1.f : COORD(stroke_width));
|
||||
COORD(line.a(0) - origin(0)), COORD(line.a(1) - origin(1)), COORD(line.b(0) - origin(0)), COORD(line.b(1) - origin(1)), stroke.c_str(), (stroke_width == 0) ? 1.f : COORD(stroke_width));
|
||||
if (this->arrows)
|
||||
fprintf(this->f, " marker-end=\"url(#endArrow)\"");
|
||||
fprintf(this->f, "/>\n");
|
||||
@ -58,21 +58,21 @@ SVG::draw(const Line &line, std::string stroke, coordf_t stroke_width)
|
||||
|
||||
void SVG::draw(const ThickLine &line, const std::string &fill, const std::string &stroke, coordf_t stroke_width)
|
||||
{
|
||||
Pointf dir(line.b.x()-line.a.x(), line.b.y()-line.a.y());
|
||||
Pointf perp(-dir.y(), dir.x());
|
||||
coordf_t len = sqrt(perp.x()*perp.x() + perp.y()*perp.y());
|
||||
Pointf dir(line.b(0)-line.a(0), line.b(1)-line.a(1));
|
||||
Pointf perp(-dir(1), dir(0));
|
||||
coordf_t len = sqrt(perp(0)*perp(0) + perp(1)*perp(1));
|
||||
coordf_t da = coordf_t(0.5)*line.a_width/len;
|
||||
coordf_t db = coordf_t(0.5)*line.b_width/len;
|
||||
fprintf(this->f,
|
||||
" <polygon points=\"%f,%f %f,%f %f,%f %f,%f\" style=\"fill:%s; stroke: %s; stroke-width: %f\"/>\n",
|
||||
COORD(line.a.x()-da*perp.x()-origin.x()),
|
||||
COORD(line.a.y()-da*perp.y()-origin.y()),
|
||||
COORD(line.b.x()-db*perp.x()-origin.x()),
|
||||
COORD(line.b.y()-db*perp.y()-origin.y()),
|
||||
COORD(line.b.x()+db*perp.x()-origin.x()),
|
||||
COORD(line.b.y()+db*perp.y()-origin.y()),
|
||||
COORD(line.a.x()+da*perp.x()-origin.x()),
|
||||
COORD(line.a.y()+da*perp.y()-origin.y()),
|
||||
COORD(line.a(0)-da*perp(0)-origin(0)),
|
||||
COORD(line.a(1)-da*perp(1)-origin(1)),
|
||||
COORD(line.b(0)-db*perp(0)-origin(0)),
|
||||
COORD(line.b(1)-db*perp(1)-origin(1)),
|
||||
COORD(line.b(0)+db*perp(0)-origin(0)),
|
||||
COORD(line.b(1)+db*perp(1)-origin(1)),
|
||||
COORD(line.a(0)+da*perp(0)-origin(0)),
|
||||
COORD(line.a(1)+da*perp(1)-origin(1)),
|
||||
fill.c_str(), stroke.c_str(),
|
||||
(stroke_width == 0) ? 1.f : COORD(stroke_width));
|
||||
}
|
||||
@ -220,7 +220,7 @@ SVG::draw(const Point &point, std::string fill, coord_t iradius)
|
||||
{
|
||||
float radius = (iradius == 0) ? 3.f : COORD(iradius);
|
||||
std::ostringstream svg;
|
||||
svg << " <circle cx=\"" << COORD(point.x() - origin.x()) << "\" cy=\"" << COORD(point.y() - origin.y())
|
||||
svg << " <circle cx=\"" << COORD(point(0) - origin(0)) << "\" cy=\"" << COORD(point(1) - origin(1))
|
||||
<< "\" r=\"" << radius << "\" "
|
||||
<< "style=\"stroke: none; fill: " << fill << "\" />";
|
||||
|
||||
@ -287,8 +287,8 @@ SVG::get_path_d(const MultiPoint &mp, bool closed) const
|
||||
std::ostringstream d;
|
||||
d << "M ";
|
||||
for (Points::const_iterator p = mp.points.begin(); p != mp.points.end(); ++p) {
|
||||
d << COORD(p->x() - origin.x()) << " ";
|
||||
d << COORD(p->y() - origin.y()) << " ";
|
||||
d << COORD((*p)(0) - origin(0)) << " ";
|
||||
d << COORD((*p)(1) - origin(1)) << " ";
|
||||
}
|
||||
if (closed) d << "z";
|
||||
return d.str();
|
||||
@ -300,8 +300,8 @@ SVG::get_path_d(const ClipperLib::Path &path, double scale, bool closed) const
|
||||
std::ostringstream d;
|
||||
d << "M ";
|
||||
for (ClipperLib::Path::const_iterator p = path.begin(); p != path.end(); ++p) {
|
||||
d << COORD(scale * p->X - origin.x()) << " ";
|
||||
d << COORD(scale * p->Y - origin.y()) << " ";
|
||||
d << COORD(scale * p->X - origin(0)) << " ";
|
||||
d << COORD(scale * p->Y - origin(1)) << " ";
|
||||
}
|
||||
if (closed) d << "z";
|
||||
return d.str();
|
||||
@ -311,8 +311,8 @@ void SVG::draw_text(const Point &pt, const char *text, const char *color)
|
||||
{
|
||||
fprintf(this->f,
|
||||
"<text x=\"%f\" y=\"%f\" font-family=\"sans-serif\" font-size=\"20px\" fill=\"%s\">%s</text>",
|
||||
COORD(pt.x()-origin.x()),
|
||||
COORD(pt.y()-origin.y()),
|
||||
COORD(pt(0)-origin(0)),
|
||||
COORD(pt(1)-origin(1)),
|
||||
color, text);
|
||||
}
|
||||
|
||||
@ -320,13 +320,13 @@ void SVG::draw_legend(const Point &pt, const char *text, const char *color)
|
||||
{
|
||||
fprintf(this->f,
|
||||
"<circle cx=\"%f\" cy=\"%f\" r=\"10\" fill=\"%s\"/>",
|
||||
COORD(pt.x()-origin.x()),
|
||||
COORD(pt.y()-origin.y()),
|
||||
COORD(pt(0)-origin(0)),
|
||||
COORD(pt(1)-origin(1)),
|
||||
color);
|
||||
fprintf(this->f,
|
||||
"<text x=\"%f\" y=\"%f\" font-family=\"sans-serif\" font-size=\"10px\" fill=\"%s\">%s</text>",
|
||||
COORD(pt.x()-origin.x()) + 20.f,
|
||||
COORD(pt.y()-origin.y()),
|
||||
COORD(pt(0)-origin(0)) + 20.f,
|
||||
COORD(pt(1)-origin(1)),
|
||||
"black", text);
|
||||
}
|
||||
|
||||
|
@ -608,17 +608,17 @@ int generate_layer_height_texture(
|
||||
coordf_t intensity = cos(M_PI * 0.7 * (mid - z) / h);
|
||||
// Color mapping from layer height to RGB.
|
||||
Pointf3 color(
|
||||
intensity * lerp(coordf_t(color1.x()), coordf_t(color2.x()), t),
|
||||
intensity * lerp(coordf_t(color1.y()), coordf_t(color2.y()), t),
|
||||
intensity * lerp(coordf_t(color1.z()), coordf_t(color2.z()), t));
|
||||
intensity * lerp(coordf_t(color1(0)), coordf_t(color2(0)), t),
|
||||
intensity * lerp(coordf_t(color1(1)), coordf_t(color2(1)), t),
|
||||
intensity * lerp(coordf_t(color1(2)), coordf_t(color2(2)), t));
|
||||
int row = cell / (cols - 1);
|
||||
int col = cell - row * (cols - 1);
|
||||
assert(row >= 0 && row < rows);
|
||||
assert(col >= 0 && col < cols);
|
||||
unsigned char *ptr = (unsigned char*)data + (row * cols + col) * 4;
|
||||
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color.x() + 0.5)));
|
||||
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color.y() + 0.5)));
|
||||
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color.z() + 0.5)));
|
||||
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color(0) + 0.5)));
|
||||
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color(1) + 0.5)));
|
||||
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color(2) + 0.5)));
|
||||
ptr[3] = 255;
|
||||
if (col == 0 && row > 0) {
|
||||
// Duplicate the first value in a row as a last value of the preceding row.
|
||||
@ -640,17 +640,17 @@ int generate_layer_height_texture(
|
||||
const Point3 &color2 = palette_raw[idx2];
|
||||
// Color mapping from layer height to RGB.
|
||||
Pointf3 color(
|
||||
lerp(coordf_t(color1.x()), coordf_t(color2.x()), t),
|
||||
lerp(coordf_t(color1.y()), coordf_t(color2.y()), t),
|
||||
lerp(coordf_t(color1.z()), coordf_t(color2.z()), t));
|
||||
lerp(coordf_t(color1(0)), coordf_t(color2(0)), t),
|
||||
lerp(coordf_t(color1(1)), coordf_t(color2(1)), t),
|
||||
lerp(coordf_t(color1(2)), coordf_t(color2(2)), t));
|
||||
int row = cell / (cols1 - 1);
|
||||
int col = cell - row * (cols1 - 1);
|
||||
assert(row >= 0 && row < rows/2);
|
||||
assert(col >= 0 && col < cols/2);
|
||||
unsigned char *ptr = data1 + (row * cols1 + col) * 4;
|
||||
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color.x() + 0.5)));
|
||||
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color.y() + 0.5)));
|
||||
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color.z() + 0.5)));
|
||||
ptr[0] = (unsigned char)clamp<int>(0, 255, int(floor(color(0) + 0.5)));
|
||||
ptr[1] = (unsigned char)clamp<int>(0, 255, int(floor(color(1) + 0.5)));
|
||||
ptr[2] = (unsigned char)clamp<int>(0, 255, int(floor(color(2) + 0.5)));
|
||||
ptr[3] = 255;
|
||||
if (col == 0 && row > 0) {
|
||||
// Duplicate the first value in a row as a last value of the preceding row.
|
||||
|
@ -67,9 +67,9 @@ Point export_support_surface_type_legend_to_svg_box_size()
|
||||
void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
|
||||
{
|
||||
// 1st row
|
||||
coord_t pos_x0 = pos.x() + scale_(1.);
|
||||
coord_t pos_x0 = pos(0) + scale_(1.);
|
||||
coord_t pos_x = pos_x0;
|
||||
coord_t pos_y = pos.y() + scale_(1.5);
|
||||
coord_t pos_y = pos(1) + scale_(1.5);
|
||||
coord_t step_x = scale_(10.);
|
||||
svg.draw_legend(Point(pos_x, pos_y), "top contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact));
|
||||
pos_x += step_x;
|
||||
@ -82,7 +82,7 @@ void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
|
||||
svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact));
|
||||
// 2nd row
|
||||
pos_x = pos_x0;
|
||||
pos_y = pos.y()+scale_(2.8);
|
||||
pos_y = pos(1)+scale_(2.8);
|
||||
svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface));
|
||||
pos_x += step_x;
|
||||
svg.draw_legend(Point(pos_x, pos_y), "raft base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase));
|
||||
@ -98,8 +98,8 @@ void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial
|
||||
for (int i = 0; i < n_layers; ++ i)
|
||||
bbox.merge(get_extents(layers[i]->polygons));
|
||||
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min.x(), bbox.max.y());
|
||||
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
for (int i = 0; i < n_layers; ++ i)
|
||||
@ -120,8 +120,8 @@ void export_print_z_polygons_and_extrusions_to_svg(
|
||||
for (int i = 0; i < n_layers; ++ i)
|
||||
bbox.merge(get_extents(layers[i]->polygons));
|
||||
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min.x(), bbox.max.y());
|
||||
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
for (int i = 0; i < n_layers; ++ i)
|
||||
@ -519,12 +519,12 @@ public:
|
||||
Points::const_iterator i = contour.points.begin();
|
||||
Points::const_iterator j = contour.points.end() - 1;
|
||||
for (; i != contour.points.end(); j = i ++) {
|
||||
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y() well.
|
||||
// Does the ray with y == point.y() intersect this line segment?
|
||||
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
|
||||
// Does the ray with y == point(1) intersect this line segment?
|
||||
for (auto &sample_inside : samples_inside) {
|
||||
if ((i->y() > sample_inside.first.y()) != (j->y() > sample_inside.first.y())) {
|
||||
double x1 = (double)sample_inside.first.x();
|
||||
double x2 = (double)i->x() + (double)(j->x() - i->x()) * (double)(sample_inside.first.y() - i->y()) / (double)(j->y() - i->y());
|
||||
if (((*i)(1) > sample_inside.first(1)) != ((*j)(1) > sample_inside.first(1))) {
|
||||
double x1 = (double)sample_inside.first(0);
|
||||
double x2 = (double)(*i)(0) + (double)((*j)(0) - (*i)(0)) * (double)(sample_inside.first(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1));
|
||||
if (x1 < x2)
|
||||
sample_inside.second = !sample_inside.second;
|
||||
}
|
||||
@ -585,11 +585,11 @@ private:
|
||||
const Point &p3 = (pt_min == &expoly.contour.points.back()) ? expoly.contour.points.front() : *(pt_min + 1);
|
||||
|
||||
Vector v = (p3 - p2) + (p1 - p2);
|
||||
double l2 = double(v.x())*double(v.x())+double(v.y())*double(v.y());
|
||||
double l2 = double(v(0))*double(v(0))+double(v(1))*double(v(1));
|
||||
if (l2 == 0.)
|
||||
return p2;
|
||||
double coef = 20. / sqrt(l2);
|
||||
return Point(p2.x() + coef * v.x(), p2.y() + coef * v.y());
|
||||
return Point(p2(0) + coef * v(0), p2(1) + coef * v(1));
|
||||
}
|
||||
|
||||
static Points island_samples(const ExPolygons &expolygons)
|
||||
@ -789,7 +789,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
|
||||
|
||||
// workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
|
||||
for (Polyline &polyline : overhang_perimeters)
|
||||
polyline.points[0].x() += 1;
|
||||
polyline.points[0](0) += 1;
|
||||
// Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters.
|
||||
overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices);
|
||||
|
||||
@ -2057,8 +2057,8 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const
|
||||
const Point &p1 = *(it-1);
|
||||
const Point &p2 = *it;
|
||||
// Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
|
||||
const Pointf v_seg(coordf_t(p2.x()) - coordf_t(p1.x()), coordf_t(p2.y()) - coordf_t(p1.y()));
|
||||
const Pointf v_cntr(coordf_t(p1.x() - center_last.x()), coordf_t(p1.y() - center_last.y()));
|
||||
const Pointf v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
|
||||
const Pointf v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
|
||||
coordf_t a = v_seg.squaredNorm();
|
||||
coordf_t b = 2. * v_seg.dot(v_cntr);
|
||||
coordf_t c = v_cntr.squaredNorm() - circle_distance * circle_distance;
|
||||
@ -2081,7 +2081,7 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const
|
||||
}
|
||||
seg_current_pt = &p1;
|
||||
seg_current_t = t;
|
||||
center_last = Point(p1.x() + coord_t(v_seg.x() * t), p1.y() + coord_t(v_seg.y() * t));
|
||||
center_last = Point(p1(0) + coord_t(v_seg(0) * t), p1(1) + coord_t(v_seg(1) * t));
|
||||
// It has been verified that the new point is far enough from center_last.
|
||||
// Ensure, that it is far enough from all the centers.
|
||||
std::pair<const Point*, coordf_t> circle_closest = circle_centers_lookup.find(center_last);
|
||||
@ -2887,9 +2887,9 @@ void PrintObjectSupportMaterial::clip_by_pillars(
|
||||
BoundingBox bbox;
|
||||
for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
|
||||
bbox.merge(get_extents((*it)->polygons));
|
||||
grid.reserve(size_t(ceil(bb.size().x() / pillar_spacing)) * size_t(ceil(bb.size().y() / pillar_spacing)));
|
||||
for (coord_t x = bb.min.x(); x <= bb.max.x() - pillar_size; x += pillar_spacing) {
|
||||
for (coord_t y = bb.min.y(); y <= bb.max.y() - pillar_size; y += pillar_spacing) {
|
||||
grid.reserve(size_t(ceil(bb.size()(0) / pillar_spacing)) * size_t(ceil(bb.size()(1) / pillar_spacing)));
|
||||
for (coord_t x = bb.min(0); x <= bb.max(0) - pillar_size; x += pillar_spacing) {
|
||||
for (coord_t y = bb.min(1); y <= bb.max(1) - pillar_size; y += pillar_spacing) {
|
||||
grid.push_back(pillar);
|
||||
for (size_t i = 0; i < pillar.points.size(); ++ i)
|
||||
grid.back().points[i].translate(Point(x, y));
|
||||
|
@ -106,9 +106,9 @@ Point export_surface_type_legend_to_svg_box_size()
|
||||
void export_surface_type_legend_to_svg(SVG &svg, const Point &pos)
|
||||
{
|
||||
// 1st row
|
||||
coord_t pos_x0 = pos.x() + scale_(1.);
|
||||
coord_t pos_x0 = pos(0) + scale_(1.);
|
||||
coord_t pos_x = pos_x0;
|
||||
coord_t pos_y = pos.y() + scale_(1.5);
|
||||
coord_t pos_y = pos(1) + scale_(1.5);
|
||||
coord_t step_x = scale_(10.);
|
||||
svg.draw_legend(Point(pos_x, pos_y), "perimeter" , surface_type_to_color_name(stPerimeter));
|
||||
pos_x += step_x;
|
||||
@ -121,7 +121,7 @@ void export_surface_type_legend_to_svg(SVG &svg, const Point &pos)
|
||||
svg.draw_legend(Point(pos_x, pos_y), "invalid" , surface_type_to_color_name(SurfaceType(-1)));
|
||||
// 2nd row
|
||||
pos_x = pos_x0;
|
||||
pos_y = pos.y()+scale_(2.8);
|
||||
pos_y = pos(1)+scale_(2.8);
|
||||
svg.draw_legend(Point(pos_x, pos_y), "internal" , surface_type_to_color_name(stInternal));
|
||||
pos_x += step_x;
|
||||
svg.draw_legend(Point(pos_x, pos_y), "internal solid" , surface_type_to_color_name(stInternalSolid));
|
||||
|
@ -170,8 +170,8 @@ void SurfaceCollection::export_to_svg(const char *path, bool show_labels)
|
||||
for (Surfaces::const_iterator surface = this->surfaces.begin(); surface != this->surfaces.end(); ++surface)
|
||||
bbox.merge(get_extents(surface->expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min.x(), bbox.max.y());
|
||||
bbox.merge(Point(std::max(bbox.min.x() + legend_size.x(), bbox.max.x()), bbox.max.y() + legend_size.y()));
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
|
@ -52,20 +52,20 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Point3>& fa
|
||||
for (int i = 0; i < stl.stats.number_of_facets; i++) {
|
||||
stl_facet facet;
|
||||
|
||||
const Pointf3& ref_f1 = points[facets[i].x()];
|
||||
facet.vertex[0].x = ref_f1.x();
|
||||
facet.vertex[0].y = ref_f1.y();
|
||||
facet.vertex[0].z = ref_f1.z();
|
||||
const Pointf3& ref_f1 = points[facets[i](0)];
|
||||
facet.vertex[0].x = ref_f1(0);
|
||||
facet.vertex[0].y = ref_f1(1);
|
||||
facet.vertex[0].z = ref_f1(2);
|
||||
|
||||
const Pointf3& ref_f2 = points[facets[i].y()];
|
||||
facet.vertex[1].x = ref_f2.x();
|
||||
facet.vertex[1].y = ref_f2.y();
|
||||
facet.vertex[1].z = ref_f2.z();
|
||||
const Pointf3& ref_f2 = points[facets[i](1)];
|
||||
facet.vertex[1].x = ref_f2(0);
|
||||
facet.vertex[1].y = ref_f2(1);
|
||||
facet.vertex[1].z = ref_f2(2);
|
||||
|
||||
const Pointf3& ref_f3 = points[facets[i].z()];
|
||||
facet.vertex[2].x = ref_f3.x();
|
||||
facet.vertex[2].y = ref_f3.y();
|
||||
facet.vertex[2].z = ref_f3.z();
|
||||
const Pointf3& ref_f3 = points[facets[i](2)];
|
||||
facet.vertex[2].x = ref_f3(0);
|
||||
facet.vertex[2].y = ref_f3(1);
|
||||
facet.vertex[2].z = ref_f3(2);
|
||||
|
||||
facet.extra[0] = 0;
|
||||
facet.extra[1] = 0;
|
||||
@ -303,9 +303,9 @@ void TriangleMesh::scale(float factor)
|
||||
void TriangleMesh::scale(const Pointf3 &versor)
|
||||
{
|
||||
float fversor[3];
|
||||
fversor[0] = versor.x();
|
||||
fversor[1] = versor.y();
|
||||
fversor[2] = versor.z();
|
||||
fversor[0] = versor(0);
|
||||
fversor[1] = versor(1);
|
||||
fversor[2] = versor(2);
|
||||
stl_scale_versor(&this->stl, fversor);
|
||||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
@ -400,9 +400,10 @@ void TriangleMesh::rotate(double angle, Point* center)
|
||||
{
|
||||
if (angle == 0.)
|
||||
return;
|
||||
this->translate(float(-center->x()), float(-center->y()), 0);
|
||||
Vec2f c = center->cast<float>();
|
||||
this->translate(-c(0), -c(1), 0);
|
||||
stl_rotate_z(&(this->stl), (float)angle);
|
||||
this->translate(float(+center->x()), float(+center->y()), 0);
|
||||
this->translate(c(0), c(1), 0);
|
||||
}
|
||||
|
||||
bool TriangleMesh::has_multiple_patches() const
|
||||
@ -588,12 +589,12 @@ TriangleMesh::bounding_box() const
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
bb.defined = true;
|
||||
bb.min.x() = this->stl.stats.min.x;
|
||||
bb.min.y() = this->stl.stats.min.y;
|
||||
bb.min.z() = this->stl.stats.min.z;
|
||||
bb.max.x() = this->stl.stats.max.x;
|
||||
bb.max.y() = this->stl.stats.max.y;
|
||||
bb.max.z() = this->stl.stats.max.z;
|
||||
bb.min(0) = this->stl.stats.min.x;
|
||||
bb.min(1) = this->stl.stats.min.y;
|
||||
bb.min(2) = this->stl.stats.min.z;
|
||||
bb.max(0) = this->stl.stats.max.x;
|
||||
bb.max(1) = this->stl.stats.max.y;
|
||||
bb.max(2) = this->stl.stats.max.z;
|
||||
return bb;
|
||||
}
|
||||
|
||||
@ -813,10 +814,10 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
|
||||
std::swap(a_id, b_id);
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
il.a.x() = a->x;
|
||||
il.a.y() = a->y;
|
||||
il.b.x() = b->x;
|
||||
il.b.y() = b->y;
|
||||
il.a(0) = a->x;
|
||||
il.a(1) = a->y;
|
||||
il.b(0) = b->x;
|
||||
il.b(1) = b->y;
|
||||
il.a_id = a_id;
|
||||
il.b_id = b_id;
|
||||
(*lines)[layer_idx].emplace_back(il);
|
||||
@ -894,10 +895,10 @@ bool TriangleMeshSlicer::slice_facet(
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
||||
line_out->edge_type = feBottom;
|
||||
}
|
||||
line_out->a.x() = a->x;
|
||||
line_out->a.y() = a->y;
|
||||
line_out->b.x() = b->x;
|
||||
line_out->b.y() = b->y;
|
||||
line_out->a(0) = a->x;
|
||||
line_out->a(1) = a->y;
|
||||
line_out->b(0) = b->x;
|
||||
line_out->b(1) = b->y;
|
||||
line_out->a_id = a_id;
|
||||
line_out->b_id = b_id;
|
||||
return true;
|
||||
@ -907,21 +908,21 @@ bool TriangleMeshSlicer::slice_facet(
|
||||
// Only point a alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point.x() = a->x;
|
||||
point.y() = a->y;
|
||||
point(0) = a->x;
|
||||
point(1) = a->y;
|
||||
point.point_id = a_id;
|
||||
} else if (b->z == slice_z) {
|
||||
// Only point b alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point.x() = b->x;
|
||||
point.y() = b->y;
|
||||
point(0) = b->x;
|
||||
point(1) = b->y;
|
||||
point.point_id = b_id;
|
||||
} else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) {
|
||||
// A general case. The face edge intersects the cutting plane. Calculate the intersection point.
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point.x() = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
|
||||
point.y() = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
|
||||
point(0) = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
|
||||
point(1) = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
|
||||
point.edge_id = edge_id;
|
||||
}
|
||||
}
|
||||
@ -1202,7 +1203,7 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
||||
// Orient the patched up polygons CCW. This heuristic may close some holes and cavities.
|
||||
double area = 0.;
|
||||
for (size_t i = 0, j = opl.points.size() - 1; i < opl.points.size(); j = i ++)
|
||||
area += double(opl.points[j].x() + opl.points[i].x()) * double(opl.points[i].y() - opl.points[j].y());
|
||||
area += double(opl.points[j](0) + opl.points[i](0)) * double(opl.points[i](1) - opl.points[j](1));
|
||||
if (area < 0)
|
||||
std::reverse(opl.points.begin(), opl.points.end());
|
||||
loops->emplace_back(std::move(opl.points));
|
||||
@ -1492,8 +1493,8 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
||||
facet.normal.y = 0;
|
||||
facet.normal.z = -1;
|
||||
for (size_t i = 0; i <= 2; ++i) {
|
||||
facet.vertex[i].x = unscale(p.points[i].x());
|
||||
facet.vertex[i].y = unscale(p.points[i].y());
|
||||
facet.vertex[i].x = unscale(p.points[i](0));
|
||||
facet.vertex[i].y = unscale(p.points[i](1));
|
||||
facet.vertex[i].z = z;
|
||||
}
|
||||
stl_add_facet(&upper->stl, &facet);
|
||||
@ -1518,8 +1519,8 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
||||
facet.normal.y = 0;
|
||||
facet.normal.z = 1;
|
||||
for (size_t i = 0; i <= 2; ++i) {
|
||||
facet.vertex[i].x = unscale(polygon->points[i].x());
|
||||
facet.vertex[i].y = unscale(polygon->points[i].y());
|
||||
facet.vertex[i].x = unscale(polygon->points[i](0));
|
||||
facet.vertex[i].y = unscale(polygon->points[i](1));
|
||||
facet.vertex[i].z = z;
|
||||
}
|
||||
stl_add_facet(&lower->stl, &facet);
|
||||
@ -1576,8 +1577,8 @@ TriangleMesh make_cylinder(double r, double h, double fa) {
|
||||
for (double i = 0; i < 2*PI; i+=angle) {
|
||||
Pointf p(0, r);
|
||||
p.rotate(i);
|
||||
vertices.emplace_back(Pointf3(p.x(), p.y(), 0.));
|
||||
vertices.emplace_back(Pointf3(p.x(), p.y(), h));
|
||||
vertices.emplace_back(Pointf3(p(0), p(1), 0.));
|
||||
vertices.emplace_back(Pointf3(p(0), p(1), h));
|
||||
id = vertices.size() - 1;
|
||||
facets.emplace_back(Point3( 0, id - 1, id - 3)); // top
|
||||
facets.emplace_back(Point3(id, 1, id - 2)); // bottom
|
||||
@ -1627,7 +1628,7 @@ TriangleMesh make_sphere(double rho, double fa) {
|
||||
const double r = sqrt(abs(rho*rho - z*z));
|
||||
Pointf b(0, r);
|
||||
b.rotate(ring[i]);
|
||||
vertices.emplace_back(Pointf3(b.x(), b.y(), z));
|
||||
vertices.emplace_back(Pointf3(b(0), b(1), z));
|
||||
facets.emplace_back((i == 0) ? Point3(1, 0, ring.size()) : Point3(id, 0, id - 1));
|
||||
++ id;
|
||||
}
|
||||
@ -1640,7 +1641,7 @@ TriangleMesh make_sphere(double rho, double fa) {
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
Pointf b(0, r);
|
||||
b.rotate(ring[i]);
|
||||
vertices.emplace_back(Pointf3(b.x(), b.y(), z));
|
||||
vertices.emplace_back(Pointf3(b(0), b(1), z));
|
||||
if (i == 0) {
|
||||
// wrap around
|
||||
facets.emplace_back(Point3(id + ring.size() - 1 , id, id - 1));
|
||||
|
@ -485,8 +485,8 @@ SV* to_SV_pureperl(const Point* THIS)
|
||||
{
|
||||
AV* av = newAV();
|
||||
av_fill(av, 1);
|
||||
av_store(av, 0, newSViv(THIS->x()));
|
||||
av_store(av, 1, newSViv(THIS->y()));
|
||||
av_store(av, 0, newSViv((*THIS)(0)));
|
||||
av_store(av, 1, newSViv((*THIS)(1)));
|
||||
return newRV_noinc((SV*)av);
|
||||
}
|
||||
|
||||
@ -495,8 +495,7 @@ void from_SV(SV* point_sv, Point* point)
|
||||
AV* point_av = (AV*)SvRV(point_sv);
|
||||
// get a double from Perl and round it, otherwise
|
||||
// it would get truncated
|
||||
point->x() = lrint(SvNV(*av_fetch(point_av, 0, 0)));
|
||||
point->y() = lrint(SvNV(*av_fetch(point_av, 1, 0)));
|
||||
(*point) = Point(lrint(SvNV(*av_fetch(point_av, 0, 0))), lrint(SvNV(*av_fetch(point_av, 1, 0))));
|
||||
}
|
||||
|
||||
void from_SV_check(SV* point_sv, Point* point)
|
||||
@ -514,8 +513,8 @@ SV* to_SV_pureperl(const Pointf* point)
|
||||
{
|
||||
AV* av = newAV();
|
||||
av_fill(av, 1);
|
||||
av_store(av, 0, newSVnv(point->x()));
|
||||
av_store(av, 1, newSVnv(point->y()));
|
||||
av_store(av, 0, newSVnv((*point)(0)));
|
||||
av_store(av, 1, newSVnv((*point)(1)));
|
||||
return newRV_noinc((SV*)av);
|
||||
}
|
||||
|
||||
@ -526,8 +525,7 @@ bool from_SV(SV* point_sv, Pointf* point)
|
||||
SV* sv_y = *av_fetch(point_av, 1, 0);
|
||||
if (!looks_like_number(sv_x) || !looks_like_number(sv_y)) return false;
|
||||
|
||||
point->x() = SvNV(sv_x);
|
||||
point->y() = SvNV(sv_y);
|
||||
*point = Pointf(SvNV(sv_x), SvNV(sv_y));
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -34,15 +34,15 @@ void Bed_2D::repaint()
|
||||
|
||||
auto cbb = BoundingBoxf(Pointf(0, 0),Pointf(cw, ch));
|
||||
// leave space for origin point
|
||||
cbb.min.x() += 4;
|
||||
cbb.min(0) += 4;
|
||||
cbb.max -= Vec2d(4., 4.);
|
||||
|
||||
// leave space for origin label
|
||||
cbb.max.y() -= 13;
|
||||
cbb.max(1) -= 13;
|
||||
|
||||
// read new size
|
||||
cw = cbb.size().x();
|
||||
ch = cbb.size().y();
|
||||
cw = cbb.size()(0);
|
||||
ch = cbb.size()(1);
|
||||
|
||||
auto ccenter = cbb.center();
|
||||
|
||||
@ -51,19 +51,19 @@ void Bed_2D::repaint()
|
||||
auto bed_polygon = Polygon::new_scale(m_bed_shape);
|
||||
auto bb = BoundingBoxf(m_bed_shape);
|
||||
bb.merge(Pointf(0, 0)); // origin needs to be in the visible area
|
||||
auto bw = bb.size().x();
|
||||
auto bh = bb.size().y();
|
||||
auto bw = bb.size()(0);
|
||||
auto bh = bb.size()(1);
|
||||
auto bcenter = bb.center();
|
||||
|
||||
// calculate the scaling factor for fitting bed shape in canvas area
|
||||
auto sfactor = std::min(cw/bw, ch/bh);
|
||||
auto shift = Pointf(
|
||||
ccenter.x() - bcenter.x() * sfactor,
|
||||
ccenter.y() - bcenter.y() * sfactor
|
||||
ccenter(0) - bcenter(0) * sfactor,
|
||||
ccenter(1) - bcenter(1) * sfactor
|
||||
);
|
||||
m_scale_factor = sfactor;
|
||||
m_shift = Pointf(shift.x() + cbb.min.x(),
|
||||
shift.y() - (cbb.max.y() - GetSize().GetHeight()));
|
||||
m_shift = Pointf(shift(0) + cbb.min(0),
|
||||
shift(1) - (cbb.max(1) - GetSize().GetHeight()));
|
||||
|
||||
// draw bed fill
|
||||
dc.SetBrush(wxBrush(wxColour(255, 255, 255), wxSOLID));
|
||||
@ -71,19 +71,19 @@ void Bed_2D::repaint()
|
||||
for (auto pt: m_bed_shape)
|
||||
{
|
||||
Point pt_pix = to_pixels(pt);
|
||||
pt_list.push_back(new wxPoint(pt_pix.x(), pt_pix.y()));
|
||||
pt_list.push_back(new wxPoint(pt_pix(0), pt_pix(1)));
|
||||
}
|
||||
dc.DrawPolygon(&pt_list, 0, 0);
|
||||
|
||||
// draw grid
|
||||
auto step = 10; // 1cm grid
|
||||
Polylines polylines;
|
||||
for (auto x = bb.min.x() - fmod(bb.min.x(), step) + step; x < bb.max.x(); x += step) {
|
||||
Polyline pl = Polyline::new_scale({ Pointf(x, bb.min.y()), Pointf(x, bb.max.y()) });
|
||||
for (auto x = bb.min(0) - fmod(bb.min(0), step) + step; x < bb.max(0); x += step) {
|
||||
Polyline pl = Polyline::new_scale({ Pointf(x, bb.min(1)), Pointf(x, bb.max(1)) });
|
||||
polylines.push_back(pl);
|
||||
}
|
||||
for (auto y = bb.min.y() - fmod(bb.min.y(), step) + step; y < bb.max.y(); y += step) {
|
||||
polylines.push_back(Polyline::new_scale({ Pointf(bb.min.x(), y), Pointf(bb.max.x(), y) }));
|
||||
for (auto y = bb.min(1) - fmod(bb.min(1), step) + step; y < bb.max(1); y += step) {
|
||||
polylines.push_back(Polyline::new_scale({ Pointf(bb.min(0), y), Pointf(bb.max(0), y) }));
|
||||
}
|
||||
polylines = intersection_pl(polylines, bed_polygon);
|
||||
|
||||
@ -93,7 +93,7 @@ void Bed_2D::repaint()
|
||||
for (size_t i = 0; i < pl.points.size()-1; i++){
|
||||
Point pt1 = to_pixels(Pointf::new_unscale(pl.points[i]));
|
||||
Point pt2 = to_pixels(Pointf::new_unscale(pl.points[i+1]));
|
||||
dc.DrawLine(pt1.x(), pt1.y(), pt2.x(), pt2.y());
|
||||
dc.DrawLine(pt1(0), pt1(1), pt2(0), pt2(1));
|
||||
}
|
||||
}
|
||||
|
||||
@ -109,36 +109,36 @@ void Bed_2D::repaint()
|
||||
auto arrow_len = 6;
|
||||
auto arrow_angle = Geometry::deg2rad(45.0);
|
||||
dc.SetPen(wxPen(wxColour(255, 0, 0), 2, wxSOLID)); // red
|
||||
auto x_end = Pointf(origin_px.x() + axes_len, origin_px.y());
|
||||
dc.DrawLine(wxPoint(origin_px.x(), origin_px.y()), wxPoint(x_end.x(), x_end.y()));
|
||||
auto x_end = Pointf(origin_px(0) + axes_len, origin_px(1));
|
||||
dc.DrawLine(wxPoint(origin_px(0), origin_px(1)), wxPoint(x_end(0), x_end(1)));
|
||||
for (auto angle : { -arrow_angle, arrow_angle }){
|
||||
auto end = x_end;
|
||||
end.x() -= arrow_len;
|
||||
end(0) -= arrow_len;
|
||||
end.rotate(angle, x_end);
|
||||
dc.DrawLine(wxPoint(x_end.x(), x_end.y()), wxPoint(end.x(), end.y()));
|
||||
dc.DrawLine(wxPoint(x_end(0), x_end(1)), wxPoint(end(0), end(1)));
|
||||
}
|
||||
|
||||
dc.SetPen(wxPen(wxColour(0, 255, 0), 2, wxSOLID)); // green
|
||||
auto y_end = Pointf(origin_px.x(), origin_px.y() - axes_len);
|
||||
dc.DrawLine(wxPoint(origin_px.x(), origin_px.y()), wxPoint(y_end.x(), y_end.y()));
|
||||
auto y_end = Pointf(origin_px(0), origin_px(1) - axes_len);
|
||||
dc.DrawLine(wxPoint(origin_px(0), origin_px(1)), wxPoint(y_end(0), y_end(1)));
|
||||
for (auto angle : { -arrow_angle, arrow_angle }) {
|
||||
auto end = y_end;
|
||||
end.y() += arrow_len;
|
||||
end(1) += arrow_len;
|
||||
end.rotate(angle, y_end);
|
||||
dc.DrawLine(wxPoint(y_end.x(), y_end.y()), wxPoint(end.x(), end.y()));
|
||||
dc.DrawLine(wxPoint(y_end(0), y_end(1)), wxPoint(end(0), end(1)));
|
||||
}
|
||||
|
||||
// draw origin
|
||||
dc.SetPen(wxPen(wxColour(0, 0, 0), 1, wxSOLID));
|
||||
dc.SetBrush(wxBrush(wxColour(0, 0, 0), wxSOLID));
|
||||
dc.DrawCircle(origin_px.x(), origin_px.y(), 3);
|
||||
dc.DrawCircle(origin_px(0), origin_px(1), 3);
|
||||
|
||||
static const auto origin_label = wxString("(0,0)");
|
||||
dc.SetTextForeground(wxColour(0, 0, 0));
|
||||
dc.SetFont(wxFont(10, wxDEFAULT, wxNORMAL, wxNORMAL));
|
||||
auto extent = dc.GetTextExtent(origin_label);
|
||||
const auto origin_label_x = origin_px.x() <= cw / 2 ? origin_px.x() + 1 : origin_px.x() - 1 - extent.GetWidth();
|
||||
const auto origin_label_y = origin_px.y() <= ch / 2 ? origin_px.y() + 1 : origin_px.y() - 1 - extent.GetHeight();
|
||||
const auto origin_label_x = origin_px(0) <= cw / 2 ? origin_px(0) + 1 : origin_px(0) - 1 - extent.GetWidth();
|
||||
const auto origin_label_y = origin_px(1) <= ch / 2 ? origin_px(1) + 1 : origin_px(1) - 1 - extent.GetHeight();
|
||||
dc.DrawText(origin_label, origin_label_x, origin_label_y);
|
||||
|
||||
// draw current position
|
||||
@ -146,10 +146,10 @@ void Bed_2D::repaint()
|
||||
auto pos_px = to_pixels(m_pos);
|
||||
dc.SetPen(wxPen(wxColour(200, 0, 0), 2, wxSOLID));
|
||||
dc.SetBrush(wxBrush(wxColour(200, 0, 0), wxTRANSPARENT));
|
||||
dc.DrawCircle(pos_px.x(), pos_px.y(), 5);
|
||||
dc.DrawCircle(pos_px(0), pos_px(1), 5);
|
||||
|
||||
dc.DrawLine(pos_px.x() - 15, pos_px.y(), pos_px.x() + 15, pos_px.y());
|
||||
dc.DrawLine(pos_px.x(), pos_px.y() - 15, pos_px.x(), pos_px.y() + 15);
|
||||
dc.DrawLine(pos_px(0) - 15, pos_px(1), pos_px(0) + 15, pos_px(1));
|
||||
dc.DrawLine(pos_px(0), pos_px(1) - 15, pos_px(0), pos_px(1) + 15);
|
||||
}
|
||||
|
||||
m_painted = true;
|
||||
@ -158,7 +158,7 @@ void Bed_2D::repaint()
|
||||
// convert G - code coordinates into pixels
|
||||
Point Bed_2D::to_pixels(Pointf point){
|
||||
auto p = point * m_scale_factor + m_shift;
|
||||
return Point(p.x(), GetSize().GetHeight() - p.y());
|
||||
return Point(p(0), GetSize().GetHeight() - p(1));
|
||||
}
|
||||
|
||||
void Bed_2D::mouse_event(wxMouseEvent event){
|
||||
@ -176,7 +176,7 @@ void Bed_2D::mouse_event(wxMouseEvent event){
|
||||
|
||||
// convert pixels into G - code coordinates
|
||||
Pointf Bed_2D::to_units(Point point){
|
||||
return (Pointf(point.x(), GetSize().GetHeight() - point.y()) - m_shift) * (1. / m_scale_factor);
|
||||
return (Pointf(point(0), GetSize().GetHeight() - point(1)) - m_shift) * (1. / m_scale_factor);
|
||||
}
|
||||
|
||||
void Bed_2D::set_pos(Pointf pos){
|
||||
|
@ -279,7 +279,7 @@ const Transform3f& GLVolume::world_matrix() const
|
||||
if (m_dirty)
|
||||
{
|
||||
m_world_mat = Transform3f::Identity();
|
||||
m_world_mat.translate(Vec3f(m_origin.x(), m_origin.y(), 0));
|
||||
m_world_mat.translate(Vec3f(m_origin(0), m_origin(1), 0));
|
||||
m_world_mat.rotate(Eigen::AngleAxisf(m_angle_z, Vec3f::UnitZ()));
|
||||
m_world_mat.scale(m_scale_factor);
|
||||
m_dirty = false;
|
||||
@ -338,7 +338,7 @@ void GLVolume::render() const
|
||||
|
||||
::glCullFace(GL_BACK);
|
||||
::glPushMatrix();
|
||||
::glTranslated(m_origin.x(), m_origin.y(), m_origin.z());
|
||||
::glTranslated(m_origin(0), m_origin(1), m_origin(2));
|
||||
::glRotatef(m_angle_z * 180.0f / PI, 0.0f, 0.0f, 1.0f);
|
||||
::glScalef(m_scale_factor, m_scale_factor, m_scale_factor);
|
||||
if (this->indexed_vertex_array.indexed())
|
||||
@ -372,7 +372,7 @@ void GLVolume::render_using_layer_height() const
|
||||
glUniform1f(z_texture_row_to_normalized_id, (GLfloat)(1.0f / layer_height_texture_height()));
|
||||
|
||||
if (z_cursor_id >= 0)
|
||||
glUniform1f(z_cursor_id, (GLfloat)(layer_height_texture_data.print_object->model_object()->bounding_box().max.z() * layer_height_texture_data.z_cursor_relative));
|
||||
glUniform1f(z_cursor_id, (GLfloat)(layer_height_texture_data.print_object->model_object()->bounding_box().max(2) * layer_height_texture_data.z_cursor_relative));
|
||||
|
||||
if (z_cursor_band_width_id >= 0)
|
||||
glUniform1f(z_cursor_band_width_id, (GLfloat)layer_height_texture_data.edit_band_width);
|
||||
@ -464,7 +464,7 @@ void GLVolume::render_VBOs(int color_id, int detection_id, int worldmatrix_id) c
|
||||
::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
|
||||
|
||||
::glPushMatrix();
|
||||
::glTranslated(m_origin.x(), m_origin.y(), m_origin.z());
|
||||
::glTranslated(m_origin(0), m_origin(1), m_origin(2));
|
||||
::glRotatef(m_angle_z * 180.0f / PI, 0.0f, 0.0f, 1.0f);
|
||||
::glScalef(m_scale_factor, m_scale_factor, m_scale_factor);
|
||||
|
||||
@ -509,7 +509,7 @@ void GLVolume::render_legacy() const
|
||||
::glNormalPointer(GL_FLOAT, 6 * sizeof(float), indexed_vertex_array.vertices_and_normals_interleaved.data());
|
||||
|
||||
::glPushMatrix();
|
||||
::glTranslated(m_origin.x(), m_origin.y(), m_origin.z());
|
||||
::glTranslated(m_origin(0), m_origin(1), m_origin(2));
|
||||
::glRotatef(m_angle_z * 180.0f / PI, 0.0f, 0.0f, 1.0f);
|
||||
::glScalef(m_scale_factor, m_scale_factor, m_scale_factor);
|
||||
|
||||
@ -524,7 +524,7 @@ void GLVolume::render_legacy() const
|
||||
|
||||
double GLVolume::layer_height_texture_z_to_row_id() const
|
||||
{
|
||||
return (this->layer_height_texture.get() == nullptr) ? 0.0 : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * this->layer_height_texture_data.print_object->model_object()->bounding_box().max.z());
|
||||
return (this->layer_height_texture.get() == nullptr) ? 0.0 : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * this->layer_height_texture_data.print_object->model_object()->bounding_box().max(2));
|
||||
}
|
||||
|
||||
void GLVolume::generate_layer_height_texture(PrintObject *print_object, bool force)
|
||||
@ -628,7 +628,7 @@ std::vector<int> GLVolumeCollection::load_object(
|
||||
}
|
||||
v.is_modifier = model_volume->modifier;
|
||||
v.outside_printer_detection_enabled = !model_volume->modifier;
|
||||
v.set_origin(Pointf3(instance->offset.x(), instance->offset.y(), 0.0));
|
||||
v.set_origin(Pointf3(instance->offset(0), instance->offset(1), 0.0));
|
||||
v.set_angle_z(instance->rotation);
|
||||
v.set_scale_factor(instance->scaling_factor);
|
||||
}
|
||||
@ -742,9 +742,9 @@ bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, M
|
||||
return false;
|
||||
|
||||
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
|
||||
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min.x()), unscale(bed_box_2D.min.y()), 0.0), Pointf3(unscale(bed_box_2D.max.x()), unscale(bed_box_2D.max.y()), config->opt_float("max_print_height")));
|
||||
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min(0)), unscale(bed_box_2D.min(1)), 0.0), Pointf3(unscale(bed_box_2D.max(0)), unscale(bed_box_2D.max(1)), config->opt_float("max_print_height")));
|
||||
// Allow the objects to protrude below the print bed
|
||||
print_volume.min.z() = -1e10;
|
||||
print_volume.min(2) = -1e10;
|
||||
|
||||
ModelInstance::EPrintVolumeState state = ModelInstance::PVS_Inside;
|
||||
bool all_contained = true;
|
||||
@ -939,8 +939,8 @@ static void thick_lines_to_indexed_vertex_array(
|
||||
Pointf b2 = b;
|
||||
{
|
||||
double dist = 0.5 * width; // scaled
|
||||
double dx = dist * v.x();
|
||||
double dy = dist * v.y();
|
||||
double dx = dist * v(0);
|
||||
double dy = dist * v(1);
|
||||
a1 += Vectorf(+dy, -dx);
|
||||
a2 += Vectorf(-dy, +dx);
|
||||
b1 += Vectorf(+dy, -dx);
|
||||
@ -949,7 +949,7 @@ static void thick_lines_to_indexed_vertex_array(
|
||||
|
||||
// calculate new XY normals
|
||||
Vector n = line.normal();
|
||||
Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x(), n.y(), 0);
|
||||
Vectorf3 xy_right_normal = Vectorf3::new_unscale(n(0), n(1), 0);
|
||||
xy_right_normal *= inv_len;
|
||||
|
||||
int idx_a[4];
|
||||
@ -968,7 +968,7 @@ static void thick_lines_to_indexed_vertex_array(
|
||||
// Share top / bottom vertices if possible.
|
||||
if (is_first) {
|
||||
idx_a[TOP] = idx_last++;
|
||||
volume.push_geometry(a.x(), a.y(), top_z , 0., 0., 1.);
|
||||
volume.push_geometry(a(0), a(1), top_z , 0., 0., 1.);
|
||||
} else {
|
||||
idx_a[TOP] = idx_prev[TOP];
|
||||
}
|
||||
@ -976,11 +976,11 @@ static void thick_lines_to_indexed_vertex_array(
|
||||
if (is_first || bottom_z_different) {
|
||||
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
|
||||
idx_a[BOTTOM] = idx_last ++;
|
||||
volume.push_geometry(a.x(), a.y(), bottom_z, 0., 0., -1.);
|
||||
volume.push_geometry(a(0), a(1), bottom_z, 0., 0., -1.);
|
||||
idx_a[LEFT ] = idx_last ++;
|
||||
volume.push_geometry(a2.x(), a2.y(), middle_z, -xy_right_normal.x(), -xy_right_normal.y(), -xy_right_normal.z());
|
||||
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2));
|
||||
idx_a[RIGHT] = idx_last ++;
|
||||
volume.push_geometry(a1.x(), a1.y(), middle_z, xy_right_normal.x(), xy_right_normal.y(), xy_right_normal.z());
|
||||
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2));
|
||||
}
|
||||
else {
|
||||
idx_a[BOTTOM] = idx_prev[BOTTOM];
|
||||
@ -1001,9 +1001,9 @@ static void thick_lines_to_indexed_vertex_array(
|
||||
{
|
||||
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
|
||||
idx_a[RIGHT] = idx_last++;
|
||||
volume.push_geometry(a1.x(), a1.y(), middle_z, xy_right_normal.x(), xy_right_normal.y(), xy_right_normal.z());
|
||||
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2));
|
||||
idx_a[LEFT] = idx_last++;
|
||||
volume.push_geometry(a2.x(), a2.y(), middle_z, -xy_right_normal.x(), -xy_right_normal.y(), -xy_right_normal.z());
|
||||
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2));
|
||||
}
|
||||
}
|
||||
if (v_dot > 0.9) {
|
||||
@ -1029,17 +1029,17 @@ static void thick_lines_to_indexed_vertex_array(
|
||||
float *p_left_prev = n_left_prev + 3;
|
||||
float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
|
||||
float *p_right_prev = n_right_prev + 3;
|
||||
p_left_prev [0] = float(a2.x());
|
||||
p_left_prev [1] = float(a2.y());
|
||||
p_right_prev[0] = float(a1.x());
|
||||
p_right_prev[1] = float(a1.y());
|
||||
xy_right_normal.x() += n_right_prev[0];
|
||||
xy_right_normal.y() += n_right_prev[1];
|
||||
p_left_prev [0] = float(a2(0));
|
||||
p_left_prev [1] = float(a2(1));
|
||||
p_right_prev[0] = float(a1(0));
|
||||
p_right_prev[1] = float(a1(1));
|
||||
xy_right_normal(0) += n_right_prev[0];
|
||||
xy_right_normal(1) += n_right_prev[1];
|
||||
xy_right_normal *= 1. / xy_right_normal.norm();
|
||||
n_left_prev [0] = float(-xy_right_normal.x());
|
||||
n_left_prev [1] = float(-xy_right_normal.y());
|
||||
n_right_prev[0] = float( xy_right_normal.x());
|
||||
n_right_prev[1] = float( xy_right_normal.y());
|
||||
n_left_prev [0] = float(-xy_right_normal(0));
|
||||
n_left_prev [1] = float(-xy_right_normal(1));
|
||||
n_right_prev[0] = float( xy_right_normal(0));
|
||||
n_right_prev[1] = float( xy_right_normal(1));
|
||||
idx_a[LEFT ] = idx_prev[LEFT ];
|
||||
idx_a[RIGHT] = idx_prev[RIGHT];
|
||||
}
|
||||
@ -1080,20 +1080,20 @@ static void thick_lines_to_indexed_vertex_array(
|
||||
idx_b[TOP] = idx_initial[TOP];
|
||||
} else {
|
||||
idx_b[TOP] = idx_last ++;
|
||||
volume.push_geometry(b.x(), b.y(), top_z , 0., 0., 1.);
|
||||
volume.push_geometry(b(0), b(1), top_z , 0., 0., 1.);
|
||||
}
|
||||
|
||||
if (is_closing && (width == width_initial) && (bottom_z == bottom_z_initial)) {
|
||||
idx_b[BOTTOM] = idx_initial[BOTTOM];
|
||||
} else {
|
||||
idx_b[BOTTOM] = idx_last ++;
|
||||
volume.push_geometry(b.x(), b.y(), bottom_z, 0., 0., -1.);
|
||||
volume.push_geometry(b(0), b(1), bottom_z, 0., 0., -1.);
|
||||
}
|
||||
// Generate new vertices for the end of this line segment.
|
||||
idx_b[LEFT ] = idx_last ++;
|
||||
volume.push_geometry(b2.x(), b2.y(), middle_z, -xy_right_normal.x(), -xy_right_normal.y(), -xy_right_normal.z());
|
||||
volume.push_geometry(b2(0), b2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2));
|
||||
idx_b[RIGHT ] = idx_last ++;
|
||||
volume.push_geometry(b1.x(), b1.y(), middle_z, xy_right_normal.x(), xy_right_normal.y(), xy_right_normal.z());
|
||||
volume.push_geometry(b1(0), b1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2));
|
||||
|
||||
memcpy(idx_prev, idx_b, 4 * sizeof(int));
|
||||
bottom_z_prev = bottom_z;
|
||||
@ -1178,10 +1178,10 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
|
||||
Vectorf3 n_right;
|
||||
Vectorf3 unit_positive_z(0.0, 0.0, 1.0);
|
||||
|
||||
if ((line.a.x() == line.b.x()) && (line.a.y() == line.b.y()))
|
||||
if ((line.a(0) == line.b(0)) && (line.a(1) == line.b(1)))
|
||||
{
|
||||
// vertical segment
|
||||
n_right = (line.a.z() < line.b.z()) ? Vectorf3(-1.0, 0.0, 0.0) : Vectorf3(1.0, 0.0, 0.0);
|
||||
n_right = (line.a(2) < line.b(2)) ? Vectorf3(-1.0, 0.0, 0.0) : Vectorf3(1.0, 0.0, 0.0);
|
||||
n_top = Vectorf3(0.0, 1.0, 0.0);
|
||||
}
|
||||
else
|
||||
@ -1212,8 +1212,8 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
|
||||
int idx_b[4];
|
||||
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
|
||||
|
||||
bool z_different = (z_prev != l_a.z());
|
||||
z_prev = l_b.z();
|
||||
bool z_different = (z_prev != l_a(2));
|
||||
z_prev = l_b(2);
|
||||
|
||||
// Share top / bottom vertices if possible.
|
||||
if (ii == 0)
|
||||
@ -1282,25 +1282,25 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
|
||||
|
||||
// updates previous line normals
|
||||
float* normal_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6;
|
||||
normal_left_prev[0] = float(average_n_left.x());
|
||||
normal_left_prev[1] = float(average_n_left.y());
|
||||
normal_left_prev[2] = float(average_n_left.z());
|
||||
normal_left_prev[0] = float(average_n_left(0));
|
||||
normal_left_prev[1] = float(average_n_left(1));
|
||||
normal_left_prev[2] = float(average_n_left(2));
|
||||
|
||||
float* normal_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
|
||||
normal_right_prev[0] = float(average_n_right.x());
|
||||
normal_right_prev[1] = float(average_n_right.y());
|
||||
normal_right_prev[2] = float(average_n_right.z());
|
||||
normal_right_prev[0] = float(average_n_right(0));
|
||||
normal_right_prev[1] = float(average_n_right(1));
|
||||
normal_right_prev[2] = float(average_n_right(2));
|
||||
|
||||
// updates previous line's vertices around b
|
||||
float* b_left_prev = normal_left_prev + 3;
|
||||
b_left_prev[0] = float(a[LEFT].x());
|
||||
b_left_prev[1] = float(a[LEFT].y());
|
||||
b_left_prev[2] = float(a[LEFT].z());
|
||||
b_left_prev[0] = float(a[LEFT](0));
|
||||
b_left_prev[1] = float(a[LEFT](1));
|
||||
b_left_prev[2] = float(a[LEFT](2));
|
||||
|
||||
float* b_right_prev = normal_right_prev + 3;
|
||||
b_right_prev[0] = float(a[RIGHT].x());
|
||||
b_right_prev[1] = float(a[RIGHT].y());
|
||||
b_right_prev[2] = float(a[RIGHT].z());
|
||||
b_right_prev[0] = float(a[RIGHT](0));
|
||||
b_right_prev[1] = float(a[RIGHT](1));
|
||||
b_right_prev[2] = float(a[RIGHT](2));
|
||||
|
||||
idx_a[LEFT] = idx_prev[LEFT];
|
||||
idx_a[RIGHT] = idx_prev[RIGHT];
|
||||
|
@ -120,7 +120,7 @@ public:
|
||||
}
|
||||
|
||||
inline void push_geometry(const Pointf3& p, const Vectorf3& n) {
|
||||
push_geometry(p.x(), p.y(), p.z(), n.x(), n.y(), n.z());
|
||||
push_geometry(p(0), p(1), p(2), n(0), n(1), n(2));
|
||||
}
|
||||
|
||||
inline void push_triangle(int idx1, int idx2, int idx3) {
|
||||
@ -176,17 +176,17 @@ public:
|
||||
BoundingBoxf3 bbox;
|
||||
if (! this->vertices_and_normals_interleaved.empty()) {
|
||||
bbox.defined = true;
|
||||
bbox.min.x() = bbox.max.x() = this->vertices_and_normals_interleaved[3];
|
||||
bbox.min.y() = bbox.max.y() = this->vertices_and_normals_interleaved[4];
|
||||
bbox.min.z() = bbox.max.z() = this->vertices_and_normals_interleaved[5];
|
||||
bbox.min(0) = bbox.max(0) = this->vertices_and_normals_interleaved[3];
|
||||
bbox.min(1) = bbox.max(1) = this->vertices_and_normals_interleaved[4];
|
||||
bbox.min(2) = bbox.max(2) = this->vertices_and_normals_interleaved[5];
|
||||
for (size_t i = 9; i < this->vertices_and_normals_interleaved.size(); i += 6) {
|
||||
const float *verts = this->vertices_and_normals_interleaved.data() + i;
|
||||
bbox.min.x() = std::min<coordf_t>(bbox.min.x(), verts[0]);
|
||||
bbox.min.y() = std::min<coordf_t>(bbox.min.y(), verts[1]);
|
||||
bbox.min.z() = std::min<coordf_t>(bbox.min.z(), verts[2]);
|
||||
bbox.max.x() = std::max<coordf_t>(bbox.max.x(), verts[0]);
|
||||
bbox.max.y() = std::max<coordf_t>(bbox.max.y(), verts[1]);
|
||||
bbox.max.z() = std::max<coordf_t>(bbox.max.z(), verts[2]);
|
||||
bbox.min(0) = std::min<coordf_t>(bbox.min(0), verts[0]);
|
||||
bbox.min(1) = std::min<coordf_t>(bbox.min(1), verts[1]);
|
||||
bbox.min(2) = std::min<coordf_t>(bbox.min(2), verts[2]);
|
||||
bbox.max(0) = std::max<coordf_t>(bbox.max(0), verts[0]);
|
||||
bbox.max(1) = std::max<coordf_t>(bbox.max(1), verts[1]);
|
||||
bbox.max(2) = std::max<coordf_t>(bbox.max(2), verts[2]);
|
||||
}
|
||||
}
|
||||
return bbox;
|
||||
|
@ -148,13 +148,13 @@ void BedShapePanel::set_shape(ConfigOptionPoints* points)
|
||||
// find origin
|
||||
// the || 0 hack prevents "-0" which might confuse the user
|
||||
int x_min, x_max, y_min, y_max;
|
||||
x_max = x_min = points->values[0].x();
|
||||
y_max = y_min = points->values[0].y();
|
||||
x_max = x_min = points->values[0](0);
|
||||
y_max = y_min = points->values[0](1);
|
||||
for (auto pt : points->values){
|
||||
if (x_min > pt.x()) x_min = pt.x();
|
||||
if (x_max < pt.x()) x_max = pt.x();
|
||||
if (y_min > pt.y()) y_min = pt.y();
|
||||
if (y_max < pt.y()) y_max = pt.y();
|
||||
if (x_min > pt(0)) x_min = pt(0);
|
||||
if (x_max < pt(0)) x_max = pt(0);
|
||||
if (y_min > pt(1)) y_min = pt(1);
|
||||
if (y_max < pt(1)) y_max = pt(1);
|
||||
}
|
||||
if (x_min < 0) x_min = 0;
|
||||
if (x_max < 0) x_max = 0;
|
||||
@ -242,8 +242,8 @@ void BedShapePanel::update_shape()
|
||||
catch (const std::exception &e){
|
||||
return;}
|
||||
|
||||
auto x = rect_size.x();
|
||||
auto y = rect_size.y();
|
||||
auto x = rect_size(0);
|
||||
auto y = rect_size(1);
|
||||
// empty strings or '-' or other things
|
||||
if (x == 0 || y == 0) return;
|
||||
double x0 = 0.0;
|
||||
@ -251,8 +251,8 @@ void BedShapePanel::update_shape()
|
||||
double x1 = x;
|
||||
double y1 = y;
|
||||
|
||||
auto dx = rect_origin.x();
|
||||
auto dy = rect_origin.y();
|
||||
auto dx = rect_origin(0);
|
||||
auto dy = rect_origin(1);
|
||||
|
||||
x0 -= dx;
|
||||
x1 -= dx;
|
||||
|
@ -629,9 +629,9 @@ void PointCtrl::BUILD()
|
||||
wxSize field_size(40, -1);
|
||||
|
||||
auto default_pt = static_cast<ConfigOptionPoints*>(m_opt.default_value)->values.at(0);
|
||||
double val = default_pt.x();
|
||||
double val = default_pt(0);
|
||||
wxString X = val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None);
|
||||
val = default_pt.y();
|
||||
val = default_pt(1);
|
||||
wxString Y = val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None);
|
||||
|
||||
x_textctrl = new wxTextCtrl(m_parent, wxID_ANY, X, wxDefaultPosition, field_size);
|
||||
@ -656,9 +656,9 @@ void PointCtrl::set_value(const Pointf& value, bool change_event)
|
||||
{
|
||||
m_disable_change_event = !change_event;
|
||||
|
||||
double val = value.x();
|
||||
double val = value(0);
|
||||
x_textctrl->SetValue(val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None));
|
||||
val = value.y();
|
||||
val = value(1);
|
||||
y_textctrl->SetValue(val - int(val) == 0 ? wxString::Format(_T("%i"), int(val)) : wxNumberFormatter::ToString(val, 2, wxNumberFormatter::Style_None));
|
||||
|
||||
m_disable_change_event = false;
|
||||
@ -683,9 +683,9 @@ boost::any& PointCtrl::get_value()
|
||||
Pointf ret_point;
|
||||
double val;
|
||||
x_textctrl->GetValue().ToDouble(&val);
|
||||
ret_point.x() = val;
|
||||
ret_point(0) = val;
|
||||
y_textctrl->GetValue().ToDouble(&val);
|
||||
ret_point.y() = val;
|
||||
ret_point(1) = val;
|
||||
return m_value = ret_point;
|
||||
}
|
||||
|
||||
|
@ -68,8 +68,8 @@ bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool
|
||||
if (generate_tex_coords)
|
||||
m_tex_coords = std::vector<float>(t_size, 0.0f);
|
||||
|
||||
float min_x = (float)unscale(triangles[0].points[0].x());
|
||||
float min_y = (float)unscale(triangles[0].points[0].y());
|
||||
float min_x = (float)unscale(triangles[0].points[0](0));
|
||||
float min_y = (float)unscale(triangles[0].points[0](1));
|
||||
float max_x = min_x;
|
||||
float max_y = min_y;
|
||||
|
||||
@ -80,8 +80,8 @@ bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool
|
||||
for (unsigned int v = 0; v < 3; ++v)
|
||||
{
|
||||
const Point& p = t.points[v];
|
||||
float x = (float)unscale(p.x());
|
||||
float y = (float)unscale(p.y());
|
||||
float x = (float)unscale(p(0));
|
||||
float y = (float)unscale(p(1));
|
||||
|
||||
m_vertices[v_coord++] = x;
|
||||
m_vertices[v_coord++] = y;
|
||||
@ -134,11 +134,11 @@ bool GeometryBuffer::set_from_lines(const Lines& lines, float z)
|
||||
unsigned int coord = 0;
|
||||
for (const Line& l : lines)
|
||||
{
|
||||
m_vertices[coord++] = (float)unscale(l.a.x());
|
||||
m_vertices[coord++] = (float)unscale(l.a.y());
|
||||
m_vertices[coord++] = (float)unscale(l.a(0));
|
||||
m_vertices[coord++] = (float)unscale(l.a(1));
|
||||
m_vertices[coord++] = z;
|
||||
m_vertices[coord++] = (float)unscale(l.b.x());
|
||||
m_vertices[coord++] = (float)unscale(l.b.y());
|
||||
m_vertices[coord++] = (float)unscale(l.b(0));
|
||||
m_vertices[coord++] = (float)unscale(l.b(1));
|
||||
m_vertices[coord++] = z;
|
||||
}
|
||||
|
||||
@ -312,7 +312,7 @@ void GLCanvas3D::Bed::set_shape(const Pointfs& shape)
|
||||
ExPolygon poly;
|
||||
for (const Pointf& p : m_shape)
|
||||
{
|
||||
poly.contour.append(Point(scale_(p.x()), scale_(p.y())));
|
||||
poly.contour.append(Point(scale_(p(0)), scale_(p(1))));
|
||||
}
|
||||
|
||||
_calc_triangles(poly);
|
||||
@ -366,7 +366,7 @@ void GLCanvas3D::Bed::_calc_bounding_box()
|
||||
m_bounding_box = BoundingBoxf3();
|
||||
for (const Pointf& p : m_shape)
|
||||
{
|
||||
m_bounding_box.merge(Pointf3(p.x(), p.y(), 0.0));
|
||||
m_bounding_box.merge(Pointf3(p(0), p(1), 0.0));
|
||||
}
|
||||
}
|
||||
|
||||
@ -382,18 +382,18 @@ void GLCanvas3D::Bed::_calc_triangles(const ExPolygon& poly)
|
||||
void GLCanvas3D::Bed::_calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox)
|
||||
{
|
||||
Polylines axes_lines;
|
||||
for (coord_t x = bed_bbox.min.x(); x <= bed_bbox.max.x(); x += scale_(10.0))
|
||||
for (coord_t x = bed_bbox.min(0); x <= bed_bbox.max(0); x += scale_(10.0))
|
||||
{
|
||||
Polyline line;
|
||||
line.append(Point(x, bed_bbox.min.y()));
|
||||
line.append(Point(x, bed_bbox.max.y()));
|
||||
line.append(Point(x, bed_bbox.min(1)));
|
||||
line.append(Point(x, bed_bbox.max(1)));
|
||||
axes_lines.push_back(line);
|
||||
}
|
||||
for (coord_t y = bed_bbox.min.y(); y <= bed_bbox.max.y(); y += scale_(10.0))
|
||||
for (coord_t y = bed_bbox.min(1); y <= bed_bbox.max(1); y += scale_(10.0))
|
||||
{
|
||||
Polyline line;
|
||||
line.append(Point(bed_bbox.min.x(), y));
|
||||
line.append(Point(bed_bbox.max.x(), y));
|
||||
line.append(Point(bed_bbox.min(0), y));
|
||||
line.append(Point(bed_bbox.max(0), y));
|
||||
axes_lines.push_back(line);
|
||||
}
|
||||
|
||||
@ -597,12 +597,12 @@ void GLCanvas3D::Axes::render(bool depth_test) const
|
||||
::glBegin(GL_LINES);
|
||||
// draw line for x axis
|
||||
::glColor3f(1.0f, 0.0f, 0.0f);
|
||||
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z());
|
||||
::glVertex3f((GLfloat)origin.x() + length, (GLfloat)origin.y(), (GLfloat)origin.z());
|
||||
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2));
|
||||
::glVertex3f((GLfloat)origin(0) + length, (GLfloat)origin(1), (GLfloat)origin(2));
|
||||
// draw line for y axis
|
||||
::glColor3f(0.0f, 1.0f, 0.0f);
|
||||
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z());
|
||||
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y() + length, (GLfloat)origin.z());
|
||||
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2));
|
||||
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1) + length, (GLfloat)origin(2));
|
||||
::glEnd();
|
||||
// draw line for Z axis
|
||||
// (re-enable depth test so that axis is correctly shown when objects are behind it)
|
||||
@ -611,8 +611,8 @@ void GLCanvas3D::Axes::render(bool depth_test) const
|
||||
|
||||
::glBegin(GL_LINES);
|
||||
::glColor3f(0.0f, 0.0f, 1.0f);
|
||||
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z());
|
||||
::glVertex3f((GLfloat)origin.x(), (GLfloat)origin.y(), (GLfloat)origin.z() + length);
|
||||
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2));
|
||||
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2) + length);
|
||||
::glEnd();
|
||||
}
|
||||
|
||||
@ -646,10 +646,10 @@ void GLCanvas3D::CuttingPlane::_render_plane(const BoundingBoxf3& bb) const
|
||||
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||||
|
||||
float margin = 20.0f;
|
||||
float min_x = bb.min.x() - margin;
|
||||
float max_x = bb.max.x() + margin;
|
||||
float min_y = bb.min.y() - margin;
|
||||
float max_y = bb.max.y() + margin;
|
||||
float min_x = bb.min(0) - margin;
|
||||
float max_x = bb.max(0) + margin;
|
||||
float min_y = bb.min(1) - margin;
|
||||
float max_y = bb.max(1) + margin;
|
||||
|
||||
::glBegin(GL_QUADS);
|
||||
::glColor4f(0.8f, 0.8f, 0.8f, 0.5f);
|
||||
@ -860,8 +860,8 @@ float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas)
|
||||
{
|
||||
const Point& mouse_pos = canvas.get_local_mouse_position();
|
||||
const Rect& rect = get_bar_rect_screen(canvas);
|
||||
float x = (float)mouse_pos.x();
|
||||
float y = (float)mouse_pos.y();
|
||||
float x = (float)mouse_pos(0);
|
||||
float y = (float)mouse_pos(1);
|
||||
float t = rect.get_top();
|
||||
float b = rect.get_bottom();
|
||||
|
||||
@ -970,7 +970,7 @@ void GLCanvas3D::LayersEditing::_render_reset_texture(const Rect& reset_rect) co
|
||||
|
||||
void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas3D& canvas, const GLVolume& volume, const PrintObject& print_object, const Rect& bar_rect) const
|
||||
{
|
||||
float max_z = print_object.model_object()->bounding_box().max.z();
|
||||
float max_z = print_object.model_object()->bounding_box().max(2);
|
||||
|
||||
m_shader.start_using();
|
||||
|
||||
@ -1031,7 +1031,7 @@ void GLCanvas3D::LayersEditing::_render_profile(const PrintObject& print_object,
|
||||
// Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region.
|
||||
layer_height_max *= 1.12;
|
||||
|
||||
coordf_t max_z = unscale(print_object.size.z());
|
||||
coordf_t max_z = unscale(print_object.size(2));
|
||||
double layer_height = dynamic_cast<const ConfigOptionFloat*>(print_object.config.option("layer_height"))->value;
|
||||
float l = bar_rect.get_left();
|
||||
float w = bar_rect.get_right() - l;
|
||||
@ -1951,15 +1951,15 @@ void GLCanvas3D::set_auto_bed_shape()
|
||||
|
||||
Pointfs bed_shape;
|
||||
bed_shape.reserve(4);
|
||||
bed_shape.emplace_back(center.x() - max_size, center.y() - max_size);
|
||||
bed_shape.emplace_back(center.x() + max_size, center.y() - max_size);
|
||||
bed_shape.emplace_back(center.x() + max_size, center.y() + max_size);
|
||||
bed_shape.emplace_back(center.x() - max_size, center.y() + max_size);
|
||||
bed_shape.emplace_back(center(0) - max_size, center(1) - max_size);
|
||||
bed_shape.emplace_back(center(0) + max_size, center(1) - max_size);
|
||||
bed_shape.emplace_back(center(0) + max_size, center(1) + max_size);
|
||||
bed_shape.emplace_back(center(0) - max_size, center(1) + max_size);
|
||||
|
||||
set_bed_shape(bed_shape);
|
||||
|
||||
// Set the origin for painting of the coordinate system axes.
|
||||
m_axes.origin = Pointf3(center.x(), center.y(), (coordf_t)GROUND_Z);
|
||||
m_axes.origin = Pointf3(center(0), center(1), (coordf_t)GROUND_Z);
|
||||
}
|
||||
|
||||
void GLCanvas3D::set_axes_length(float length)
|
||||
@ -2283,7 +2283,7 @@ void GLCanvas3D::reload_scene(bool force)
|
||||
if ((extruders_count > 1) && semm && wt && !co)
|
||||
{
|
||||
// Height of a print (Show at least a slab)
|
||||
coordf_t height = std::max(m_model->bounding_box().max.z(), 10.0);
|
||||
coordf_t height = std::max(m_model->bounding_box().max(2), 10.0);
|
||||
|
||||
float x = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_x"))->value;
|
||||
float y = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_y"))->value;
|
||||
@ -3031,14 +3031,14 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
// on a volume or not.
|
||||
int volume_idx = m_hover_volume_id;
|
||||
m_layers_editing.state = LayersEditing::Unknown;
|
||||
if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos.x(), pos.y()))
|
||||
if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos(0), pos(1)))
|
||||
{
|
||||
// A volume is selected and the mouse is inside the layer thickness bar.
|
||||
// Start editing the layer height.
|
||||
m_layers_editing.state = LayersEditing::Editing;
|
||||
_perform_layer_editing_action(&evt);
|
||||
}
|
||||
else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos.x(), pos.y()))
|
||||
else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos(0), pos(1)))
|
||||
{
|
||||
if (evt.LeftDown())
|
||||
{
|
||||
@ -3121,7 +3121,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
{
|
||||
// if right clicking on volume, propagate event through callback
|
||||
if (m_volumes.volumes[volume_idx]->hover)
|
||||
m_on_right_click_callback.call(pos.x(), pos.y());
|
||||
m_on_right_click_callback.call(pos(0), pos(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -3133,16 +3133,16 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
// Get new position at the same Z of the initial click point.
|
||||
float z0 = 0.0f;
|
||||
float z1 = 1.0f;
|
||||
Pointf3 cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D.z());
|
||||
Pointf3 cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D(2));
|
||||
|
||||
// Clip the new position, so the object center remains close to the bed.
|
||||
cur_pos += m_mouse.drag.volume_center_offset;
|
||||
Point cur_pos2(scale_(cur_pos.x()), scale_(cur_pos.y()));
|
||||
Point cur_pos2(scale_(cur_pos(0)), scale_(cur_pos(1)));
|
||||
if (!m_bed.contains(cur_pos2))
|
||||
{
|
||||
Point ip = m_bed.point_projection(cur_pos2);
|
||||
cur_pos.x() = unscale(ip.x());
|
||||
cur_pos.y() = unscale(ip.y());
|
||||
cur_pos(0) = unscale(ip(0));
|
||||
cur_pos(1) = unscale(ip(1));
|
||||
}
|
||||
cur_pos -= m_mouse.drag.volume_center_offset;
|
||||
|
||||
@ -3169,7 +3169,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
|
||||
// Apply new temporary volume origin and ignore Z.
|
||||
for (GLVolume* v : volumes)
|
||||
v->set_origin(v->get_origin() + Vectorf3(vector.x(), vector.y(), 0.0));
|
||||
v->set_origin(v->get_origin() + Vectorf3(vector(0), vector(1), 0.0));
|
||||
|
||||
m_mouse.drag.start_position_3D = cur_pos;
|
||||
m_gizmos.refresh();
|
||||
@ -3181,7 +3181,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
m_mouse.dragging = true;
|
||||
|
||||
const Pointf3& cur_pos = _mouse_to_bed_3d(pos);
|
||||
m_gizmos.update(Pointf(cur_pos.x(), cur_pos.y()));
|
||||
m_gizmos.update(Pointf(cur_pos(0), cur_pos(1)));
|
||||
|
||||
std::vector<GLVolume*> volumes;
|
||||
if (m_mouse.drag.gizmo_volume_idx != -1)
|
||||
@ -3230,7 +3230,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
{
|
||||
const BoundingBoxf3& bb = volumes[0]->transformed_bounding_box();
|
||||
const Pointf3& size = bb.size();
|
||||
m_on_update_geometry_info_callback.call(size.x(), size.y(), size.z(), m_gizmos.get_scale());
|
||||
m_on_update_geometry_info_callback.call(size(0), size(1), size(2), m_gizmos.get_scale());
|
||||
}
|
||||
|
||||
if ((m_gizmos.get_current_type() != Gizmos::Rotate) && (volumes.size() > 1))
|
||||
@ -3253,14 +3253,14 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
if (m_mouse.is_start_position_3D_defined())
|
||||
{
|
||||
const Pointf3& orig = m_mouse.drag.start_position_3D;
|
||||
m_camera.phi += (((float)pos.x() - (float)orig.x()) * TRACKBALLSIZE);
|
||||
m_camera.set_theta(m_camera.get_theta() - ((float)pos.y() - (float)orig.y()) * TRACKBALLSIZE);
|
||||
m_camera.phi += (((float)pos(0) - (float)orig(0)) * TRACKBALLSIZE);
|
||||
m_camera.set_theta(m_camera.get_theta() - ((float)pos(1) - (float)orig(1)) * TRACKBALLSIZE);
|
||||
|
||||
m_on_viewport_changed_callback.call();
|
||||
|
||||
m_dirty = true;
|
||||
}
|
||||
m_mouse.drag.start_position_3D = Pointf3((coordf_t)pos.x(), (coordf_t)pos.y(), 0.0);
|
||||
m_mouse.drag.start_position_3D = Pointf3((coordf_t)pos(0), (coordf_t)pos(1), 0.0);
|
||||
}
|
||||
else if (evt.MiddleIsDown() || evt.RightIsDown())
|
||||
{
|
||||
@ -3349,7 +3349,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
|
||||
}
|
||||
else if (evt.Moving())
|
||||
{
|
||||
m_mouse.position = Pointf((coordf_t)pos.x(), (coordf_t)pos.y());
|
||||
m_mouse.position = Pointf((coordf_t)pos(0), (coordf_t)pos(1));
|
||||
// Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over.
|
||||
if (m_picking_enabled)
|
||||
m_dirty = true;
|
||||
@ -3547,13 +3547,13 @@ float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) co
|
||||
std::vector<Pointf3> vertices;
|
||||
vertices.reserve(8);
|
||||
vertices.push_back(bb_min);
|
||||
vertices.emplace_back(bb_max.x(), bb_min.y(), bb_min.z());
|
||||
vertices.emplace_back(bb_max.x(), bb_max.y(), bb_min.z());
|
||||
vertices.emplace_back(bb_min.x(), bb_max.y(), bb_min.z());
|
||||
vertices.emplace_back(bb_min.x(), bb_min.y(), bb_max.z());
|
||||
vertices.emplace_back(bb_max.x(), bb_min.y(), bb_max.z());
|
||||
vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2));
|
||||
vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2));
|
||||
vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2));
|
||||
vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2));
|
||||
vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2));
|
||||
vertices.push_back(bb_max);
|
||||
vertices.emplace_back(bb_min.x(), bb_max.y(), bb_max.z());
|
||||
vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2));
|
||||
|
||||
coordf_t max_x = 0.0;
|
||||
coordf_t max_y = 0.0;
|
||||
@ -3564,7 +3564,7 @@ float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) co
|
||||
for (const Pointf3 v : vertices)
|
||||
{
|
||||
// project vertex on the plane perpendicular to camera forward axis
|
||||
Pointf3 pos(v.x() - bb_center.x(), v.y() - bb_center.y(), v.z() - bb_center.z());
|
||||
Pointf3 pos(v(0) - bb_center(0), v(1) - bb_center(1), v(2) - bb_center(2));
|
||||
Pointf3 proj_on_plane = pos - pos.dot(forward) * forward;
|
||||
|
||||
// calculates vertex coordinate along camera xy axes
|
||||
@ -3648,7 +3648,7 @@ void GLCanvas3D::_camera_tranform() const
|
||||
::glRotatef(m_camera.phi, 0.0f, 0.0f, 1.0f); // yaw
|
||||
|
||||
Pointf3 neg_target = - m_camera.target;
|
||||
::glTranslatef((GLfloat)neg_target.x(), (GLfloat)neg_target.y(), (GLfloat)neg_target.z());
|
||||
::glTranslatef((GLfloat)neg_target(0), (GLfloat)neg_target(1), (GLfloat)neg_target(2));
|
||||
}
|
||||
|
||||
void GLCanvas3D::_picking_pass() const
|
||||
@ -3678,7 +3678,7 @@ void GLCanvas3D::_picking_pass() const
|
||||
const Size& cnv_size = get_canvas_size();
|
||||
|
||||
GLubyte color[4];
|
||||
::glReadPixels(pos.x(), cnv_size.get_height() - pos.y() - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color);
|
||||
::glReadPixels(pos(0), cnv_size.get_height() - pos(1) - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color);
|
||||
int volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256;
|
||||
|
||||
m_hover_volume_id = -1;
|
||||
@ -3773,7 +3773,7 @@ void GLCanvas3D::_render_objects() const
|
||||
if (m_config != nullptr)
|
||||
{
|
||||
const BoundingBoxf3& bed_bb = m_bed.get_bounding_box();
|
||||
m_volumes.set_print_box((float)bed_bb.min.x(), (float)bed_bb.min.y(), 0.0f, (float)bed_bb.max.x(), (float)bed_bb.max.y(), (float)m_config->opt_float("max_print_height"));
|
||||
m_volumes.set_print_box((float)bed_bb.min(0), (float)bed_bb.min(1), 0.0f, (float)bed_bb.max(0), (float)bed_bb.max(1), (float)m_config->opt_float("max_print_height"));
|
||||
m_volumes.check_outside_state(m_config, nullptr);
|
||||
}
|
||||
// do not cull backfaces to show broken geometry, if any
|
||||
@ -3980,7 +3980,7 @@ void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt)
|
||||
{
|
||||
const Rect& rect = LayersEditing::get_bar_rect_screen(*this);
|
||||
float b = rect.get_bottom();
|
||||
m_layers_editing.last_z = unscale(selected_obj->size.z()) * (b - evt->GetY() - 1.0f) / (b - rect.get_top());
|
||||
m_layers_editing.last_z = unscale(selected_obj->size(2)) * (b - evt->GetY() - 1.0f) / (b - rect.get_top());
|
||||
m_layers_editing.last_action = evt->ShiftDown() ? (evt->RightIsDown() ? 3 : 2) : (evt->RightIsDown() ? 0 : 1);
|
||||
}
|
||||
|
||||
@ -4024,15 +4024,15 @@ Pointf3 GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z)
|
||||
GLdouble projection_matrix[16];
|
||||
::glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix);
|
||||
|
||||
GLint y = viewport[3] - (GLint)mouse_pos.y();
|
||||
GLint y = viewport[3] - (GLint)mouse_pos(1);
|
||||
GLfloat mouse_z;
|
||||
if (z == nullptr)
|
||||
::glReadPixels((GLint)mouse_pos.x(), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z);
|
||||
::glReadPixels((GLint)mouse_pos(0), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z);
|
||||
else
|
||||
mouse_z = *z;
|
||||
|
||||
GLdouble out_x, out_y, out_z;
|
||||
::gluUnProject((GLdouble)mouse_pos.x(), (GLdouble)y, (GLdouble)mouse_z, modelview_matrix, projection_matrix, viewport, &out_x, &out_y, &out_z);
|
||||
::gluUnProject((GLdouble)mouse_pos(0), (GLdouble)y, (GLdouble)mouse_z, modelview_matrix, projection_matrix, viewport, &out_x, &out_y, &out_z);
|
||||
return Pointf3((coordf_t)out_x, (coordf_t)out_y, (coordf_t)out_z);
|
||||
}
|
||||
|
||||
@ -4383,7 +4383,7 @@ bool GLCanvas3D::_travel_paths_by_type(const GCodePreviewData& preview_data)
|
||||
TypesList::iterator type = std::find(types.begin(), types.end(), Type(polyline.type));
|
||||
if (type != types.end())
|
||||
{
|
||||
type->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z()));
|
||||
type->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min(2)));
|
||||
type->volume->offsets.push_back(type->volume->indexed_vertex_array.quad_indices.size());
|
||||
type->volume->offsets.push_back(type->volume->indexed_vertex_array.triangle_indices.size());
|
||||
|
||||
@ -4449,7 +4449,7 @@ bool GLCanvas3D::_travel_paths_by_feedrate(const GCodePreviewData& preview_data)
|
||||
FeedratesList::iterator feedrate = std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate));
|
||||
if (feedrate != feedrates.end())
|
||||
{
|
||||
feedrate->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z()));
|
||||
feedrate->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min(2)));
|
||||
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.quad_indices.size());
|
||||
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.triangle_indices.size());
|
||||
|
||||
@ -4515,7 +4515,7 @@ bool GLCanvas3D::_travel_paths_by_tool(const GCodePreviewData& preview_data, con
|
||||
ToolsList::iterator tool = std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id));
|
||||
if (tool != tools.end())
|
||||
{
|
||||
tool->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z()));
|
||||
tool->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min(2)));
|
||||
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.quad_indices.size());
|
||||
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.triangle_indices.size());
|
||||
|
||||
@ -4540,11 +4540,11 @@ void GLCanvas3D::_load_gcode_retractions(const GCodePreviewData& preview_data)
|
||||
m_volumes.volumes.emplace_back(volume);
|
||||
|
||||
GCodePreviewData::Retraction::PositionsList copy(preview_data.retraction.positions);
|
||||
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z() < p2.position.z(); });
|
||||
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); });
|
||||
|
||||
for (const GCodePreviewData::Retraction::Position& position : copy)
|
||||
{
|
||||
volume->print_zs.push_back(unscale(position.position.z()));
|
||||
volume->print_zs.push_back(unscale(position.position(2)));
|
||||
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
|
||||
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
|
||||
|
||||
@ -4571,11 +4571,11 @@ void GLCanvas3D::_load_gcode_unretractions(const GCodePreviewData& preview_data)
|
||||
m_volumes.volumes.emplace_back(volume);
|
||||
|
||||
GCodePreviewData::Retraction::PositionsList copy(preview_data.unretraction.positions);
|
||||
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z() < p2.position.z(); });
|
||||
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); });
|
||||
|
||||
for (const GCodePreviewData::Retraction::Position& position : copy)
|
||||
{
|
||||
volume->print_zs.push_back(unscale(position.position.z()));
|
||||
volume->print_zs.push_back(unscale(position.position(2)));
|
||||
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
|
||||
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
|
||||
|
||||
@ -4615,7 +4615,7 @@ void GLCanvas3D::_load_shells()
|
||||
}
|
||||
|
||||
// adds wipe tower's volume
|
||||
coordf_t max_z = m_print->objects[0]->model_object()->get_model()->bounding_box().max.z();
|
||||
coordf_t max_z = m_print->objects[0]->model_object()->get_model()->bounding_box().max(2);
|
||||
const PrintConfig& config = m_print->config;
|
||||
unsigned int extruders_count = config.nozzle_diameter.size();
|
||||
if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) {
|
||||
@ -4710,7 +4710,7 @@ void GLCanvas3D::_on_move(const std::vector<int>& volume_idxs)
|
||||
// Move a regular object.
|
||||
ModelObject* model_object = m_model->objects[obj_idx];
|
||||
const Pointf3& origin = volume->get_origin();
|
||||
model_object->instances[instance_idx]->offset = Pointf(origin.x(), origin.y());
|
||||
model_object->instances[instance_idx]->offset = Pointf(origin(0), origin(1));
|
||||
model_object->invalidate_bounding_box();
|
||||
object_moved = true;
|
||||
}
|
||||
@ -4723,7 +4723,7 @@ void GLCanvas3D::_on_move(const std::vector<int>& volume_idxs)
|
||||
m_on_instance_moved_callback.call();
|
||||
|
||||
if (wipe_tower_origin != Pointf3(0.0, 0.0, 0.0))
|
||||
m_on_wipe_tower_moved_callback.call(wipe_tower_origin.x(), wipe_tower_origin.y());
|
||||
m_on_wipe_tower_moved_callback.call(wipe_tower_origin(0), wipe_tower_origin(1));
|
||||
}
|
||||
|
||||
void GLCanvas3D::_on_select(int volume_idx)
|
||||
|
@ -35,7 +35,7 @@ void GLGizmoBase::Grabber::render(bool hover) const
|
||||
|
||||
float angle_z_in_deg = angle_z * 180.0f / (float)PI;
|
||||
::glPushMatrix();
|
||||
::glTranslatef((GLfloat)center.x(), (GLfloat)center.y(), 0.0f);
|
||||
::glTranslatef((GLfloat)center(0), (GLfloat)center(1), 0.0f);
|
||||
::glRotatef((GLfloat)angle_z_in_deg, 0.0f, 0.0f, 1.0f);
|
||||
|
||||
::glDisable(GL_CULL_FACE);
|
||||
@ -266,7 +266,7 @@ void GLGizmoRotate::on_render(const BoundingBoxf3& box) const
|
||||
m_center = box.center().xy();
|
||||
if (!m_keep_radius)
|
||||
{
|
||||
m_radius = Offset + ::sqrt(sqr(0.5f * size.x()) + sqr(0.5f * size.y()));
|
||||
m_radius = Offset + ::sqrt(sqr(0.5f * size(0)) + sqr(0.5f * size(1)));
|
||||
m_keep_radius = true;
|
||||
}
|
||||
|
||||
@ -299,8 +299,8 @@ void GLGizmoRotate::_render_circle() const
|
||||
for (unsigned int i = 0; i < ScaleStepsCount; ++i)
|
||||
{
|
||||
float angle = (float)i * ScaleStepRad;
|
||||
float x = m_center.x() + ::cos(angle) * m_radius;
|
||||
float y = m_center.y() + ::sin(angle) * m_radius;
|
||||
float x = m_center(0) + ::cos(angle) * m_radius;
|
||||
float y = m_center(1) + ::sin(angle) * m_radius;
|
||||
::glVertex3f((GLfloat)x, (GLfloat)y, 0.0f);
|
||||
}
|
||||
::glEnd();
|
||||
@ -317,10 +317,10 @@ void GLGizmoRotate::_render_scale() const
|
||||
float angle = (float)i * ScaleStepRad;
|
||||
float cosa = ::cos(angle);
|
||||
float sina = ::sin(angle);
|
||||
float in_x = m_center.x() + cosa * m_radius;
|
||||
float in_y = m_center.y() + sina * m_radius;
|
||||
float out_x = (i % ScaleLongEvery == 0) ? m_center.x() + cosa * out_radius_long : m_center.x() + cosa * out_radius_short;
|
||||
float out_y = (i % ScaleLongEvery == 0) ? m_center.y() + sina * out_radius_long : m_center.y() + sina * out_radius_short;
|
||||
float in_x = m_center(0) + cosa * m_radius;
|
||||
float in_y = m_center(1) + sina * m_radius;
|
||||
float out_x = (i % ScaleLongEvery == 0) ? m_center(0) + cosa * out_radius_long : m_center(0) + cosa * out_radius_short;
|
||||
float out_y = (i % ScaleLongEvery == 0) ? m_center(1) + sina * out_radius_long : m_center(1) + sina * out_radius_short;
|
||||
::glVertex3f((GLfloat)in_x, (GLfloat)in_y, 0.0f);
|
||||
::glVertex3f((GLfloat)out_x, (GLfloat)out_y, 0.0f);
|
||||
}
|
||||
@ -340,10 +340,10 @@ void GLGizmoRotate::_render_snap_radii() const
|
||||
float angle = (float)i * step;
|
||||
float cosa = ::cos(angle);
|
||||
float sina = ::sin(angle);
|
||||
float in_x = m_center.x() + cosa * in_radius;
|
||||
float in_y = m_center.y() + sina * in_radius;
|
||||
float out_x = m_center.x() + cosa * out_radius;
|
||||
float out_y = m_center.y() + sina * out_radius;
|
||||
float in_x = m_center(0) + cosa * in_radius;
|
||||
float in_y = m_center(1) + sina * in_radius;
|
||||
float out_x = m_center(0) + cosa * out_radius;
|
||||
float out_y = m_center(1) + sina * out_radius;
|
||||
::glVertex3f((GLfloat)in_x, (GLfloat)in_y, 0.0f);
|
||||
::glVertex3f((GLfloat)out_x, (GLfloat)out_y, 0.0f);
|
||||
}
|
||||
@ -353,8 +353,8 @@ void GLGizmoRotate::_render_snap_radii() const
|
||||
void GLGizmoRotate::_render_reference_radius() const
|
||||
{
|
||||
::glBegin(GL_LINES);
|
||||
::glVertex3f((GLfloat)m_center.x(), (GLfloat)m_center.y(), 0.0f);
|
||||
::glVertex3f((GLfloat)m_center.x() + m_radius + GrabberOffset, (GLfloat)m_center.y(), 0.0f);
|
||||
::glVertex3f((GLfloat)m_center(0), (GLfloat)m_center(1), 0.0f);
|
||||
::glVertex3f((GLfloat)m_center(0) + m_radius + GrabberOffset, (GLfloat)m_center(1), 0.0f);
|
||||
::glEnd();
|
||||
}
|
||||
|
||||
@ -367,8 +367,8 @@ void GLGizmoRotate::_render_angle_z() const
|
||||
for (unsigned int i = 0; i <= AngleResolution; ++i)
|
||||
{
|
||||
float angle = (float)i * step_angle;
|
||||
float x = m_center.x() + ::cos(angle) * ex_radius;
|
||||
float y = m_center.y() + ::sin(angle) * ex_radius;
|
||||
float x = m_center(0) + ::cos(angle) * ex_radius;
|
||||
float y = m_center(1) + ::sin(angle) * ex_radius;
|
||||
::glVertex3f((GLfloat)x, (GLfloat)y, 0.0f);
|
||||
}
|
||||
::glEnd();
|
||||
@ -377,14 +377,14 @@ void GLGizmoRotate::_render_angle_z() const
|
||||
void GLGizmoRotate::_render_grabber() const
|
||||
{
|
||||
float grabber_radius = m_radius + GrabberOffset;
|
||||
m_grabbers[0].center.x() = m_center.x() + ::cos(m_angle_z) * grabber_radius;
|
||||
m_grabbers[0].center.y() = m_center.y() + ::sin(m_angle_z) * grabber_radius;
|
||||
m_grabbers[0].center(0) = m_center(0) + ::cos(m_angle_z) * grabber_radius;
|
||||
m_grabbers[0].center(1) = m_center(1) + ::sin(m_angle_z) * grabber_radius;
|
||||
m_grabbers[0].angle_z = m_angle_z;
|
||||
|
||||
::glColor3fv(BaseColor);
|
||||
::glBegin(GL_LINES);
|
||||
::glVertex3f((GLfloat)m_center.x(), (GLfloat)m_center.y(), 0.0f);
|
||||
::glVertex3f((GLfloat)m_grabbers[0].center.x(), (GLfloat)m_grabbers[0].center.y(), 0.0f);
|
||||
::glVertex3f((GLfloat)m_center(0), (GLfloat)m_center(1), 0.0f);
|
||||
::glVertex3f((GLfloat)m_grabbers[0].center(0), (GLfloat)m_grabbers[0].center(1), 0.0f);
|
||||
::glEnd();
|
||||
|
||||
::memcpy((void*)m_grabbers[0].color, (const void*)HighlightColor, 3 * sizeof(float));
|
||||
@ -442,7 +442,7 @@ void GLGizmoScale::on_start_dragging()
|
||||
|
||||
void GLGizmoScale::on_update(const Pointf& mouse_pos)
|
||||
{
|
||||
Pointf center(0.5 * (m_grabbers[1].center.x() + m_grabbers[0].center.x()), 0.5 * (m_grabbers[3].center.y() + m_grabbers[0].center.y()));
|
||||
Pointf center(0.5 * (m_grabbers[1].center(0) + m_grabbers[0].center(0)), 0.5 * (m_grabbers[3].center(1) + m_grabbers[0].center(1)));
|
||||
|
||||
coordf_t orig_len = (m_starting_drag_position - center).norm();
|
||||
coordf_t new_len = (mouse_pos - center).norm();
|
||||
@ -455,19 +455,19 @@ void GLGizmoScale::on_render(const BoundingBoxf3& box) const
|
||||
{
|
||||
::glDisable(GL_DEPTH_TEST);
|
||||
|
||||
coordf_t min_x = box.min.x() - (coordf_t)Offset;
|
||||
coordf_t max_x = box.max.x() + (coordf_t)Offset;
|
||||
coordf_t min_y = box.min.y() - (coordf_t)Offset;
|
||||
coordf_t max_y = box.max.y() + (coordf_t)Offset;
|
||||
coordf_t min_x = box.min(0) - (coordf_t)Offset;
|
||||
coordf_t max_x = box.max(0) + (coordf_t)Offset;
|
||||
coordf_t min_y = box.min(1) - (coordf_t)Offset;
|
||||
coordf_t max_y = box.max(1) + (coordf_t)Offset;
|
||||
|
||||
m_grabbers[0].center.x() = min_x;
|
||||
m_grabbers[0].center.y() = min_y;
|
||||
m_grabbers[1].center.x() = max_x;
|
||||
m_grabbers[1].center.y() = min_y;
|
||||
m_grabbers[2].center.x() = max_x;
|
||||
m_grabbers[2].center.y() = max_y;
|
||||
m_grabbers[3].center.x() = min_x;
|
||||
m_grabbers[3].center.y() = max_y;
|
||||
m_grabbers[0].center(0) = min_x;
|
||||
m_grabbers[0].center(1) = min_y;
|
||||
m_grabbers[1].center(0) = max_x;
|
||||
m_grabbers[1].center(1) = min_y;
|
||||
m_grabbers[2].center(0) = max_x;
|
||||
m_grabbers[2].center(1) = max_y;
|
||||
m_grabbers[3].center(0) = min_x;
|
||||
m_grabbers[3].center(1) = max_y;
|
||||
|
||||
::glLineWidth(2.0f);
|
||||
::glColor3fv(BaseColor);
|
||||
@ -475,7 +475,7 @@ void GLGizmoScale::on_render(const BoundingBoxf3& box) const
|
||||
::glBegin(GL_LINE_LOOP);
|
||||
for (unsigned int i = 0; i < 4; ++i)
|
||||
{
|
||||
::glVertex3f((GLfloat)m_grabbers[i].center.x(), (GLfloat)m_grabbers[i].center.y(), 0.0f);
|
||||
::glVertex3f((GLfloat)m_grabbers[i].center(0), (GLfloat)m_grabbers[i].center(1), 0.0f);
|
||||
}
|
||||
::glEnd();
|
||||
|
||||
|
@ -25,15 +25,15 @@
|
||||
double radius();
|
||||
Clone<Point> min_point() %code{% RETVAL = THIS->min; %};
|
||||
Clone<Point> max_point() %code{% RETVAL = THIS->max; %};
|
||||
int x_min() %code{% RETVAL = THIS->min.x(); %};
|
||||
int x_max() %code{% RETVAL = THIS->max.x(); %};
|
||||
int y_min() %code{% RETVAL = THIS->min.y(); %};
|
||||
int y_max() %code{% RETVAL = THIS->max.y(); %};
|
||||
void set_x_min(double val) %code{% THIS->min.x() = val; %};
|
||||
void set_x_max(double val) %code{% THIS->max.x() = val; %};
|
||||
void set_y_min(double val) %code{% THIS->min.y() = val; %};
|
||||
void set_y_max(double val) %code{% THIS->max.y() = val; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld;%ld,%ld", THIS->min.x(), THIS->min.y(), THIS->max.x(), THIS->max.y()); RETVAL = buf; %};
|
||||
int x_min() %code{% RETVAL = THIS->min(0); %};
|
||||
int x_max() %code{% RETVAL = THIS->max(0); %};
|
||||
int y_min() %code{% RETVAL = THIS->min(1); %};
|
||||
int y_max() %code{% RETVAL = THIS->max(1); %};
|
||||
void set_x_min(double val) %code{% THIS->min(0) = val; %};
|
||||
void set_x_max(double val) %code{% THIS->max(0) = val; %};
|
||||
void set_y_min(double val) %code{% THIS->min(1) = val; %};
|
||||
void set_y_max(double val) %code{% THIS->max(1) = val; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld;%ld,%ld", THIS->min(0), THIS->min(1), THIS->max(0), THIS->max(1)); RETVAL = buf; %};
|
||||
bool defined() %code{% RETVAL = THIS->defined; %};
|
||||
|
||||
%{
|
||||
@ -65,15 +65,15 @@ new_from_points(CLASS, points)
|
||||
bool empty() %code{% RETVAL = empty(*THIS); %};
|
||||
Clone<Pointf> min_point() %code{% RETVAL = THIS->min; %};
|
||||
Clone<Pointf> max_point() %code{% RETVAL = THIS->max; %};
|
||||
double x_min() %code{% RETVAL = THIS->min.x(); %};
|
||||
double x_max() %code{% RETVAL = THIS->max.x(); %};
|
||||
double y_min() %code{% RETVAL = THIS->min.y(); %};
|
||||
double y_max() %code{% RETVAL = THIS->max.y(); %};
|
||||
void set_x_min(double val) %code{% THIS->min.x() = val; %};
|
||||
void set_x_max(double val) %code{% THIS->max.x() = val; %};
|
||||
void set_y_min(double val) %code{% THIS->min.y() = val; %};
|
||||
void set_y_max(double val) %code{% THIS->max.y() = val; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf;%lf,%lf", THIS->min.x(), THIS->min.y(), THIS->max.x(), THIS->max.y()); RETVAL = buf; %};
|
||||
double x_min() %code{% RETVAL = THIS->min(0); %};
|
||||
double x_max() %code{% RETVAL = THIS->max(0); %};
|
||||
double y_min() %code{% RETVAL = THIS->min(1); %};
|
||||
double y_max() %code{% RETVAL = THIS->max(1); %};
|
||||
void set_x_min(double val) %code{% THIS->min(0) = val; %};
|
||||
void set_x_max(double val) %code{% THIS->max(0) = val; %};
|
||||
void set_y_min(double val) %code{% THIS->min(1) = val; %};
|
||||
void set_y_max(double val) %code{% THIS->max(1) = val; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf;%lf,%lf", THIS->min(0), THIS->min(1), THIS->max(0), THIS->max(1)); RETVAL = buf; %};
|
||||
bool defined() %code{% RETVAL = THIS->defined; %};
|
||||
|
||||
%{
|
||||
@ -107,12 +107,12 @@ new_from_points(CLASS, points)
|
||||
bool empty() %code{% RETVAL = empty(*THIS); %};
|
||||
Clone<Pointf3> min_point() %code{% RETVAL = THIS->min; %};
|
||||
Clone<Pointf3> max_point() %code{% RETVAL = THIS->max; %};
|
||||
double x_min() %code{% RETVAL = THIS->min.x(); %};
|
||||
double x_max() %code{% RETVAL = THIS->max.x(); %};
|
||||
double y_min() %code{% RETVAL = THIS->min.y(); %};
|
||||
double y_max() %code{% RETVAL = THIS->max.y(); %};
|
||||
double z_min() %code{% RETVAL = THIS->min.z(); %};
|
||||
double z_max() %code{% RETVAL = THIS->max.z(); %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf;%lf,%lf,%lf", THIS->min.x(), THIS->min.y(), THIS->min.z(), THIS->max.x(), THIS->max.y(), THIS->max.z()); RETVAL = buf; %};
|
||||
double x_min() %code{% RETVAL = THIS->min(0); %};
|
||||
double x_max() %code{% RETVAL = THIS->max(0); %};
|
||||
double y_min() %code{% RETVAL = THIS->min(1); %};
|
||||
double y_max() %code{% RETVAL = THIS->max(1); %};
|
||||
double z_min() %code{% RETVAL = THIS->min(2); %};
|
||||
double z_max() %code{% RETVAL = THIS->max(2); %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf;%lf,%lf,%lf", THIS->min(0), THIS->min(1), THIS->min(2), THIS->max(0), THIS->max(1), THIS->max(2)); RETVAL = buf; %};
|
||||
bool defined() %code{% RETVAL = THIS->defined; %};
|
||||
};
|
||||
|
@ -22,13 +22,13 @@
|
||||
SV* pp()
|
||||
%code{% RETVAL = to_SV_pureperl(THIS); %};
|
||||
int x()
|
||||
%code{% RETVAL = THIS->x(); %};
|
||||
%code{% RETVAL = (*THIS)(0); %};
|
||||
int y()
|
||||
%code{% RETVAL = THIS->y(); %};
|
||||
%code{% RETVAL = (*THIS)(1); %};
|
||||
void set_x(int val)
|
||||
%code{% THIS->x() = val; %};
|
||||
%code{% (*THIS)(0) = val; %};
|
||||
void set_y(int val)
|
||||
%code{% THIS->y() = val; %};
|
||||
%code{% (*THIS)(1) = val; %};
|
||||
int nearest_point_index(Points points);
|
||||
Clone<Point> nearest_point(Points points)
|
||||
%code{% Point p; THIS->nearest_point(points, &p); RETVAL = p; %};
|
||||
@ -52,7 +52,7 @@
|
||||
%code{% RETVAL = new Point(- *THIS); %};
|
||||
bool coincides_with_epsilon(Point* point)
|
||||
%code{% RETVAL = (*THIS) == *point; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld", THIS->x(), THIS->y()); RETVAL = buf; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld", (*THIS)(0), (*THIS)(1)); RETVAL = buf; %};
|
||||
|
||||
%{
|
||||
|
||||
@ -85,12 +85,12 @@ Point::coincides_with(point_sv)
|
||||
Clone<Point3> clone()
|
||||
%code{% RETVAL = THIS; %};
|
||||
int x()
|
||||
%code{% RETVAL = THIS->x(); %};
|
||||
%code{% RETVAL = (*THIS)(0); %};
|
||||
int y()
|
||||
%code{% RETVAL = THIS->y(); %};
|
||||
%code{% RETVAL = (*THIS)(1); %};
|
||||
int z()
|
||||
%code{% RETVAL = THIS->z(); %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld,%ld", THIS->x(), THIS->y(), THIS->z()); RETVAL = buf; %};
|
||||
%code{% RETVAL = (*THIS)(2); %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld,%ld", (*THIS)(0), (*THIS)(1), (*THIS)(2)); RETVAL = buf; %};
|
||||
};
|
||||
|
||||
%name{Slic3r::Pointf} class Pointf {
|
||||
@ -103,13 +103,13 @@ Point::coincides_with(point_sv)
|
||||
SV* pp()
|
||||
%code{% RETVAL = to_SV_pureperl(THIS); %};
|
||||
double x()
|
||||
%code{% RETVAL = THIS->x(); %};
|
||||
%code{% RETVAL = (*THIS)(0); %};
|
||||
double y()
|
||||
%code{% RETVAL = THIS->y(); %};
|
||||
%code{% RETVAL = (*THIS)(1); %};
|
||||
void set_x(double val)
|
||||
%code{% THIS->x() = val; %};
|
||||
%code{% (*THIS)(0) = val; %};
|
||||
void set_y(double val)
|
||||
%code{% THIS->y() = val; %};
|
||||
%code{% (*THIS)(1) = val; %};
|
||||
void translate(double x, double y)
|
||||
%code{% *THIS += Pointf(x, y); %};
|
||||
void scale(double factor)
|
||||
@ -120,7 +120,7 @@ Point::coincides_with(point_sv)
|
||||
%code{% RETVAL = new Pointf(- *THIS); %};
|
||||
Pointf* vector_to(Pointf* point)
|
||||
%code{% RETVAL = new Pointf(*point - *THIS); %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf", THIS->x(), THIS->y()); RETVAL = buf; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf", (*THIS)(0), (*THIS)(1)); RETVAL = buf; %};
|
||||
};
|
||||
|
||||
%name{Slic3r::Pointf3} class Pointf3 {
|
||||
@ -129,17 +129,17 @@ Point::coincides_with(point_sv)
|
||||
Clone<Pointf3> clone()
|
||||
%code{% RETVAL = THIS; %};
|
||||
double x()
|
||||
%code{% RETVAL = THIS->x(); %};
|
||||
%code{% RETVAL = (*THIS)(0); %};
|
||||
double y()
|
||||
%code{% RETVAL = THIS->y(); %};
|
||||
%code{% RETVAL = (*THIS)(1); %};
|
||||
double z()
|
||||
%code{% RETVAL = THIS->z(); %};
|
||||
%code{% RETVAL = (*THIS)(2); %};
|
||||
void set_x(double val)
|
||||
%code{% THIS->x() = val; %};
|
||||
%code{% (*THIS)(0) = val; %};
|
||||
void set_y(double val)
|
||||
%code{% THIS->y() = val; %};
|
||||
%code{% (*THIS)(1) = val; %};
|
||||
void set_z(double val)
|
||||
%code{% THIS->z() = val; %};
|
||||
%code{% (*THIS)(2) = val; %};
|
||||
void translate(double x, double y, double z)
|
||||
%code{% *THIS += Pointf3(x, y, z); %};
|
||||
void scale(double factor)
|
||||
@ -150,5 +150,5 @@ Point::coincides_with(point_sv)
|
||||
%code{% RETVAL = new Pointf3(- *THIS); %};
|
||||
Pointf3* vector_to(Pointf3* point)
|
||||
%code{% RETVAL = new Pointf3(*point - *THIS); %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf", THIS->x(), THIS->y(), THIS->z()); RETVAL = buf; %};
|
||||
std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf", (*THIS)(0), (*THIS)(1), (*THIS)(2)); RETVAL = buf; %};
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user