Fix problems with adaptive infills, but the anchoring itself is not used on them

Fix briding angles for octagram and hilberts curve
This commit is contained in:
PavelMikus 2023-02-15 17:23:31 +01:00
parent 2b0a7ccb2c
commit 6521b72274
2 changed files with 64 additions and 16 deletions

View File

@ -442,6 +442,14 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
for (SurfaceFill &surface_fill : surface_fills) {
//skip patterns for which additional input is nullptr
switch (surface_fill.params.pattern) {
case ipLightning: if (lightning_generator == nullptr) continue; break;
case ipAdaptiveCubic: if (adaptive_fill_octree == nullptr) continue; break;
case ipSupportCubic: if (support_fill_octree == nullptr) continue; break;
default: break;
}
// Create the filler object.
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
f->set_bounding_box(bbox);

View File

@ -1638,6 +1638,17 @@ void PrintObject::bridge_over_infill()
continue;
}
auto region_has_anchorable_sparse_infill = [](const LayerRegion* layer_region) {
switch (layer_region->region().config().fill_pattern.value) {
case ipAdaptiveCubic: return false;
case ipSupportCubic: return false;
case ipLightning: return false;
default: break;
}
return layer_region->region().config().fill_density.value < 100;
};
// Gather lower layers sparse infill areas, to depth defined by used bridge flow
Polygons lower_layers_sparse_infill{};
double bottom_z = layer->print_z - max_bridge_flow_height[candidates.first] - EPSILON;
@ -1660,7 +1671,7 @@ void PrintObject::bridge_over_infill()
for (size_t region_idx : regions_under_to_check) {
const LayerRegion *region = po->get_layer(i)->get_region(region_idx);
if (region->region().config().fill_density.value < 100) {
if (region_has_anchorable_sparse_infill(region)) {
for (const Surface *surface : region->fill_surfaces().filter_by_type(stInternal)) {
Polygons p = to_polygons(surface->expolygon);
lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end());
@ -1703,7 +1714,7 @@ void PrintObject::bridge_over_infill()
closing(max_area, flow.scaled_width());
Polylines anchors = intersection_pl(lower_layer_polylines, max_area);
anchors = diff_pl(anchors, shrink(bridged_area, flow.scaled_width()));
anchors = diff_pl(anchors, bridged_area);
Lines anchors_and_walls = to_lines(anchors);
Lines tmp = to_lines(max_area);
@ -1716,9 +1727,9 @@ void PrintObject::bridge_over_infill()
double bridging_angle = 0;
{
AABBTreeLines::LinesDistancer<Line> lines_tree{anchors_and_walls};
AABBTreeLines::LinesDistancer<Line> lines_tree{anchors.empty() ? anchors_and_walls : to_lines(anchors)};
std::vector<std::pair<double, double>> directions_with_distances;
std::map<double, int> counted_directions;
for (const Polygon &p : bridged_area) {
for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) {
Vec2d start = p.points[point_idx].cast<double>();
@ -1736,23 +1747,52 @@ void PrintObject::bridge_over_infill()
angle -= PI;
}
angle += PI * 0.5;
directions_with_distances.emplace_back(angle, distance);
counted_directions[angle]++;
}
}
}
double max_dist = directions_with_distances[0].second;
for (const auto &dir : directions_with_distances) {
max_dist = std::max(max_dist, dir.second);
std::pair<double, int> best_dir{0, 0};
// sliding window accumulation
for (const auto &dir : counted_directions) {
int score_acc = 0;
double dir_acc = 0;
double window_start_angle = dir.first - PI * 0.2;
double window_end_angle = dir.first + PI * 0.2;
for (auto dirs_window = counted_directions.lower_bound(window_start_angle);
dirs_window != counted_directions.upper_bound(window_end_angle); dirs_window++) {
dir_acc += dirs_window->first * dirs_window->second;
score_acc += dirs_window->second;
}
// current span of directions is 0.5 PI to 1.5 PI (due to the aproach.). Edge values should also account for the
// opposite direction.
if (window_start_angle < 0.5 * PI) {
for (auto dirs_window = counted_directions.lower_bound(1.5 * PI - (0.5 * PI - window_start_angle));
dirs_window != counted_directions.end(); dirs_window++) {
dir_acc += dirs_window->first * dirs_window->second;
score_acc += dirs_window->second;
}
}
if (window_start_angle > 1.5 * PI) {
for (auto dirs_window = counted_directions.begin();
dirs_window != counted_directions.upper_bound(window_start_angle - 1.5 * PI); dirs_window++) {
dir_acc += dirs_window->first * dirs_window->second;
score_acc += dirs_window->second;
}
}
if (score_acc > best_dir.second) {
best_dir = {dir_acc / score_acc, score_acc};
}
}
double acc = 0;
for (const auto &dir : directions_with_distances) {
bridging_angle += dir.first * (max_dist - dir.second);
acc += (max_dist - dir.second);
}
if (acc <= EPSILON || bridging_angle == 0) {
bridging_angle = best_dir.first;
if (bridging_angle == 0) {
bridging_angle = 0.001;
} else {
bridging_angle /= acc;
}
switch (surface_to_region[candidate]->region().config().fill_pattern.value) {
case ipHilbertCurve: bridging_angle += 0.25 * PI; break;
case ipOctagramSpiral: bridging_angle += (1.0 / 16.0) * PI; break;
default: break;
}
}