Gyroid infill - automatic discretization steps and refactoring
This commit is contained in:
parent
abe6e8a783
commit
68c3749696
@ -9,77 +9,125 @@
|
|||||||
|
|
||||||
namespace Slic3r {
|
namespace Slic3r {
|
||||||
|
|
||||||
static inline Polyline make_wave_vertical(
|
|
||||||
double width, double height, double x0,
|
static inline double f(double x, double z_sin, double z_cos, bool vertical, bool flip) {
|
||||||
double segmentSize, double scaleFactor,
|
if (vertical) {
|
||||||
double z_cos, double z_sin, bool flip)
|
double phase_offset = (z_cos < 0 ? M_PI : 0) + M_PI;
|
||||||
{
|
double a = sin(x + phase_offset);
|
||||||
Polyline polyline;
|
|
||||||
polyline.points.emplace_back(Point(coord_t(clamp(0., width, x0) * scaleFactor), 0));
|
|
||||||
double phase_offset_sin = (z_cos < 0 ? M_PI : 0) + M_PI;
|
|
||||||
double phase_offset_cos = (z_cos < 0 ? M_PI : 0) + M_PI + (flip ? M_PI : 0.);
|
|
||||||
for (double y = 0.; y < height + segmentSize; y += segmentSize) {
|
|
||||||
y = std::min(y, height);
|
|
||||||
double a = sin(y + phase_offset_sin);
|
|
||||||
double b = - z_cos;
|
double b = - z_cos;
|
||||||
double res = z_sin * cos(y + phase_offset_cos);
|
double res = z_sin * cos(x + phase_offset + (flip ? M_PI : 0.));
|
||||||
double r = sqrt(sqr(a) + sqr(b));
|
double r = sqrt(sqr(a) + sqr(b));
|
||||||
double x = clamp(0., width, asin(a/r) + asin(res/r) + M_PI + x0);
|
return asin(a/r) + asin(res/r) + M_PI;
|
||||||
polyline.points.emplace_back(convert_to<Point>(Pointf(x, y) * scaleFactor));
|
|
||||||
}
|
}
|
||||||
if (flip)
|
else {
|
||||||
std::reverse(polyline.points.begin(), polyline.points.end());
|
double phase_offset = z_sin < 0 ? M_PI : 0.;
|
||||||
|
double a = cos(x + phase_offset);
|
||||||
|
double b = - z_sin;
|
||||||
|
double res = z_cos * sin(x + phase_offset + (flip ? 0 : M_PI));
|
||||||
|
double r = sqrt(sqr(a) + sqr(b));
|
||||||
|
return (asin(a/r) + asin(res/r) + 0.5 * M_PI);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static inline Polyline make_wave(
|
||||||
|
const std::vector<Pointf>& one_period, double width, double height, double offset, double scaleFactor,
|
||||||
|
double z_cos, double z_sin, bool vertical)
|
||||||
|
{
|
||||||
|
std::vector<Pointf> points = one_period;
|
||||||
|
double period = points.back().x;
|
||||||
|
points.pop_back();
|
||||||
|
int n = points.size();
|
||||||
|
do {
|
||||||
|
points.emplace_back(Pointf(points[points.size()-n].x + period, points[points.size()-n].y));
|
||||||
|
} while (points.back().x < width);
|
||||||
|
points.back().x = width;
|
||||||
|
|
||||||
|
// and construct the final polyline to return:
|
||||||
|
Polyline polyline;
|
||||||
|
for (auto& point : points) {
|
||||||
|
point.y += offset;
|
||||||
|
point.y = clamp(0., height, double(point.y));
|
||||||
|
if (vertical)
|
||||||
|
std::swap(point.x, point.y);
|
||||||
|
polyline.points.emplace_back(convert_to<Point>(point * scaleFactor));
|
||||||
|
}
|
||||||
|
|
||||||
return polyline;
|
return polyline;
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline Polyline make_wave_horizontal(
|
|
||||||
double width, double height, double y0,
|
static std::vector<Pointf> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip) {
|
||||||
double segmentSize, double scaleFactor,
|
std::vector<Pointf> points;
|
||||||
double z_cos, double z_sin, bool flip)
|
double dx = M_PI_4; // very coarse spacing to begin with
|
||||||
{
|
double limit = std::min(2*M_PI, width);
|
||||||
Polyline polyline;
|
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
|
||||||
polyline.points.emplace_back(Point(0, coord_t(clamp(0., height, y0) * scaleFactor)));
|
x = std::min(x, limit);
|
||||||
double phase_offset_sin = (z_sin < 0 ? M_PI : 0) + (flip ? 0 : M_PI);
|
points.emplace_back(Pointf(x,f(x, z_sin,z_cos, vertical, flip)));
|
||||||
double phase_offset_cos = z_sin < 0 ? M_PI : 0.;
|
|
||||||
for (double x = 0.; x < width + segmentSize; x += segmentSize) {
|
|
||||||
x = std::min(x, width);
|
|
||||||
double a = cos(x + phase_offset_cos);
|
|
||||||
double b = - z_sin;
|
|
||||||
double res = z_cos * sin(x + phase_offset_sin);
|
|
||||||
double r = sqrt(sqr(a) + sqr(b));
|
|
||||||
double y = clamp(0., height, asin(a/r) + asin(res/r) + 0.5 * M_PI + y0);
|
|
||||||
polyline.points.emplace_back(convert_to<Point>(Pointf(x, y) * scaleFactor));
|
|
||||||
}
|
}
|
||||||
if (flip)
|
|
||||||
std::reverse(polyline.points.begin(), polyline.points.end());
|
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
|
||||||
return polyline;
|
// we will add one more point on each side:
|
||||||
|
const double tolerance = .1;
|
||||||
|
for (unsigned int i=1;i<points.size()-1;++i) {
|
||||||
|
auto& lp = points[i-1]; // left point
|
||||||
|
auto& tp = points[i]; // this point
|
||||||
|
auto& rp = points[i+1]; // right point
|
||||||
|
// calculate distance of the point to the line:
|
||||||
|
double dist_mm = unscale(scaleFactor * std::abs( (rp.y - lp.y)*tp.x + (lp.x - rp.x)*tp.y + (rp.x*lp.y - rp.y*lp.x) ) / std::hypot((rp.y - lp.y),(lp.x - rp.x)));
|
||||||
|
|
||||||
|
if (dist_mm > tolerance) { // if the difference from straight line is more than this
|
||||||
|
double x = 0.5f * (points[i-1].x + points[i].x);
|
||||||
|
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||||
|
x = 0.5f * (points[i+1].x + points[i].x);
|
||||||
|
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||||
|
std::sort(points.begin(), points.end()); // we added the points to the end, but need them all in order
|
||||||
|
--i; // decrement i so we also check the first newly added point
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return points;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
|
static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
|
||||||
{
|
{
|
||||||
double scaleFactor = scale_(line_spacing) / density_adjusted;
|
const double scaleFactor = scale_(line_spacing) / density_adjusted;
|
||||||
double segmentSize = 0.5 * density_adjusted;
|
|
||||||
//scale factor for 5% : 8 712 388
|
//scale factor for 5% : 8 712 388
|
||||||
// 1z = 10^-6 mm ?
|
// 1z = 10^-6 mm ?
|
||||||
double z = gridZ / scaleFactor;
|
const double z = gridZ / scaleFactor;
|
||||||
double z_sin = sin(z);
|
const double z_sin = sin(z);
|
||||||
double z_cos = cos(z);
|
const double z_cos = cos(z);
|
||||||
Polylines result;
|
|
||||||
if (abs(z_sin) <= abs(z_cos)) {
|
bool vertical = (std::abs(z_sin) <= std::abs(z_cos));
|
||||||
// Vertical wave
|
double lower_bound = 0.;
|
||||||
double x0 = M_PI * (int)((- 0.5 * M_PI) / M_PI - 1.);
|
double upper_bound = height;
|
||||||
bool flip = ((int)(x0 / M_PI + 1.) & 1) != 0;
|
bool flip = true;
|
||||||
for (; x0 < width - 0.5 * M_PI; x0 += M_PI, flip = ! flip)
|
if (vertical) {
|
||||||
result.emplace_back(make_wave_vertical(width, height, x0, segmentSize, scaleFactor, z_cos, z_sin, flip));
|
flip = false;
|
||||||
} else {
|
lower_bound = -M_PI;
|
||||||
// Horizontal wave
|
upper_bound = width - M_PI_2;
|
||||||
bool flip = true;
|
std::swap(width,height);
|
||||||
for (double y0 = 0.; y0 < height; y0 += M_PI, flip = !flip)
|
|
||||||
result.emplace_back(make_wave_horizontal(width, height, y0, segmentSize, scaleFactor, z_cos, z_sin, flip));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<Pointf> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||||
|
Polylines result;
|
||||||
|
|
||||||
|
for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates odd polylines
|
||||||
|
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||||
|
|
||||||
|
flip = !flip; // even polylines are a bit shifted
|
||||||
|
one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // updates the one period sample
|
||||||
|
for (double y0 = lower_bound + M_PI; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates even polylines
|
||||||
|
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void FillGyroid::_fill_surface_single(
|
void FillGyroid::_fill_surface_single(
|
||||||
const FillParams ¶ms,
|
const FillParams ¶ms,
|
||||||
unsigned int thickness_layers,
|
unsigned int thickness_layers,
|
||||||
@ -90,7 +138,9 @@ void FillGyroid::_fill_surface_single(
|
|||||||
// no rotation is supported for this infill pattern (yet)
|
// no rotation is supported for this infill pattern (yet)
|
||||||
BoundingBox bb = expolygon.contour.bounding_box();
|
BoundingBox bb = expolygon.contour.bounding_box();
|
||||||
// Density adjusted to have a good %of weight.
|
// Density adjusted to have a good %of weight.
|
||||||
double density_adjusted = params.density * 1.75;
|
double density_adjusted = std::max(0., params.density * 2.);
|
||||||
|
|
||||||
|
|
||||||
// Distance between the gyroid waves in scaled coordinates.
|
// Distance between the gyroid waves in scaled coordinates.
|
||||||
coord_t distance = coord_t(scale_(this->spacing) / density_adjusted);
|
coord_t distance = coord_t(scale_(this->spacing) / density_adjusted);
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user