Improvement in mesh slicing:

Hole fill is disabled in 3D,
and maximum 2mm gaps are closed at 2D by a greedy algorithm.
This commit is contained in:
bubnikv 2018-10-03 13:24:14 +02:00
parent 986103be1d
commit 69449781ce

View File

@ -207,10 +207,14 @@ TriangleMesh::repair() {
}
// fill_holes
#if 0
// Don't fill holes, the current algorithm does more harm than good on complex holes.
// Rather let the slicing algorithm close gaps in 2D slices.
if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
stl_fill_holes(&stl);
stl_clear_error(&stl);
}
#endif
// normal_directions
stl_fix_normal_directions(&stl);
@ -982,29 +986,7 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
if (this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &il) == TriangleMeshSlicer::Slicing) {
boost::lock_guard<boost::mutex> l(*lines_mutex);
if (il.edge_type == feHorizontal) {
// Insert all marked edges of the face. The marked edges do not share an edge with another horizontal face
// (they may not have a nighbor, or their neighbor is vertical)
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal.z < 0;
for (int j = 0; j < 3; ++ j)
if (il.flags & ((IntersectionLine::EDGE0_NO_NEIGHBOR | IntersectionLine::EDGE0_FOLD) << j)) {
int a_id = vertices[j % 3];
int b_id = vertices[(j+1) % 3];
if (reverse)
std::swap(a_id, b_id);
const stl_vertex *a = &this->v_scaled_shared[a_id];
const stl_vertex *b = &this->v_scaled_shared[b_id];
il.a.x = a->x;
il.a.y = a->y;
il.b.x = b->x;
il.b.y = b->y;
il.a_id = a_id;
il.b_id = b_id;
assert(il.a != il.b);
// This edge will not be used as a seed for loop extraction if it was added due to a fold of two overlapping horizontal faces.
il.set_no_seed((IntersectionLine::EDGE0_FOLD << j) != 0);
(*lines)[layer_idx].emplace_back(il);
}
// Ignore horizontal triangles. Any valid horizontal triangle must have a vertical triangle connected, otherwise the part has zero volume.
} else
(*lines)[layer_idx].emplace_back(il);
}
@ -1066,50 +1048,7 @@ TriangleMeshSlicer::FacetSliceType TriangleMeshSlicer::slice_facet(
if (min_z == max_z) {
// All three vertices are aligned with slice_z.
line_out->edge_type = feHorizontal;
// Mark neighbor edges, which do not have a neighbor.
uint32_t edges = 0;
for (int nbr_idx = 0; nbr_idx != 3; ++ nbr_idx) {
// If the neighbor with an edge starting with a vertex idx (nbr_idx - 2) shares no
// opposite face, add it to the edges to process when slicing.
if (nbr.neighbor[nbr_idx] == -1) {
// Mark this edge to be added to the slice.
edges |= (IntersectionLine::EDGE0_NO_NEIGHBOR << nbr_idx);
}
#if 1
else if (normal.z > 0) {
// Produce edges for opposite faced overlapping horizontal faces aka folds.
// This method often produces connecting lines (noise) at the cutting plane.
// Produce the edges for the top facing face of the pair of top / bottom facing faces.
// Index of a neighbor face.
const int nbr_face = nbr.neighbor[nbr_idx];
const int *nbr_vertices = this->mesh->stl.v_indices[nbr_face].vertex;
int idx_vertex_opposite = nbr_vertices[nbr.which_vertex_not[nbr_idx]];
const stl_vertex *c2 = &this->v_scaled_shared[idx_vertex_opposite];
if (c2->z == slice_z) {
// Edge shared by facet_idx and nbr_face.
int a_id = vertices[nbr_idx];
int b_id = vertices[(nbr_idx + 1) % 3];
int c1_id = vertices[(nbr_idx + 2) % 3];
const stl_vertex *a = &this->v_scaled_shared[a_id];
const stl_vertex *b = &this->v_scaled_shared[b_id];
const stl_vertex *c1 = &this->v_scaled_shared[c1_id];
// Verify that the two neighbor faces share a common edge.
assert(nbr_vertices[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == b_id);
assert(nbr_vertices[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == a_id);
double n1 = (double(c1->x) - double(a->x)) * (double(b->y) - double(a->y)) - (double(c1->y) - double(a->y)) * (double(b->x) - double(a->x));
double n2 = (double(c2->x) - double(a->x)) * (double(b->y) - double(a->y)) - (double(c2->y) - double(a->y)) * (double(b->x) - double(a->x));
if (n1 * n2 > 0)
// The two faces overlap. This indicates an invalid mesh geometry (non-manifold),
// but these are the real world objects, and leaving out these edges leads to missing contours.
edges |= (IntersectionLine::EDGE0_FOLD << nbr_idx);
}
}
#endif
}
// Use some edges of this triangle for slicing only if at least one of its edge does not have an opposite face.
result = (edges == 0) ? Cutting : Slicing;
line_out->flags |= edges;
result = Cutting;
if (normal.z < 0) {
// If normal points downwards this is a bottom horizontal facet so we reverse its point order.
std::swap(a, b);
@ -1121,42 +1060,11 @@ TriangleMeshSlicer::FacetSliceType TriangleMeshSlicer::slice_facet(
int nbr_face = nbr.neighbor[nbr_idx];
// Is the third vertex below the cutting plane?
bool third_below = v0.z < slice_z || v1.z < slice_z || v2.z < slice_z;
// Is this a concave corner?
if (nbr_face == -1) {
#ifdef _DEBUG
printf("Face has no neighbor!\n");
#endif
} else {
assert(this->mesh->stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == b_id);
assert(this->mesh->stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == a_id);
int idx_vertex_opposite = this->mesh->stl.v_indices[nbr_face].vertex[nbr.which_vertex_not[nbr_idx]];
const stl_vertex *c = &this->v_scaled_shared[idx_vertex_opposite];
if (c->z == slice_z) {
double normal_nbr = (double(c->x) - double(a->x)) * (double(b->y) - double(a->y)) - (double(c->y) - double(a->y)) * (double(b->x) - double(a->x));
#if 0
if ((normal_nbr < 0) == third_below) {
printf("Flipped normal?\n");
}
#endif
result =
// A vertical face shares edge with a horizontal face. Verify, whether the shared edge makes a convex or concave corner.
// Unfortunately too often there are flipped normals, which brake our assumption. Let's rather return every edge,
// and leth the code downstream hopefully handle it.
#if 1
// Ignore concave corners for slicing.
// This method has the unfortunate property, that folds in a horizontal plane create concave corners,
// leading to broken contours, if these concave corners are not replaced by edges of the folds, see above.
((normal_nbr < 0) == third_below) ? Cutting : Slicing;
#else
// Use concave corners for slicing. This leads to the test 01_trianglemesh.t "slicing a top tangent plane includes its area" failing,
// and rightly so.
Slicing;
#endif
} else {
// For a pair of faces touching exactly at the cutting plane, ignore one of them. An arbitrary rule is to ignore the face with a higher index.
result = (facet_idx < nbr_face) ? Slicing : Cutting;
}
}
// Two vertices on the cutting plane, the third vertex is below the plane. Consider the edge to be part of the slice
// only if it is the upper edge.
// (the bottom most edge resp. vertex of a triangle is not owned by the triangle, but the top most edge resp. vertex is part of the triangle
// in respect to the cutting plane).
result = third_below ? Slicing : Cutting;
if (third_below) {
line_out->edge_type = feTop;
std::swap(a, b);
@ -1333,7 +1241,9 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
assert(l.a != l.b);
#endif /* _DEBUG */
remove_tangent_edges(lines);
// There should be no tangent edges, as the horizontal triangles are ignored and if two triangles touch at a cutting plane,
// only the bottom triangle is considered to be cutting the plane.
// remove_tangent_edges(lines);
struct OpenPolyline {
OpenPolyline() {};
@ -1450,7 +1360,10 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
}
// Now process the open polylines.
if (! open_polylines.empty()) {
// Do it in two rounds, first try to connect in the same direction only,
// then try to connect the open polylines in reversed order as well.
for (size_t round = 0; round < 2 && ! open_polylines.empty(); ++ round) {
bool try_connect_reversed = round == 1;
// Store the end points of open_polylines into vectors sorted
struct OpenPolylineEnd {
OpenPolylineEnd(OpenPolyline *polyline, bool start) : polyline(polyline), start(start) {}
@ -1470,12 +1383,16 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
for (OpenPolyline &opl : open_polylines) {
if (opl.start.edge_id != -1)
by_edge_id .emplace_back(OpenPolylineEnd(&opl, true));
if (opl.end.edge_id != -1)
by_edge_id .emplace_back(OpenPolylineEnd(&opl, false));
if (try_connect_reversed) {
if (opl.end.edge_id != -1)
by_edge_id .emplace_back(OpenPolylineEnd(&opl, false));
}
if (opl.start.point_id != -1)
by_point_id.emplace_back(OpenPolylineEnd(&opl, true));
if (opl.end.point_id != -1)
by_point_id.emplace_back(OpenPolylineEnd(&opl, false));
if (try_connect_reversed) {
if (opl.end.point_id != -1)
by_point_id.emplace_back(OpenPolylineEnd(&opl, false));
}
}
std::sort(by_edge_id .begin(), by_edge_id .end(), by_edge_lower);
std::sort(by_point_id.begin(), by_point_id.end(), by_point_lower);
@ -1520,11 +1437,9 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
if (next_start->start) {
auto it = next_start->polyline->points.begin();
std::copy(++ it, next_start->polyline->points.end(), back_inserter(opl.points));
//opl.points.insert(opl.points.back(), ++ it, next_start->polyline->points.end());
} else {
auto it = next_start->polyline->points.rbegin();
std::copy(++ it, next_start->polyline->points.rend(), back_inserter(opl.points));
//opl.points.insert(opl.points.back(), ++ it, next_start->polyline->points.rend());
}
end = *next_start;
end.start = !end.start;
@ -1541,14 +1456,16 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
// Remove the duplicate last point.
opl.points.pop_back();
if (opl.points.size() >= 3) {
// The closed polygon is patched from pieces with messed up orientation, therefore
// the orientation of the patched up polygon is not known.
// Orient the patched up polygons CCW. This heuristic may close some holes and cavities.
double area = 0.;
for (size_t i = 0, j = opl.points.size() - 1; i < opl.points.size(); j = i ++)
area += double(opl.points[j].x + opl.points[i].x) * double(opl.points[i].y - opl.points[j].y);
if (area < 0)
std::reverse(opl.points.begin(), opl.points.end());
if (try_connect_reversed) {
// The closed polygon is patched from pieces with messed up orientation, therefore
// the orientation of the patched up polygon is not known.
// Orient the patched up polygons CCW. This heuristic may close some holes and cavities.
double area = 0.;
for (size_t i = 0, j = opl.points.size() - 1; i < opl.points.size(); j = i ++)
area += double(opl.points[j].x + opl.points[i].x) * double(opl.points[i].y - opl.points[j].y);
if (area < 0)
std::reverse(opl.points.begin(), opl.points.end());
}
loops->emplace_back(std::move(opl.points));
}
opl.points.clear();
@ -1558,6 +1475,87 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
}
}
}
// Try to close gaps.
// Do it in two rounds, first try to connect in the same direction only,
// then try to connect the open polylines in reversed order as well.
const coord_t max_gap_scaled = (coord_t)scale_(2.); // 2mm
for (size_t round = 0; round < 2 && ! open_polylines.empty(); ++ round) {
bool try_connect_reversed = round == 1;
// Store the end points of open_polylines into ClosestPointInRadiusLookup<OpenPolylineEnd>.
struct OpenPolylineEnd {
OpenPolylineEnd(OpenPolyline *polyline, bool start) : polyline(polyline), start(start) {}
OpenPolyline *polyline;
// Is it the start or end point?
bool start;
const Point& point() const { return start ? polyline->points.front() : polyline->points.back(); }
};
struct OpenPolylineEndAccessor {
const Point* operator()(const OpenPolylineEnd &pt) const { return pt.polyline->consumed ? nullptr : &pt.point(); }
};
typedef ClosestPointInRadiusLookup<OpenPolylineEnd, OpenPolylineEndAccessor> ClosestPointLookupType;
ClosestPointLookupType closest_end_point_lookup(max_gap_scaled);
for (OpenPolyline &opl : open_polylines) {
closest_end_point_lookup.insert(OpenPolylineEnd(&opl, true));
if (try_connect_reversed)
closest_end_point_lookup.insert(OpenPolylineEnd(&opl, false));
}
// Try to connect the loops.
for (OpenPolyline &opl : open_polylines) {
if (opl.consumed)
continue;
opl.consumed = true;
OpenPolylineEnd end(&opl, false);
for (;;) {
// Find a line starting where last one finishes, only return non-consumed open polylines (OpenPolylineEndAccessor returns null for consumed).
std::pair<const OpenPolylineEnd*, double> next_start_and_dist = closest_end_point_lookup.find(end.point());
const OpenPolylineEnd *next_start = next_start_and_dist.first;
if (next_start == nullptr) {
// Check whether we closed this loop.
double dist = opl.points.front().distance_to(opl.points.back());
if (dist < max_gap_scaled) {
if (dist == 0.) {
// Remove the duplicate last point.
opl.points.pop_back();
} else {
// The end points are different, keep both of them.
}
if (opl.points.size() >= 3) {
if (try_connect_reversed) {
// The closed polygon is patched from pieces with messed up orientation, therefore
// the orientation of the patched up polygon is not known.
// Orient the patched up polygons CCW. This heuristic may close some holes and cavities.
double area = 0.;
for (size_t i = 0, j = opl.points.size() - 1; i < opl.points.size(); j = i ++)
area += double(opl.points[j].x + opl.points[i].x) * double(opl.points[i].y - opl.points[j].y);
if (area < 0)
std::reverse(opl.points.begin(), opl.points.end());
}
loops->emplace_back(std::move(opl.points));
}
opl.points.clear();
break;
}
// The current loop could not be closed. Unmark the segment.
opl.consumed = false;
break;
}
// Attach this polyline to the end of the initial polyline.
if (next_start->start) {
auto it = next_start->polyline->points.begin();
std::copy(++ it, next_start->polyline->points.end(), back_inserter(opl.points));
} else {
auto it = next_start->polyline->points.rbegin();
std::copy(++ it, next_start->polyline->points.rend(), back_inserter(opl.points));
}
end = *next_start;
end.start = !end.start;
next_start->polyline->points.clear();
next_start->polyline->consumed = true;
// Continue with the current loop.
}
}
}
}
// Only used to cut the mesh into two halves.