GCodeViewer -> Pass vertex normal to shaders for toolpaths

This commit is contained in:
enricoturri1966 2020-06-29 14:00:08 +02:00
parent d41781f674
commit 69de5c8c9f
13 changed files with 431 additions and 265 deletions

View file

@ -1,40 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,11 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
gl_Position = ftransform();
}

View file

@ -84,6 +84,6 @@ void main()
vec3 eye_on_sphere_position = eye_position_on_sphere(eye_position_from_fragment());
gl_FragDepth = fragment_depth(eye_on_sphere_position);
// gl_FragDepth = fragment_depth(eye_on_sphere_position);
gl_FragColor = on_sphere_color(eye_on_sphere_position);
}

View file

@ -0,0 +1,31 @@
#version 110
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
// x = ambient, y = top diffuse, z = front diffuse, w = global
uniform vec4 light_intensity;
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
float intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. Take the abs value to light the lines no matter in which direction the normal points.
float NdotL = abs(dot(normal, LIGHT_TOP_DIR));
intensity = light_intensity.x + NdotL * light_intensity.y;
// Perform the same lighting calculation for the 2nd light source.
NdotL = abs(dot(normal, LIGHT_FRONT_DIR));
intensity += NdotL * light_intensity.z;
gl_FragColor = vec4(uniform_color * light_intensity.w * intensity, 1.0);
}

View file

@ -0,0 +1,21 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
vec3 world_normal()
{
// the world normal is always parallel to the world XY plane
// the x component is stored into gl_Vertex.w
float x = gl_Vertex.w;
float y = sqrt(1.0 - x * x);
return vec3(x, y, 0.0);
}
void main()
{
vec4 world_position = vec4(gl_Vertex.xyz, 1.0);
gl_Position = gl_ModelViewProjectionMatrix * world_position;
eye_position = (gl_ModelViewMatrix * world_position).xyz;
eye_normal = gl_NormalMatrix * world_normal();
}

View file

@ -1,40 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,11 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
gl_Position = ftransform();
}