Add astar algorithm

Fix windows build
This commit is contained in:
tamasmeszaros 2022-05-11 12:06:07 +02:00
parent b2890b983b
commit 6b23e90424
5 changed files with 261 additions and 6 deletions

182
src/libslic3r/AStar.hpp Normal file
View file

@ -0,0 +1,182 @@
#ifndef ASTAR_HPP
#define ASTAR_HPP
#include "libslic3r/Point.hpp"
#include "libslic3r/MutablePriorityQueue.hpp"
#include <unordered_map>
namespace Slic3r { namespace astar {
// Input interface for the Astar algorithm. Specialize this struct for a
// particular type and implement all the 4 methods and specify the Node type
// to register the new type for the astar implementation.
template<class T> struct TracerTraits_
{
// The type of a node used by this tracer. Usually a point in space.
using Node = typename T::Node;
// Call fn for every new node reachable from node 'src'. fn should have the
// candidate node as its only argument.
template<class Fn>
static void foreach_reachable(const T &tracer, const Node &src, Fn &&fn)
{
tracer.foreach_reachable(src, fn);
}
// Get the distance from node 'a' to node 'b'. This is sometimes referred
// to as the g value of a node in AStar context.
static float distance(const T &tracer, const Node &a, const Node &b)
{
return tracer.distance(a, b);
}
// Get the estimated distance heuristic from node 'n' to the destination.
// This is referred to as the h value in AStar context.
// If node 'n' is the goal, this function should return a negative value.
static float goal_heuristic(const T &tracer, const Node &n)
{
return tracer.goal_heuristic(n);
}
// Return a unique identifier (hash) for node 'n'.
static size_t unique_id(const T &tracer, const Node &n)
{
return tracer.unique_id(n);
}
};
// Helper definition to get the node type of a tracer
template<class T>
using TracerNodeT = typename TracerTraits_<remove_cvref_t<T>>::Node;
namespace detail {
// Helper functions dispatching calls through the TracerTraits_ interface
template<class T> using TracerTraits = TracerTraits_<remove_cvref_t<T>>;
template<class T, class Fn>
void foreach_reachable(const T &tracer, const TracerNodeT<T> &from, Fn &&fn)
{
TracerTraits<T>::foreach_reachable(tracer, from, fn);
}
template<class T>
float trace_distance(const T &tracer, const TracerNodeT<T> &a, const TracerNodeT<T> &b)
{
return TracerTraits<T>::distance(tracer, a, b);
}
template<class T>
float goal_heuristic(const T &tracer, const TracerNodeT<T> &n)
{
return TracerTraits<T>::goal_heuristic(tracer, n);
}
template<class T>
size_t unique_id(const T &tracer, const TracerNodeT<T> &n)
{
return TracerTraits<T>::unique_id(tracer, n);
}
} // namespace astar_detail
// Run the AStar algorithm on a tracer implementation.
// The 'tracer' argument encapsulates the domain (grid, point cloud, etc...)
// The 'source' argument is the starting node.
// The 'out' argument is the output iterator into which the output nodes are
// written.
// Note that no destination node is given. The tracer's goal_heuristic() method
// should return a negative value if a node is a destination node.
template<class Tracer, class It>
bool search_route(const Tracer &tracer, const TracerNodeT<Tracer> &source, It out)
{
using namespace detail;
using Node = TracerNodeT<Tracer>;
enum class QueueType { Open, Closed, None };
struct QNode // Queue node. Keeps track of scores g, and h
{
Node node; // The actual node itself
QueueType qtype = QueueType::None; // Which queue holds this node
float g = 0.f, h = 0.f;
float f() const { return g + h; }
};
// TODO: apply a linear memory allocator
using QMap = std::unordered_map<size_t, QNode>;
// The traversed nodes are stored here encapsulated in QNodes
QMap cached_nodes;
struct LessPred { // Comparison functor needed by MutablePriorityQueue
QMap &m;
bool operator ()(size_t node_a, size_t node_b) {
auto ait = m.find(node_a);
auto bit = m.find(node_b);
assert (ait != m.end() && bit != m.end());
return ait->second.f() < bit->second.f();
}
};
auto qopen =
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
LessPred{cached_nodes});
auto qclosed =
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
LessPred{cached_nodes});
QNode initial{source, QueueType::Open};
cached_nodes.insert({unique_id(tracer, source), initial});
qopen.push(unique_id(tracer, source));
bool goal_reached = false;
while (!goal_reached && !qopen.empty()) {
size_t q_id = qopen.top();
qopen.pop();
QNode q = cached_nodes.at(q_id);
foreach_reachable(tracer, q.node, [&](const Node &nd) {
if (goal_reached) return goal_reached;
float h = goal_heuristic(tracer, nd);
if (h < 0.f) {
goal_reached = true;
} else {
float dst = trace_distance(tracer, q.node, nd);
QNode qnd{nd, QueueType::None, q.g + dst, h};
size_t qnd_id = unique_id(tracer, nd);
auto it = cached_nodes.find(qnd_id);
if (it == cached_nodes.end() ||
(it->second.qtype != QueueType::None && qnd.f() < it->second.f())) {
qnd.qtype = QueueType::Open;
cached_nodes.insert_or_assign(qnd_id, qnd);
qopen.push(qnd_id);
}
}
return goal_reached;
});
q.qtype = QueueType::Closed;
cached_nodes.insert_or_assign(q_id, q);
qclosed.push(q_id);
// write the output
*out = q.node;
++out;
}
return goal_reached;
}
}} // namespace Slic3r::astar
#endif // ASTAR_HPP