Merge branch 'master' into fs_emboss

# Conflicts:
#	src/libslic3r/Point.hpp
This commit is contained in:
Filip Sykala - NTB T15p 2022-10-12 16:21:37 +02:00
commit 6d4830823e
13 changed files with 944 additions and 192 deletions

View file

@ -1,4 +1,5 @@
min_slic3r_version = 2.3.0-beta2
0.0.2 Removed obsolete host keys
min_slic3r_version = 2.2.0-alpha3
0.0.1 Initial version
min_slic3r_version = 2.3.0-beta2
0.1.0 General rework. Added new print and filament profiles.
0.0.2 Removed obsolete host keys
min_slic3r_version = 2.2.0-alpha3
0.0.1 Initial version

View file

@ -1,9 +1,10 @@
# generated by PrusaSlicer 2.1.1+win64 on 2020-02-25 at 01:51:21 UTC
# LulzBot profiles
# Based on community profiles and original profiles from Cura LulzBot Edition.
[vendor]
# Vendor name will be shown by the Config Wizard.
name = LulzBot
config_version = 0.0.2
config_version = 0.1.0
config_update_url = https://files.prusa3d.com/wp-content/uploads/repository/PrusaSlicer-settings-master/live/LulzBot/
[printer_model:MINI_AERO]
@ -12,18 +13,26 @@ variants = 0.5
technology = FFF
#bed_model = mini_bed.stl
#bed_texture = mini.svg
default_materials = ColorFabb PLA-PHA @lulzbot;PrintedSolid Jesse PLA @lulzbot
default_materials = Generic PLA @lulzbot; Generic PETG @lulzbot; Jessie PLA @lulzbot
[printer_model:TAZ6_AERO]
name = Taz6 Aero
variants = 0.5
technology = FFF
default_materials = ColorFabb PLA-PHA @lulzbot;PrintedSolid Jesse PLA @lulzbot
default_materials = Generic PLA @lulzbot; Generic PETG @lulzbot; Jessie PLA @lulzbot
[print:0.3mm @lulzbot]
# [printer_model:TAZ_WORKHORSE]
# name = Taz Workhorse
# variants = 0.5
# technology = FFF
# default_materials = Generic PLA @lulzbot; Generic PETG @lulzbot; Jessie PLA @lulzbot
[print:*common*]
avoid_crossing_perimeters = 0
bottom_fill_pattern = rectilinear
bottom_fill_pattern = monotonic
top_fill_pattern = monotonic
bottom_solid_layers = 3
top_solid_layers = 4
bridge_acceleration = 500
bridge_angle = 0
bridge_flow_ratio = 1
@ -34,26 +43,24 @@ compatible_printers =
compatible_printers_condition =
complete_objects = 0
default_acceleration = 500
dont_support_bridges = 1
dont_support_bridges = 0
elefant_foot_compensation = 0
ensure_vertical_shell_thickness = 0
ensure_vertical_shell_thickness = 1
extra_perimeters = 0
external_perimeter_extrusion_width = 0.56
external_perimeter_speed = 50%
external_perimeter_speed = 35
external_perimeters_first = 0
extra_perimeters = 1
extruder_clearance_height = 20
extruder_clearance_radius = 20
extrusion_width = 0.56
fill_angle = 45
fill_density = 20%
fill_pattern = gyroid
fill_pattern = grid
first_layer_acceleration = 500
first_layer_extrusion_width = 0.6
first_layer_height = 100%
first_layer_speed = 40%
first_layer_height = 0.3
first_layer_speed = 15
gap_fill_speed = 20
gcode_comments = 0
gcode_label_objects = 0
infill_anchor = 1
infill_anchor_max = 20
infill_acceleration = 500
infill_every_layers = 1
infill_extruder = 1
@ -62,33 +69,31 @@ infill_first = 0
infill_only_where_needed = 0
infill_overlap = 25%
infill_speed = 60
inherits =
interface_shells = 0
layer_height = 0.3
layer_height = 0.25
max_print_speed = 80
max_volumetric_speed = 0
min_skirt_length = 0
notes =
only_retract_when_crossing_perimeters = 1
only_retract_when_crossing_perimeters = 0
ooze_prevention = 0
output_filename_format = [printer_settings_id]_[input_filename_base]_[layer_height]_[filament_type]_[print_time].gcode
overhangs = 1
perimeter_acceleration = 500
perimeter_extruder = 1
perimeter_extrusion_width = 0.56
perimeter_speed = 60
perimeter_speed = 45
perimeters = 3
post_process =
raft_layers = 0
raft_first_layer_density = 70
resolution = 0
seam_position = nearest
seam_position = aligned
single_extruder_multi_material_priming = 1
skirt_distance = 3
skirt_height = 1
skirts = 3
slice_closing_radius = 0.049
small_perimeter_speed = 15
solid_infill_below_area = 70
small_perimeter_speed = 22
solid_infill_below_area = 0
solid_infill_every_layers = 0
solid_infill_extruder = 1
solid_infill_extrusion_width = 0.56
@ -96,7 +101,7 @@ solid_infill_speed = 60
spiral_vase = 0
standby_temperature_delta = -5
support_material = 0
support_material_angle = 0
support_material_angle = 45
support_material_auto = 1
support_material_buildplate_only = 0
support_material_contact_distance = 0.2
@ -110,17 +115,14 @@ support_material_interface_spacing = 0
support_material_interface_speed = 100%
support_material_pattern = rectilinear
support_material_spacing = 2.5
support_material_speed = 60
support_material_speed = 50
support_material_synchronize_layers = 0
support_material_threshold = 0
support_material_with_sheath = 1
support_material_xy_spacing = 50%
support_material_xy_spacing = 60%
thin_walls = 1
threads = 12
top_fill_pattern = rectilinear
top_infill_extrusion_width = 0.52
top_solid_infill_speed = 40
top_solid_layers = 3
travel_speed = 175
wipe_tower = 0
wipe_tower_bridging = 10
@ -130,121 +132,116 @@ wipe_tower_x = 180
wipe_tower_y = 140
xy_size_compensation = 0
[print:0.14mm DETAIL @lulzbot]
inherits = *common*
layer_height = 0.14
bottom_solid_layers = 8
top_solid_layers = 8
infill_speed = 40
solid_infill_speed = 50
perimeter_speed = 35
external_perimeter_speed = 30
top_solid_infill_speed = 40
[print:0.25mm STANDARD @lulzbot]
inherits = *common*
[print:0.30mm SPEED @lulzbot]
inherits = *common*
renamed_from = "0.3mm @lulzbot"
layer_height = 0.3
seam_position = nearest
top_solid_layers = 3
infill_speed = 45
perimeter_speed = 40
external_perimeter_speed = 35
[filament:ColorFabb PLA-PHA @lulzbot]
filament_vendor = ColorFabb
bed_temperature = 60
bridge_fan_speed = 100
compatible_printers =
compatible_printers_condition =
compatible_prints =
compatible_prints_condition =
cooling = 1
disable_fan_first_layers = 3
end_filament_gcode = "; Filament-specific end gcode \n;END gcode for filament\n"
extrusion_multiplier = 1
fan_always_on = 0
fan_always_on = 1
fan_below_layer_time = 60
filament_colour = #29B2B2
filament_cooling_final_speed = 3.4
filament_cooling_initial_speed = 2.2
filament_cooling_moves = 4
filament_cost = 0
filament_density = 1.25
filament_deretract_speed = nil
filament_diameter = 2.85
filament_load_time = 0
filament_loading_speed = 28
filament_loading_speed_start = 3
filament_max_volumetric_speed = 0
filament_minimal_purge_on_wipe_tower = 15
filament_notes = ""
filament_ramming_parameters = "120 100 6.6 6.8 7.2 7.6 7.9 8.2 8.7 9.4 9.9 10.0| 0.05 6.6 0.45 6.8 0.95 7.8 1.45 8.3 1.95 9.7 2.45 10 2.95 7.6 3.45 7.6 3.95 7.6 4.45 7.6 4.95 7.6"
filament_retract_before_travel = nil
filament_retract_before_wipe = nil
filament_retract_layer_change = nil
filament_retract_length = nil
filament_retract_lift = nil
filament_retract_lift_above = nil
filament_retract_lift_below = nil
filament_retract_restart_extra = nil
filament_retract_speed = nil
filament_soluble = 0
filament_toolchange_delay = 0
filament_type = PLA
filament_unload_time = 0
filament_unloading_speed = 90
filament_unloading_speed_start = 100
filament_wipe = nil
first_layer_bed_temperature = 60
first_layer_temperature = 200
inherits =
max_fan_speed = 100
min_fan_speed = 35
min_print_speed = 10
slowdown_below_layer_time = 5
slowdown_below_layer_time = 10
start_filament_gcode = "; Filament gcode\n"
temperature = 200
[filament:PrintedSolid Jesse PLA @lulzbot]
filament_vendor = PrintedSolid
[filament:Jessie PLA @lulzbot]
filament_vendor = Printed Solid
renamed_from = "PrintedSolid Jesse PLA @lulzbot"
bed_temperature = 60
bridge_fan_speed = 100
compatible_printers =
compatible_printers_condition =
compatible_prints =
compatible_prints_condition =
cooling = 1
disable_fan_first_layers = 3
end_filament_gcode = "; Filament-specific end gcode \n;END gcode for filament\n"
extrusion_multiplier = 1
fan_always_on = 0
fan_always_on = 1
fan_below_layer_time = 60
filament_colour = #29B2B2
filament_cooling_final_speed = 3.4
filament_cooling_initial_speed = 2.2
filament_cooling_moves = 4
filament_cost = 27
filament_density = 1.25
filament_deretract_speed = nil
filament_density = 1.24
filament_diameter = 2.85
filament_load_time = 0
filament_loading_speed = 28
filament_loading_speed_start = 3
filament_max_volumetric_speed = 0
filament_minimal_purge_on_wipe_tower = 15
filament_notes = ""
filament_ramming_parameters = "120 100 6.6 6.8 7.2 7.6 7.9 8.2 8.7 9.4 9.9 10.0| 0.05 6.6 0.45 6.8 0.95 7.8 1.45 8.3 1.95 9.7 2.45 10 2.95 7.6 3.45 7.6 3.95 7.6 4.45 7.6 4.95 7.6"
filament_retract_before_travel = nil
filament_retract_before_wipe = nil
filament_retract_layer_change = nil
filament_retract_length = nil
filament_retract_lift = nil
filament_retract_lift_above = nil
filament_retract_lift_below = nil
filament_retract_restart_extra = nil
filament_retract_speed = nil
filament_soluble = 0
filament_toolchange_delay = 0
filament_type = PLA
filament_unload_time = 0
filament_unloading_speed = 90
filament_unloading_speed_start = 100
filament_wipe = nil
first_layer_bed_temperature = 60
first_layer_temperature = 220
inherits =
max_fan_speed = 100
min_fan_speed = 35
min_fan_speed = 80
min_print_speed = 10
slowdown_below_layer_time = 5
slowdown_below_layer_time = 10
start_filament_gcode = "; Filament gcode\n"
temperature = 220
[filament:Generic PLA @lulzbot]
inherits = Jessie PLA @lulzbot
filament_vendor = Generic
[filament:Generic PETG @lulzbot]
filament_vendor = Generic
bed_temperature = 60
first_layer_bed_temperature = 65
first_layer_temperature = 235
temperature = 230
bridge_fan_speed = 100
cooling = 1
disable_fan_first_layers = 3
end_filament_gcode = "; Filament-specific end gcode \n;END gcode for filament\n"
extrusion_multiplier = 1
fan_always_on = 1
fan_below_layer_time = 60
filament_colour = #29B2B2
filament_cost = 27
filament_density = 1.27
filament_diameter = 2.85
filament_notes = "Use glue stick."
filament_soluble = 0
filament_toolchange_delay = 0
filament_type = PETG
max_fan_speed = 80
min_fan_speed = 40
min_print_speed = 10
slowdown_below_layer_time = 10
start_filament_gcode = "; Filament gcode\n"
[printer:Mini Aero 0.5mm]
printer_model = MINI_AERO
printer_variant = 0.5
default_print_profile = 0.3mm @lulzbot
default_filament_profile = PrintedSolid Jesse PLA @lulzbot
default_print_profile = 0.25mm STANDARD @lulzbot
default_filament_profile = Jessie PLA @lulzbot
bed_shape = 0x0,154x0,154x154,0x154
before_layer_gcode =
between_objects_gcode =
@ -259,22 +256,23 @@ gcode_flavor = marlin
high_current_on_filament_swap = 0
inherits =
layer_gcode =
machine_max_acceleration_e = 10000,5000
machine_max_acceleration_extruding = 1500,1250
machine_max_acceleration_retracting = 1500,1250
machine_max_acceleration_x = 9000,1000
machine_max_acceleration_y = 9000,1000
machine_max_acceleration_z = 100,200
machine_max_feedrate_e = 40,120
machine_max_feedrate_x = 800,200
machine_max_feedrate_y = 800,200
machine_max_feedrate_z = 8,12
machine_max_jerk_e = 2.5,2.5
machine_max_jerk_x = 20,10
machine_max_jerk_y = 20,10
machine_max_jerk_z = 0.2,0.4
machine_min_extruding_rate = 0,0
machine_min_travel_rate = 0,0
machine_max_acceleration_e = 10000
machine_max_acceleration_extruding = 1500
machine_max_acceleration_retracting = 1500
machine_max_acceleration_x = 9000
machine_max_acceleration_y = 9000
machine_max_acceleration_z = 100
machine_max_feedrate_e = 40
machine_max_feedrate_x = 300
machine_max_feedrate_y = 300
machine_max_feedrate_z = 8
machine_max_jerk_e = 2.5
machine_max_jerk_x = 20
machine_max_jerk_y = 20
machine_max_jerk_z = 0.2
machine_min_extruding_rate = 0
machine_min_travel_rate = 0
machine_limits_usage = time_estimate_only
max_layer_height = 0
max_print_height = 158
min_layer_height = 0.07
@ -292,7 +290,7 @@ retract_lift_above = 0
retract_lift_below = 0
retract_restart_extra = 0
retract_restart_extra_toolchange = 0
retract_speed = 40
retract_speed = 30
silent_mode = 0
single_extruder_multi_material = 0
start_gcode = ;This G-Code has been generated specifically for the LulzBot Mini with Aerosturder\nM73 P0 ; clear GLCD progress bar\nM75 ; start GLCD timer\nG26 ; clear potential 'probe fail' condition\nM107 ; disable fans\nM420 S0 ; disable leveling matrix\nG90 ; absolute positioning\nM82 ; set extruder to absolute mode\nG92 E0 ; set extruder position to 0\nM140 S{first_layer_bed_temperature[0]} ; start bed heating up\nG28; home all axes\nG0 X0 Y187 Z156 F200 ; move away from endstops\nM109 R{first_layer_temperature[0] - 60} ; soften filament before retraction\n;G1 E-15 F75 ; retract filament (LulzBot Cura is apparently trying to cold pull, might be a contributing factor to hob gear filling with filament)\nM109 R{first_layer_temperature[0] - 60} ; wait for extruder to reach wiping temp\nG1 X45 Y173 F11520 ; move above wiper pad\nG1 Z0 F1200 ; push nozzle into wiper\nG1 X42 Y173 Z-.5 F4000 ; wiping\nG1 X52 Y171 Z-.5 F4000 ; wiping\nG1 X42 Y173 Z0 F4000 ; wiping\nG1 X52 Y171 F4000 ; wiping\nG1 X42 Y173 F4000 ; wiping\nG1 X52 Y171 F4000 ; wiping\nG1 X42 Y173 F4000 ; wiping\nG1 X52 Y171 F4000 ; wiping\nG1 X57 Y173 F4000 ; wiping\nG1 X77 Y171 F4000 ; wiping\nG1 X57 Y173 F4000 ; wiping\nG1 X77 Y171 F4000 ; wiping\nG1 X57 Y173 F4000 ; wiping\nG1 X87 Y171 F4000 ; wiping\nG1 X77 Y173 F4000 ; wiping\nG1 X97 Y171 F4000 ; wiping\nG1 X77 Y173 F4000 ; wiping\nG1 X97 Y171 F4000 ; wiping\nG1 X77 Y173 F4000 ; wiping\nG1 X97 Y171 F4000 ; wiping\nG1 X107 Y173 F4000 ; wiping\nG1 X97 Y171 F4000 ; wiping\nG1 X107 Y173 F4000 ; wiping\nG1 X97 Y171 F4000 ; wiping\nG1 X107 Y173 F4000 ; wiping\nG1 X112 Y171 Z-0.5 F1000 ; wiping\nG1 Z10 ; raise extruder\nG28 X0 Y0 ; home X and Y\nG0 X0 Y187 F200 ; move away from endstops\nM109 R{first_layer_temperature[0] - 60} ; wait for extruder to reach probe temp\nM204 S300 ; set probing acceleration\nG29 ; start auto-leveling sequence\nM420 S1 ; enable leveling matrix\nM425 Z ; use measured Z backlash for compensation\nM425 Z F0 ; turn off measured Z backlash compensation. (if activated in the quality settings, this command will automatically be ignored)\nM204 S2000 ; restore standard acceleration\nG28 X0 Y0 ; re-home to account for build variance of earlier mini builds\nG0 X0 Y187 F200 ; move away from endstops\nG0 Y152 F4000 ; move in front of wiper pad\nG4 S1 ; pause\nM400 ; wait for moves to finish\nM117 Heating... ; progress indicator message on LCD\nM109 R{first_layer_temperature[0]} ; wait for extruder to reach printing temp\nM190 R{first_layer_bed_temperature[0]} ; wait for bed to reach printing temp\nG1 Z2 E0 F75 ; prime tiny bit of filament into the nozzle\nM117 Mini Printing... ; progress indicator message on LCD\nM221 S74 ; Printer specific extrusion modifier.
@ -308,8 +306,8 @@ z_offset = 0
[printer:Taz6 Aero 0.5mm]
printer_model = TAZ6_AERO
printer_variant = 0.5
default_print_profile = 0.3mm @lulzbot
default_filament_profile = PrintedSolid Jesse PLA @lulzbot
default_print_profile = 0.25mm STANDARD @lulzbot
default_filament_profile = Jessie PLA @lulzbot
bed_shape = 0x0,280x0,280x280,0x280
before_layer_gcode =
between_objects_gcode =
@ -324,22 +322,23 @@ gcode_flavor = marlin
high_current_on_filament_swap = 0
inherits =
layer_gcode =
machine_max_acceleration_e = 1000,5000
machine_max_acceleration_extruding = 1000,1250
machine_max_acceleration_retracting = 1000,1250
machine_max_acceleration_x = 9000,1000
machine_max_acceleration_y = 9000,1000
machine_max_acceleration_z = 100,200
machine_max_feedrate_e = 40,120
machine_max_feedrate_x = 800,200
machine_max_feedrate_y = 800,200
machine_max_feedrate_z = 3,12
machine_max_jerk_e = 2.5,2.5
machine_max_jerk_x = 12,10
machine_max_jerk_y = 12,10
machine_max_jerk_z = 0.2,0.4
machine_min_extruding_rate = 0,0
machine_min_travel_rate = 0,0
machine_max_acceleration_e = 1000
machine_max_acceleration_extruding = 500
machine_max_acceleration_retracting = 1000
machine_max_acceleration_x = 9000
machine_max_acceleration_y = 9000
machine_max_acceleration_z = 100
machine_max_feedrate_e = 40
machine_max_feedrate_x = 300
machine_max_feedrate_y = 300
machine_max_feedrate_z = 3
machine_max_jerk_e = 10
machine_max_jerk_x = 8
machine_max_jerk_y = 8
machine_max_jerk_z = 0.4
machine_min_extruding_rate = 0
machine_min_travel_rate = 0
machine_limits_usage = time_estimate_only
max_layer_height = 0
max_print_height = 250
min_layer_height = 0.07
@ -358,7 +357,7 @@ retract_lift_above = 0
retract_lift_below = 0
retract_restart_extra = 0
retract_restart_extra_toolchange = 0
retract_speed = 40
retract_speed = 30
silent_mode = 0
single_extruder_multi_material = 0
start_gcode = ;This G-Code has been generated specifically for the LulzBot TAZ 6 with Aerosturder\nM73 P0 ; clear GLCD progress bar\nM75 ; start GLCD timer\nG26 ; clear potential 'probe fail' condition\nM107 ; disable fans\nM420 S0 ; disable leveling matrix\nG90 ; absolute positioning\nM82 ; set extruder to absolute mode\nG92 E0 ; set extruder position to 0\nM140 S{first_layer_bed_temperature[0]} ; start bed heating up\nG28 XY ; home X and Y\nG1 X-19 Y258 F1000 ; move to safe homing position\nM109 R{first_layer_temperature[0] - 60} ; soften filament before homing Z\nG28 Z ; home Z\nG1 E-15 F100 ; retract filament\nM109 R{first_layer_temperature[0] - 60} ; wait for extruder to reach wiping temp\nG1 X-15 Y100 F3000 ; move above wiper pad\nG1 Z1 ; push nozzle into wiper\nG1 X-17 Y95 F1000 ; slow wipe\nG1 X-17 Y90 F1000 ; slow wipe\nG1 X-17 Y85 F1000 ; slow wipe\nG1 X-15 Y90 F1000 ; slow wipe\nG1 X-17 Y80 F1000 ; slow wipe\nG1 X-15 Y95 F1000 ; slow wipe\nG1 X-17 Y75 F2000 ; fast wipe\nG1 X-15 Y65 F2000 ; fast wipe\nG1 X-17 Y70 F2000 ; fast wipe\nG1 X-15 Y60 F2000 ; fast wipe\nG1 X-17 Y55 F2000 ; fast wipe\nG1 X-15 Y50 F2000 ; fast wipe\nG1 X-17 Y40 F2000 ; fast wipe\nG1 X-15 Y45 F2000 ; fast wipe\nG1 X-17 Y35 F2000 ; fast wipe\nG1 X-15 Y40 F2000 ; fast wipe\nG1 X-17 Y70 F2000 ; fast wipe\nG1 X-15 Y30 Z2 F2000 ; fast wipe\nG1 X-17 Y35 F2000 ; fast wipe\nG1 X-15 Y25 F2000 ; fast wipe\nG1 X-17 Y30 F2000 ; fast wipe\nG1 X-15 Y25 Z1.5 F1000 ; slow wipe\nG1 X-17 Y23 F1000 ; slow wipe\nG1 Z10 ; raise extruder\nM109 R{first_layer_temperature[0] - 60} ; wait for extruder to reach probe temp\nG1 X-9 Y-9 ; move above first probe point\nM204 S100 ; set probing acceleration\nG29 ; start auto-leveling sequence\nM420 S1 ; enable leveling matrix\nM425 Z ; use measured Z backlash for compensation\nM425 Z F0 ; turn off measured Z backlash compensation. (if activated in the quality settings, this command will automatically be ignored)\nM204 S500 ; restore standard acceleration\nG1 X0 Y0 Z15 F5000 ; move up off last probe point\nG4 S1 ; pause\nM400 ; wait for moves to finish\nM117 Heating... ; progress indicator message on LCD\nM109 R{first_layer_temperature[0]} ; wait for extruder to reach printing temp\nM190 R{first_layer_bed_temperature[0]} ; wait for bed to reach printing temp\nG1 Z2 E0 F75 ; prime tiny bit of filament into the nozzle\nM117 TAZ 6 Printing... ; progress indicator message on LCD\n
@ -370,3 +369,55 @@ use_volumetric_e = 0
variable_layer_height = 1
wipe = 1
z_offset = 0
# [printer:Taz Workhorse 0.5mm]
# printer_model = TAZ_WORKHORSE
# printer_variant = 0.5
# printer_technology = FFF
# default_print_profile = 0.25mm STANDARD @lulzbot
# default_filament_profile = Jessie PLA @lulzbot
# bed_shape = 0x0,280x0,280x280,0x280
# deretract_speed = 20
# end_gcode = M400 ; wait for moves to finish\nM140 S40 ; start bed cooling\nM104 S0 ; disable hotend\nM107 ; disable fans\nG91 ; relative positioning\nG1 E-1 F300 ; filament retraction to release pressure\nG1 Z20 E-5 X-20 Y-20 F3000 ; lift up and retract even more filament\nG1 E6 ; re-prime extruder\nM117 Cooling please wait ; progress indicator message on LCD\nG90 ; absolute positioning\nG1 Y0 F3000 ; move to cooling position\nM190 R40 ; wait for bed to cool down to removal temp\nG1 Y280 F3000 ; present finished print\nM140 S0; cool downs\nM77 ; stop GLCD timer\nM84 ; disable steppers\nG90 ; absolute positioning\nM117 Print Complete. ; print complete message\n
# extra_loading_move = -2
# extruder_colour = ""
# extruder_offset = 0x0
# gcode_flavor = marlin
# high_current_on_filament_swap = 0
# machine_max_acceleration_e = 3000
# machine_max_acceleration_extruding = 500
# machine_max_acceleration_retracting = 2000
# machine_max_acceleration_x = 9000
# machine_max_acceleration_y = 9000
# machine_max_acceleration_z = 100
# machine_max_feedrate_e = 40
# machine_max_feedrate_x = 300
# machine_max_feedrate_y = 300
# machine_max_feedrate_z = 25
# machine_max_jerk_e = 10
# machine_max_jerk_x = 8
# machine_max_jerk_y = 8
# machine_max_jerk_z = 0.4
# machine_min_extruding_rate = 0
# machine_min_travel_rate = 0
# machine_limits_usage = time_estimate_only
# max_layer_height = 0
# max_print_height = 285
# min_layer_height = 0.07
# nozzle_diameter = 0.5
# remaining_times = 0
# retract_before_travel = 2
# retract_before_wipe = 0%
# retract_layer_change = 0
# retract_length = 2
# retract_length_toolchange = 10
# retract_lift = 0
# retract_speed = 40
# silent_mode = 0
# single_extruder_multi_material = 0
# start_gcode = ;This G-Code has been generated specifically for the LulzBot TAZ Workhorse with HE Tool Head\n;\n;The following lines can be uncommented for printer specific fine tuning\n;More information can be found at https://marlinfw.org/meta/gcode/\n;\n;M92 E420 ;Set Axis Steps-per-unit\n;M301 P21.0 I1.78 D61.93 ;Set Hotend PID\n;M906 E160 ;Digipot Motor Current ((875mA-750)/5+135) = 160\n;\nM73 P0 ; clear GLCD progress bar\nM75 ; start GLCD timer\nG26 ; clear potential 'probe fail' condition\nM107 ; disable fans\nM420 S0 ; disable previous leveling matrix\nG90 ; absolute positioning\nM82 ; set extruder to absolute mode\nG92 E0 ; set extruder position to 0\nM140 S{first_layer_bed_temperature[0]} ; start bed heating up\nM109 R{first_layer_temperature[0] - 60} ; soften filament before homing Z\nG28 ; Home all axis\nG1 E-15 F100 ; retract filament\nM109 R{first_layer_temperature[0] - 60} ; wait for extruder to reach wiping temp\n;M206 X0 Y0 Z0 ; uncomment to adjust wipe position (+X ~ nozzle moves left)(+Y ~ nozzle moves forward)(+Z ~ nozzle moves down)\nG12 ; wiping sequence\nM206 X0 Y0 Z0 ; reseting stock nozzle position ### CAUTION: changing this line can affect print quality ###\nM109 R{first_layer_temperature[0] - 60} ; wait for extruder to reach probe temp\nG1 X288 Y-10 F4000; move above first probe point\nM204 S100 ; set probing acceleration\nG29 ; start auto-leveling sequence\nM420 S1 ; activate bed level matrix\nM425 Z ; use measured Z backlash for compensation\nM425 Z F0 ; turn off measured Z backlash compensation. (if activated in the quality settings, this command will automatically be ignored)\nM204 S500 ; restore standard acceleration\nG1 X0 Y0 Z15 F5000 ; move up off last probe point\nG4 S1 ; pause\nM400 ; wait for moves to finish\nM117 Heating... ; progress indicator message on LCD\nM109 R{first_layer_temperature[0]} ; wait for extruder to reach printing temp\nM190 R{first_layer_bed_temperature[0]} ; wait for bed to reach printing temp\nG1 Z2 E0 F75 ; prime tiny bit of filament into the nozzle\nM117 TAZ Workhorse Printing... ; progress indicator message on LCD
# use_relative_e_distances = 0
# use_volumetric_e = 0
# variable_layer_height = 1
# wipe = 1
# z_offset = 0

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

View file

@ -1786,6 +1786,17 @@ public:
// Initialized by ConfigOptionEnum<xxx>::get_enum_values()
const t_config_enum_values *enum_keys_map = nullptr;
void set_enum_values(std::initializer_list<std::pair<std::string_view, std::string_view>> il) {
enum_values.clear();
enum_values.reserve(il.size());
enum_labels.clear();
enum_labels.reserve(il.size());
for (const std::pair<std::string_view, std::string_view> p : il) {
enum_values.emplace_back(p.first);
enum_labels.emplace_back(p.second);
}
}
bool has_enum_value(const std::string &value) const {
for (const std::string &v : enum_values)
if (v == value)

View file

@ -111,11 +111,17 @@ inline double angle(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBas
return atan2(cross2(v1d, v2d), v1d.dot(v2d));
}
template<class T, int N, int Options>
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> to_2d(const Eigen::MatrixBase<Eigen::Matrix<T, N, 1, Options>> &ptN) { return { ptN.x(), ptN.y() }; }
template<typename Derived>
Eigen::Matrix<typename Derived::Scalar, 2, 1, Eigen::DontAlign> to_2d(const Eigen::MatrixBase<Derived> &ptN) {
static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) >= 3, "to_2d(): first parameter is not a 3D or higher dimensional vector");
return { ptN.x(), ptN.y() };
}
template<class T, int Options>
Eigen::Matrix<T, 3, 1, Eigen::DontAlign> to_3d(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> & pt, const T z) { return { pt.x(), pt.y(), z }; }
template<typename Derived>
inline Eigen::Matrix<typename Derived::Scalar, 3, 1, Eigen::DontAlign> to_3d(const Eigen::MatrixBase<Derived> &pt, const typename Derived::Scalar z) {
static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "to_3d(): first parameter is not a 2D vector");
return { pt.x(), pt.y(), z };
}
inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt.x()), unscale<double>(pt.y())); }

View file

@ -138,7 +138,8 @@ CONFIG_OPTION_ENUM_DEFINE_STATIC_MAPS(SupportMaterialPattern)
static const t_config_enum_values s_keys_map_SupportMaterialStyle {
{ "grid", smsGrid },
{ "snug", smsSnug },
{ "tree", smsTree }
{ "tree", smsTree },
{ "organic", smsOrganic }
};
CONFIG_OPTION_ENUM_DEFINE_STATIC_MAPS(SupportMaterialStyle)
@ -2782,12 +2783,12 @@ void PrintConfigDef::init_fff_params()
"will create more stable supports, while snug support towers will save material and reduce "
"object scarring.");
def->enum_keys_map = &ConfigOptionEnum<SupportMaterialStyle>::get_enum_values();
def->enum_values.push_back("grid");
def->enum_values.push_back("snug");
def->enum_values.push_back("tree");
def->enum_labels.push_back(L("Grid"));
def->enum_labels.push_back(L("Snug"));
def->enum_labels.push_back(L("Tree"));
def->set_enum_values({
{ "grid", L("Grid") },
{ "snug", L("Snug") },
{ "tree", L("Tree") },
{ "organic", L("Organic") }
});
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionEnum<SupportMaterialStyle>(smsGrid));

View file

@ -85,7 +85,7 @@ enum SupportMaterialPattern {
};
enum SupportMaterialStyle {
smsGrid, smsSnug, smsTree,
smsGrid, smsSnug, smsTree, smsOrganic,
};
enum SupportMaterialInterfacePattern {

View file

@ -2197,7 +2197,7 @@ void PrintObject::combine_infill()
void PrintObject::_generate_support_material()
{
if (m_config.support_material_style == smsTree) {
if (m_config.support_material_style == smsTree || m_config.support_material_style == smsOrganic) {
fff_tree_support_generate(*this, std::function<void()>([this](){ this->throw_if_canceled(); }));
} else {
PrintObjectSupportMaterial support_material(this, m_slicing_params);

View file

@ -800,6 +800,7 @@ public:
{
switch (m_style) {
case smsTree:
case smsOrganic:
assert(false);
[[fallthrough]];
case smsGrid:

View file

@ -39,7 +39,7 @@ TreeSupportMeshGroupSettings::TreeSupportMeshGroupSettings(const PrintObject &pr
// Support must be enabled and set to Tree style.
assert(config.support_material);
assert(config.support_material_style == smsTree);
assert(config.support_material_style == smsTree || config.support_material_style == smsOrganic);
// Calculate maximum external perimeter width over all printing regions, taking into account the default layer height.
coordf_t external_perimeter_width = 0.;
@ -666,7 +666,13 @@ void TreeModelVolumes::calculatePlaceables(const coord_t radius, const LayerInde
tbb::parallel_for(tbb::blocked_range<LayerIndex>(std::max(1, start_layer), max_required_layer + 1),
[this, &data, radius, start_layer](const tbb::blocked_range<LayerIndex>& range) {
for (LayerIndex layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
data[layer_idx - start_layer] = offset(union_ex(getPlaceableAreas(0, layer_idx)), - radius, jtMiter, 1.2);
data[layer_idx - start_layer] = offset(
union_ex(getPlaceableAreas(0, layer_idx)),
// As a placeable area is calculated by (collision of the layer below) - (collision of the current layer) and the collision is offset by xy_distance,
// it can happen that a small line is considered a flat area to place something onto, even though it is mostly
// xy_distance that cant support it. Making the area smaller by xy_distance fixes this.
- (radius + m_current_min_xy_dist + m_current_min_xy_dist_delta),
jtMiter, 1.2);
});
#ifdef SLIC3R_TREESUPPORTS_PROGRESS
{

View file

@ -19,6 +19,9 @@
#include "Polyline.hpp"
#include "MutablePolygon.hpp"
#include "SupportMaterial.hpp"
#include "TriangleMeshSlicer.hpp"
#include "OpenVDBUtils.hpp"
#include <openvdb/tools/VolumeToSpheres.h>
#include <cassert>
#include <chrono>
@ -26,6 +29,7 @@
#include <optional>
#include <stdio.h>
#include <string>
#include <string_view>
#ifdef _WIN32
#include <windows.h> //todo Remove! ONLY FOR PUBLIC BETA!!
#endif // _WIN32
@ -97,6 +101,20 @@ static inline void validate_range(const LineInformations &lines)
validate_range(l);
}
static inline void check_self_intersections(const Polygons &polygons, const std::string_view message)
{
#ifdef _WIN32
if (!intersecting_edges(polygons).empty())
::MessageBoxA(nullptr, (std::string("TreeSupport infill self intersections: ") + std::string(message)).c_str(), "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
}
static inline void check_self_intersections(const ExPolygon &expoly, const std::string_view message)
{
#ifdef _WIN32
check_self_intersections(to_polygons(expoly), message);
#endif // _WIN32
}
static inline void clip_for_diff(const Polygon &src, const BoundingBox &bbox, Polygon &out)
{
out.clear();
@ -193,7 +211,7 @@ static std::vector<std::pair<TreeSupportSettings, std::vector<size_t>>> group_me
#endif // NDEBUG
// Support must be enabled and set to Tree style.
assert(object_config.support_material);
assert(object_config.support_material_style == smsTree);
assert(object_config.support_material_style == smsTree || object_config.support_material_style == smsOrganic);
bool found_existing_group = false;
TreeSupportSettings next_settings{ TreeSupportMeshGroupSettings{ print_object } };
@ -312,17 +330,39 @@ void tree_supports_show_error(std::string message, bool critical)
if (! (enforced_layer || blockers_layers.empty() || blockers_layers[layer_id].empty()))
overhangs = diff(overhangs, blockers_layers[layer_id], ApplySafetyOffset::Yes);
}
if (! enforcers_layers.empty() && ! enforcers_layers[layer_id].empty())
//check_self_intersections(overhangs, "generate_overhangs1");
if (! enforcers_layers.empty() && ! enforcers_layers[layer_id].empty()) {
// Has some support enforcers at this layer, apply them to the overhangs, don't apply the support threshold angle.
if (Polygons enforced_overhangs = intersection(raw_overhangs_calculated ? raw_overhangs : diff(current_layer.lslices, lower_layer.lslices), enforcers_layers[layer_id]);
//enforcers_layers[layer_id] = union_(enforcers_layers[layer_id]);
//check_self_intersections(enforcers_layers[layer_id], "generate_overhangs - enforcers");
//check_self_intersections(to_polygons(lower_layer.lslices), "generate_overhangs - lowerlayers");
if (Polygons enforced_overhangs = intersection(raw_overhangs_calculated ? raw_overhangs : diff(current_layer.lslices, lower_layer.lslices), enforcers_layers[layer_id] /*, ApplySafetyOffset::Yes */);
! enforced_overhangs.empty()) {
//FIXME this is a hack to make enforcers work on steep overhangs.
enforced_overhangs = diff(offset(enforced_overhangs,
//check_self_intersections(enforced_overhangs, "generate_overhangs - enforced overhangs1");
//Polygons enforced_overhangs_prev = enforced_overhangs;
//check_self_intersections(to_polygons(union_ex(enforced_overhangs)), "generate_overhangs - enforced overhangs11");
//check_self_intersections(offset(union_ex(enforced_overhangs),
//FIXME this is a fudge constant!
// scaled<float>(0.4)), "generate_overhangs - enforced overhangs12");
enforced_overhangs = diff(offset(union_ex(enforced_overhangs),
//FIXME this is a fudge constant!
scaled<float>(0.4)),
lower_layer.lslices);
#ifdef TREESUPPORT_DEBUG_SVG
if (! intersecting_edges(enforced_overhangs).empty()) {
static int irun = 0;
SVG::export_expolygons(debug_out_path("treesupport-self-intersections-%d.svg", ++irun),
{ { { union_ex(enforced_overhangs_prev) }, { "prev", "yellow", 0.5f } },
{ { lower_layer.lslices }, { "lower_layer.lslices", "gray", 0.5f } },
{ { union_ex(enforced_overhangs) }, { "enforced_overhangs", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
}
#endif // TREESUPPORT_DEBUG_SVG
//check_self_intersections(enforced_overhangs, "generate_overhangs - enforced overhangs2");
overhangs = overhangs.empty() ? std::move(enforced_overhangs) : union_(overhangs, enforced_overhangs);
//check_self_intersections(overhangs, "generate_overhangs - enforcers");
}
}
out[layer_id] = std::move(overhangs);
}
});
@ -675,7 +715,10 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
return lines;
#else
#ifdef _WIN32
if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
// Max dimensions for MK3
// if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
// Max dimensions for XL
if (! BoundingBox(Point::new_scale(-250., -250.), Point::new_scale(250., 250.)).contains(get_extents(polygon)))
::MessageBoxA(nullptr, "TreeSupport infill kravsky", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
@ -702,10 +745,7 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
::MessageBoxA(nullptr, "TreeSupport infill negative area", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
assert(intersecting_edges(to_polygons(expoly)).empty());
#ifdef _WIN32
if (! intersecting_edges(to_polygons(expoly)).empty())
::MessageBoxA(nullptr, "TreeSupport infill self intersections", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
check_self_intersections(expoly, "generate_support_infill_lines");
Surface surface(stInternal, std::move(expoly));
try {
Polylines pl = filler->fill_surface(&surface, fill_params);
@ -831,6 +871,11 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
return union_(ret);
}
static double layer_z(const SlicingParameters &slicing_params, const size_t layer_idx)
{
return slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
}
static inline SupportGeneratorLayer& layer_initialize(
SupportGeneratorLayer &layer_new,
const SupporLayerType layer_type,
@ -838,7 +883,7 @@ static inline SupportGeneratorLayer& layer_initialize(
const size_t layer_idx)
{
layer_new.layer_type = layer_type;
layer_new.print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
layer_new.print_z = layer_z(slicing_params, layer_idx);
layer_new.height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
layer_new.bottom_z = layer_idx == 0 ? slicing_params.object_print_z_min : layer_new.print_z - layer_new.height;
return layer_new;
@ -1082,6 +1127,8 @@ static void generate_initial_areas(
overhang_regular = mesh_group_settings.support_offset == 0 ?
overhang_raw :
safe_offset_inc(overhang_raw, mesh_group_settings.support_offset, relevant_forbidden, mesh_config.min_radius * 1.75 + mesh_config.xy_min_distance, 0, 1);
//check_self_intersections(overhang_regular, "overhang_regular1");
// offset ensures that areas that could be supported by a part of a support line, are not considered unsupported overhang
Polygons remaining_overhang = intersection(
diff(mesh_group_settings.support_offset == 0 ?
@ -1108,6 +1155,7 @@ static void generate_initial_areas(
remaining_overhang = diff(remaining_overhang, safe_offset_inc(overhang_regular, 1.5 * extra_total_offset_acc, raw_collision, offset_step, 0, 1));
// Extending the overhangs by the inflated remaining overhangs.
overhang_regular = union_(overhang_regular, diff(safe_offset_inc(remaining_overhang, extra_total_offset_acc, raw_collision, offset_step, 0, 1), relevant_forbidden));
//check_self_intersections(overhang_regular, "overhang_regular2");
}
// If the xy distance overrides the z distance, some support needs to be inserted further down.
//=> Analyze which support points do not fit on this layer and check if they will fit a few layers down (while adding them an infinite amount of layers down would technically be closer the the setting description, it would not produce reasonable results. )
@ -1159,6 +1207,7 @@ static void generate_initial_areas(
if (mesh_group_settings.minimum_support_area > 0)
remove_small(overhang_roofs, mesh_group_settings.minimum_roof_area);
overhang_regular = diff(overhang_regular, overhang_roofs, ApplySafetyOffset::Yes);
//check_self_intersections(overhang_regular, "overhang_regular3");
for (ExPolygon &roof_part : union_ex(overhang_roofs))
overhang_processing.emplace_back(std::move(roof_part), true);
}
@ -2369,6 +2418,8 @@ static void set_points_on_areas(const SupportElement &elem, SupportElements *lay
next_elem.state.result_on_layer = move_inside_if_outside(next_elem.influence_area, elem.state.result_on_layer);
// do not call recursive because then amount of layers would be restricted by the stack size
}
// Mark the parent element as accessed from a valid child element.
next_elem.state.marked = true;
}
}
@ -2487,15 +2538,23 @@ static void create_nodes_from_area(
{
// Initialize points on layer 0, with a "random" point in the influence area.
// Point is chosen based on an inaccurate estimate where the branches will split into two, but every point inside the influence area would produce a valid result.
for (SupportElement &init : move_bounds.front()) {
init.state.result_on_layer = move_inside_if_outside(init.influence_area, init.state.next_position);
// Also set the parent nodes, as these will be required for the first iteration of the loop below.
set_points_on_areas(init, move_bounds.size() > 1 ? &move_bounds[1] : nullptr);
{
SupportElements *layer_above = move_bounds.size() > 1 ? &move_bounds[1] : nullptr;
for (SupportElement &elem : *layer_above)
elem.state.marked = false;
for (SupportElement &init : move_bounds.front()) {
init.state.result_on_layer = move_inside_if_outside(init.influence_area, init.state.next_position);
// Also set the parent nodes, as these will be required for the first iteration of the loop below and mark the parent nodes.
set_points_on_areas(init, layer_above);
}
}
for (LayerIndex layer_idx = 1; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
auto &layer = move_bounds[layer_idx];
auto *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr;
if (layer_above)
for (SupportElement &elem : *layer_above)
elem.state.marked = false;
for (SupportElement &elem : layer) {
assert(! elem.state.deleted);
assert(elem.state.layer_idx == layer_idx);
@ -2509,11 +2568,6 @@ static void create_nodes_from_area(
}
// we dont need to remove yet the parents as they will have a lower dtt and also no result_on_layer set
elem.state.deleted = true;
for (int32_t parent_idx : elem.parents)
// When the roof was not able to generate downwards enough, the top elements may have not moved, and have result_on_layer already set.
// As this branch needs to be removed => all parents result_on_layer have to be invalidated.
(*layer_above)[parent_idx].state.result_on_layer_reset();
continue;
} else {
// set the point where the branch will be placed on the model
if (elem.state.to_model_gracious)
@ -2522,13 +2576,67 @@ static void create_nodes_from_area(
set_to_model_contact_simple(elem);
}
}
if (! elem.state.deleted)
// element is valid now setting points in the layer above
if (! elem.state.deleted && ! elem.state.marked && elem.state.target_height == layer_idx)
// Just a tip surface with no supporting element.
elem.state.deleted = true;
if (elem.state.deleted) {
for (int32_t parent_idx : elem.parents)
// When the roof was not able to generate downwards enough, the top elements may have not moved, and have result_on_layer already set.
// As this branch needs to be removed => all parents result_on_layer have to be invalidated.
(*layer_above)[parent_idx].state.result_on_layer_reset();
}
if (! elem.state.deleted) {
// Element is valid now setting points in the layer above and mark the parent nodes.
set_points_on_areas(elem, layer_above);
}
}
}
#ifndef NDEBUG
// Verify the tree connectivity including the branch slopes.
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
auto &layer = move_bounds[layer_idx];
auto &above = move_bounds[layer_idx + 1];
for (SupportElement &elem : layer)
if (! elem.state.deleted) {
for (int32_t iparent : elem.parents) {
SupportElement &parent = above[iparent];
assert(! parent.state.deleted);
assert(elem.state.result_on_layer_is_set() == parent.state.result_on_layer_is_set());
if (elem.state.result_on_layer_is_set()) {
double radius_increase = config.getRadius(elem.state) - config.getRadius(parent.state);
assert(radius_increase >= 0);
double shift = (elem.state.result_on_layer - parent.state.result_on_layer).cast<double>().norm();
assert(shift < radius_increase + 2. * config.maximum_move_distance_slow);
}
}
}
}
#endif // NDEBUG
remove_deleted_elements(move_bounds);
#ifndef NDEBUG
// Verify the tree connectivity including the branch slopes.
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
auto &layer = move_bounds[layer_idx];
auto &above = move_bounds[layer_idx + 1];
for (SupportElement &elem : layer) {
assert(! elem.state.deleted);
for (int32_t iparent : elem.parents) {
SupportElement &parent = above[iparent];
assert(! parent.state.deleted);
assert(elem.state.result_on_layer_is_set() == parent.state.result_on_layer_is_set());
if (elem.state.result_on_layer_is_set()) {
double radius_increase = config.getRadius(elem.state) - config.getRadius(parent.state);
assert(radius_increase >= 0);
double shift = (elem.state.result_on_layer - parent.state.result_on_layer).cast<double>().norm();
assert(shift < radius_increase + 2. * config.maximum_move_distance_slow);
}
}
}
}
#endif // NDEBUG
}
// For producing circular / elliptical areas from SupportElements (one DrawArea per one SupportElement)
@ -2649,7 +2757,8 @@ static void generate_branch_areas(const TreeModelVolumes &volumes, const TreeSup
polygons_with_correct_center.emplace_back(std::move(part));
}
// Increase the area again, to ensure the nozzle path when calculated later is very similar to the one assumed above.
polygons = diff_clipped(offset(polygons_with_correct_center, config.support_line_width / 2, jtMiter, 1.2),
assert(contains(polygons, draw_area.element->state.result_on_layer));
polygons = diff_clipped(offset(polygons_with_correct_center, config.support_line_width / 2, jtMiter, 1.2),
//FIXME Vojtech: Clipping may split the region into multiple pieces again, reversing the fixing effort.
collision);
}
@ -2695,10 +2804,12 @@ static void smooth_branch_areas(
[&](const tbb::blocked_range<size_t> &range) {
for (size_t processing_idx = range.begin(); processing_idx < range.end(); ++ processing_idx) {
DrawArea &draw_area = linear_data[processing_base + processing_idx];
assert(draw_area.element->state.layer_idx == layer_idx);
double max_outer_wall_distance = 0;
bool do_something = false;
for (int32_t parent_idx : draw_area.element->parents) {
const SupportElement &parent = layer_above[parent_idx];
assert(parent.state.layer_idx == layer_idx + 1);
if (config.getRadius(parent.state) != config.getCollisionRadius(parent.state)) {
do_something = true;
max_outer_wall_distance = std::max(max_outer_wall_distance, (draw_area.element->state.result_on_layer - parent.state.result_on_layer).cast<double>().norm() - (config.getRadius(*draw_area.element) - config.getRadius(parent)));
@ -2706,14 +2817,35 @@ static void smooth_branch_areas(
}
max_outer_wall_distance += max_radius_change_per_layer; // As this change is a bit larger than what usually appears, lost radius can be slowly reclaimed over the layers.
if (do_something) {
assert(contains(draw_area.polygons, draw_area.element->state.result_on_layer));
Polygons max_allowed_area = offset(draw_area.polygons, float(max_outer_wall_distance), jtMiter, 1.2);
for (int32_t parent_idx : draw_area.element->parents) {
const SupportElement &parent = layer_above[parent_idx];
#ifndef NDEBUG
assert(parent.state.layer_idx == layer_idx + 1);
assert(contains(linear_data[processing_base_above + parent_idx].polygons, parent.state.result_on_layer));
double radius_increase = config.getRadius(draw_area.element->state) - config.getRadius(parent.state);
assert(radius_increase >= 0);
double shift = (draw_area.element->state.result_on_layer - parent.state.result_on_layer).cast<double>().norm();
assert(shift < radius_increase + 2. * config.maximum_move_distance_slow);
#endif // NDEBUG
if (config.getRadius(parent.state) != config.getCollisionRadius(parent.state)) {
// No other element on this layer than the current one may be connected to &parent,
// thus it is safe to update parent's DrawArea directly.
Polygons &dst = linear_data[processing_base_above + parent_idx].polygons;
dst = intersection(dst, max_allowed_area);
// Polygons orig = dst;
if (! dst.empty()) {
dst = intersection(dst, max_allowed_area);
#if 0
if (dst.empty()) {
static int irun = 0;
SVG::export_expolygons(debug_out_path("treesupport-extrude_areas-smooth-error-%d.svg", irun ++),
{ { { union_ex(max_allowed_area) }, { "max_allowed_area", "yellow", 0.5f } },
{ { union_ex(orig) }, { "orig", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
::MessageBoxA(nullptr, "TreeSupport smoothing bug", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
}
#endif
}
}
}
}
@ -2982,9 +3114,7 @@ static void draw_areas(
// Only one link points to a node above from below.
assert(! (++ it != map_downwards_old.end() && it->first == &elem));
}
if ((! child && elem.state.target_height == layer_idx) || (child && !child->state.result_on_layer_is_set()))
// We either come from nowhere at the final layer or we had invalid parents 2. should never happen but just to be sure
continue;
assert(child ? child->state.result_on_layer_is_set() : elem.state.target_height > layer_idx);
}
for (int32_t parent_idx : elem.parents) {
SupportElement &parent = (*layer_above)[parent_idx];
@ -2998,12 +3128,66 @@ static void draw_areas(
linear_data_layers.emplace_back(linear_data.size());
}
#ifndef NDEBUG
for (size_t i = 0; i < move_bounds.size(); ++ i) {
size_t begin = linear_data_layers[i];
size_t end = linear_data_layers[i + 1];
for (size_t j = begin; j < end; ++ j)
assert(linear_data[j].element == &move_bounds[i][j - begin]);
}
#endif // NDEBUG
auto t_start = std::chrono::high_resolution_clock::now();
// Generate the circles that will be the branches.
generate_branch_areas(volumes, config, move_bounds, linear_data);
#if 0
assert(linear_data_layers.size() == move_bounds.size() + 1);
for (const auto &draw_area : linear_data)
assert(contains(draw_area.polygons, draw_area.element->state.result_on_layer));
for (size_t i = 0; i < move_bounds.size(); ++ i) {
size_t begin = linear_data_layers[i];
size_t end = linear_data_layers[i + 1];
for (size_t j = begin; j < end; ++ j) {
const auto &draw_area = linear_data[j];
assert(draw_area.element == &move_bounds[i][j - begin]);
assert(contains(draw_area.polygons, draw_area.element->state.result_on_layer));
}
}
#endif
#if 0
for (size_t area_layer_idx = 0; area_layer_idx + 1 < linear_data_layers.size(); ++ area_layer_idx) {
size_t begin = linear_data_layers[area_layer_idx];
size_t end = linear_data_layers[area_layer_idx + 1];
Polygons polygons;
for (size_t area_idx = begin; area_idx < end; ++ area_idx) {
DrawArea &area = linear_data[area_idx];
append(polygons, area.polygons);
}
SVG::export_expolygons(debug_out_path("treesupport-extrude_areas-raw-%d.svg", area_layer_idx),
{ { { union_ex(polygons) }, { "parent", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
}
#endif
auto t_generate = std::chrono::high_resolution_clock::now();
// In some edgecases a branch may go though a hole, where the regular radius does not fit. This can result in an apparent jump in branch radius. As such this cases need to be caught and smoothed out.
smooth_branch_areas(config, move_bounds, linear_data, linear_data_layers);
#if 0
for (size_t area_layer_idx = 0; area_layer_idx + 1 < linear_data_layers.size(); ++area_layer_idx) {
size_t begin = linear_data_layers[area_layer_idx];
size_t end = linear_data_layers[area_layer_idx + 1];
Polygons polygons;
for (size_t area_idx = begin; area_idx < end; ++area_idx) {
DrawArea& area = linear_data[area_idx];
append(polygons, area.polygons);
}
SVG::export_expolygons(debug_out_path("treesupport-extrude_areas-smooth-%d.svg", area_layer_idx),
{ { { union_ex(polygons) }, { "parent", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
}
#endif
auto t_smooth = std::chrono::high_resolution_clock::now();
// drop down all trees that connect non gracefully with the model
drop_non_gracious_areas(volumes, linear_data, support_layer_storage);
@ -3044,6 +3228,490 @@ static void draw_areas(
"finalize_interface_and_support_areas " << dur_finalize << " ms";
}
#if 1
// Test whether two circles, each on its own plane in 3D intersect.
// Circles are considered intersecting, if the lowest point on one circle is below the other circle's plane.
// Assumption: The two planes are oriented the same way.
static bool circles_intersect(
const Vec3d &p1, const Vec3d &n1, const double r1,
const Vec3d &p2, const Vec3d &n2, const double r2)
{
assert(n1.dot(n2) >= 0);
const Vec3d z = n1.cross(n2);
const Vec3d dir1 = z.cross(n1);
const Vec3d lowest_point1 = p1 + dir1 * (r1 / dir1.norm());
assert(n2.dot(p1) >= n2.dot(lowest_point1));
if (n2.dot(lowest_point1) <= 0)
return true;
const Vec3d dir2 = z.cross(n2);
const Vec3d lowest_point2 = p2 + dir2 * (r2 / dir2.norm());
assert(n1.dot(p2) >= n1.dot(lowest_point2));
return n1.dot(lowest_point2) <= 0;
}
template<bool flip_normals>
void triangulate_fan(indexed_triangle_set &its, int ifan, int ibegin, int iend)
{
// at least 3 vertices, increasing order.
assert(ibegin + 3 <= iend);
assert(ibegin >= 0 && iend <= its.vertices.size());
assert(ifan >= 0 && ifan < its.vertices.size());
int num_faces = iend - ibegin;
its.indices.reserve(its.indices.size() + num_faces * 3);
for (int v = ibegin, u = iend - 1; v < iend; u = v ++) {
if (flip_normals)
its.indices.push_back({ ifan, u, v });
else
its.indices.push_back({ ifan, v, u });
}
}
static void triangulate_strip(indexed_triangle_set &its, int ibegin1, int iend1, int ibegin2, int iend2)
{
// at least 3 vertices, increasing order.
assert(ibegin1 + 3 <= iend1);
assert(ibegin1 >= 0 && iend1 <= its.vertices.size());
assert(ibegin2 + 3 <= iend2);
assert(ibegin2 >= 0 && iend2 <= its.vertices.size());
int n1 = iend1 - ibegin1;
int n2 = iend2 - ibegin2;
its.indices.reserve(its.indices.size() + (n1 + n2) * 3);
// For the first vertex of 1st strip, find the closest vertex on the 2nd strip.
int istart2 = ibegin2;
{
const Vec3f &p1 = its.vertices[ibegin1];
auto d2min = std::numeric_limits<float>::max();
for (int i = ibegin2; i < iend2; ++ i) {
const Vec3f &p2 = its.vertices[i];
const float d2 = (p2 - p1).squaredNorm();
if (d2 < d2min) {
d2min = d2;
istart2 = i;
}
}
}
// Now triangulate the strip zig-zag fashion taking always the shortest connection if possible.
for (int u = ibegin1, v = istart2; n1 > 0 || n2 > 0;) {
bool take_first;
int u2, v2;
auto update_u2 = [&u2, u, ibegin1, iend1]() {
u2 = u;
if (++ u2 == iend1)
u2 = ibegin1;
};
auto update_v2 = [&v2, v, ibegin2, iend2]() {
v2 = v;
if (++ v2 == iend2)
v2 = ibegin2;
};
if (n1 == 0) {
take_first = false;
update_v2();
} else if (n2 == 0) {
take_first = true;
update_u2();
} else {
update_u2();
update_v2();
float l1 = (its.vertices[u2] - its.vertices[v]).squaredNorm();
float l2 = (its.vertices[v2] - its.vertices[u]).squaredNorm();
take_first = l1 < l2;
}
if (take_first) {
its.indices.push_back({ u, u2, v });
-- n1;
u = u2;
} else {
its.indices.push_back({ u, v2, v });
-- n2;
v = v2;
}
}
}
// Discretize 3D circle, append to output vector, return ranges of indices of the points added.
static std::pair<int, int> discretize_circle(const Vec3f &center, const Vec3f &normal, const float radius, const float eps, std::vector<Vec3f> &pts)
{
// Calculate discretization step and number of steps.
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(2 * M_PI / angle_step));
angle_step = 2 * M_PI / nsteps;
// Prepare coordinate system for the circle plane.
Vec3f x = normal.cross(Vec3f(0.f, -1.f, 0.f)).normalized();
Vec3f y = normal.cross(x).normalized();
assert(std::abs(x.cross(y).dot(normal) - 1.f) < EPSILON);
// Discretize the circle.
int begin = int(pts.size());
pts.reserve(pts.size() + nsteps);
float angle = 0;
x *= radius;
y *= radius;
for (int i = 0; i < nsteps; ++ i) {
pts.emplace_back(center + x * cos(angle) + y * sin(angle));
angle += angle_step;
}
return { begin, int(pts.size()) };
}
static void extrude_branch(
const std::vector<SupportElement*> &path,
const TreeSupportSettings &config,
const SlicingParameters &slicing_params,
const std::vector<SupportElements> &move_bounds,
indexed_triangle_set &result)
{
Vec3d p1, p2, p3;
Vec3d v1, v2;
Vec3d nprev;
Vec3d ncurrent;
assert(path.size() >= 2);
static constexpr const float eps = 0.015f;
std::pair<int, int> prev_strip;
// char fname[2048];
// static int irun = 0;
for (size_t ipath = 1; ipath < path.size(); ++ ipath) {
const SupportElement &prev = *path[ipath - 1];
const SupportElement &current = *path[ipath];
assert(prev.state.layer_idx + 1 == current.state.layer_idx);
p1 = to_3d(unscaled<double>(prev .state.result_on_layer), layer_z(slicing_params, prev .state.layer_idx));
p2 = to_3d(unscaled<double>(current.state.result_on_layer), layer_z(slicing_params, current.state.layer_idx));
v1 = (p2 - p1).normalized();
if (ipath == 1) {
nprev = v1;
// Extrude the bottom half sphere.
float radius = unscaled<float>(config.getRadius(prev.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p1 - nprev * radius).cast<float>());
float angle = angle_step;
for (int i = 1; i < nsteps; ++ i, angle += angle_step) {
std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices);
if (i == 1)
triangulate_fan<false>(result, ifan, strip.first, strip.second);
else
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
}
if (ipath + 1 == path.size()) {
// End of the tube.
ncurrent = v1;
// Extrude the top half sphere.
float radius = unscaled<float>(config.getRadius(current.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
auto angle = float(M_PI / 2.);
for (int i = 0; i < nsteps; ++ i, angle -= angle_step) {
std::pair<int, int> strip = discretize_circle((p2 + ncurrent * radius * cos(angle)).cast<float>(), ncurrent.cast<float>(), radius * sin(angle), eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>());
triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
} else {
const SupportElement &next = *path[ipath + 1];
assert(current.state.layer_idx + 1 == next.state.layer_idx);
p3 = to_3d(unscaled<double>(next.state.result_on_layer), layer_z(slicing_params, next.state.layer_idx));
v2 = (p3 - p2).normalized();
ncurrent = (v1 + v2).normalized();
float radius = unscaled<float>(config.getRadius(current.state));
std::pair<int, int> strip = discretize_circle(p2.cast<float>(), ncurrent.cast<float>(), radius, eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
prev_strip = strip;
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++irun);
// its_write_obj(result, fname);
}
#if 0
if (circles_intersect(p1, nprev, settings.getRadius(prev), p2, ncurrent, settings.getRadius(current))) {
// Cannot connect previous and current slice using a simple zig-zag triangulation,
// because the two circles intersect.
} else {
// Continue with chaining.
}
#endif
}
}
#endif
static void draw_branches(
PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
const std::vector<Polygons> &overhangs,
std::vector<SupportElements> &move_bounds,
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage)
{
static int irun = 0;
const SlicingParameters& slicing_params = print_object.slicing_parameters();
// All SupportElements are put into a layer independent storage to improve parallelization.
std::vector<std::pair<SupportElement*, int>> elements_with_link_down;
std::vector<size_t> linear_data_layers;
{
std::vector<std::pair<SupportElement*, int>> map_downwards_old;
std::vector<std::pair<SupportElement*, int>> map_downwards_new;
linear_data_layers.emplace_back(0);
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr;
map_downwards_new.clear();
std::sort(map_downwards_old.begin(), map_downwards_old.end(), [](auto& l, auto& r) { return l.first < r.first; });
SupportElements &layer = move_bounds[layer_idx];
for (size_t elem_idx = 0; elem_idx < layer.size(); ++ elem_idx) {
SupportElement &elem = layer[elem_idx];
int child = -1;
if (layer_idx > 0) {
auto it = std::lower_bound(map_downwards_old.begin(), map_downwards_old.end(), &elem, [](auto& l, const SupportElement* r) { return l.first < r; });
if (it != map_downwards_old.end() && it->first == &elem) {
child = it->second;
// Only one link points to a node above from below.
assert(!(++it != map_downwards_old.end() && it->first == &elem));
}
const SupportElement *pchild = child == -1 ? nullptr : &move_bounds[layer_idx - 1][child];
assert(pchild ? pchild->state.result_on_layer_is_set() : elem.state.target_height > layer_idx);
}
for (int32_t parent_idx : elem.parents) {
SupportElement &parent = (*layer_above)[parent_idx];
if (parent.state.result_on_layer_is_set())
map_downwards_new.emplace_back(&parent, elem_idx);
}
elements_with_link_down.push_back({ &elem, int(child) });
}
std::swap(map_downwards_old, map_downwards_new);
linear_data_layers.emplace_back(elements_with_link_down.size());
}
}
std::unique_ptr<openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>> closest_surface_point;
{
TriangleMesh mesh = print_object.model_object()->raw_mesh();
mesh.transform(print_object.trafo_centered());
double scale = 10.;
openvdb::FloatGrid::Ptr grid = mesh_to_grid(mesh.its, {}, scale, 0., 0.);
closest_surface_point = openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>::create(*grid);
std::vector<openvdb::Vec3R> pts, prev, projections;
std::vector<float> distances;
for (const std::pair<SupportElement*, int> &element : elements_with_link_down) {
Vec3d pt = to_3d(unscaled<double>(element.first->state.result_on_layer), layer_z(slicing_params, element.first->state.layer_idx)) * scale;
pts.push_back({ pt.x(), pt.y(), pt.z() });
}
const double collision_extra_gap = 1. * scale;
const double max_nudge_collision_avoidance = 2. * scale;
const double max_nudge_smoothing = 1. * scale;
static constexpr const size_t num_iter = 100; // 1000;
for (size_t iter = 0; iter < num_iter; ++ iter) {
prev = pts;
projections = pts;
distances.assign(pts.size(), std::numeric_limits<float>::max());
closest_surface_point->searchAndReplace(projections, distances);
size_t num_moved = 0;
for (size_t i = 0; i < projections.size(); ++ i) {
const SupportElement &element = *elements_with_link_down[i].first;
const int below = elements_with_link_down[i].second;
if (pts[i] != projections[i]) {
// Nudge the circle center away from the collision.
Vec3d v{ projections[i].x() - pts[i].x(), projections[i].y() - pts[i].y(), projections[i].z() - pts[i].z() };
double depth = v.norm();
assert(std::abs(distances[i] - depth) < EPSILON);
double radius = unscaled<double>(config.getRadius(element.state)) * scale;
if (depth < radius) {
// Collision detected to be removed.
++ num_moved;
double dxy = sqrt(sqr(radius) - sqr(v.z()));
double nudge_dist_max = dxy - std::hypot(v.x(), v.y())
//FIXME 1mm gap
+ collision_extra_gap;
// Shift by maximum 2mm.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_collision_avoidance);
Vec2d nudge_v = to_2d(v).normalized() * (- nudge_dist);
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
// Laplacian smoothing
if (! element.parents.empty() && (below != -1 || element.state.layer_idx == 0)) {
Vec2d avg{ 0, 0 };
const SupportElements &above = move_bounds[element.state.layer_idx + 1];
const size_t offset_above = linear_data_layers[element.state.layer_idx + 1];
double weight = 0.;
for (auto iparent : element.parents) {
double w = config.getRadius(above[iparent].state);
avg.x() += w * prev[offset_above + iparent].x();
avg.y() += w * prev[offset_above + iparent].y();
weight += w;
}
size_t cnt = element.parents.size();
if (below != -1) {
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
const double w = weight; // config.getRadius(move_bounds[element.state.layer_idx - 1][below].state);
avg.x() += w * prev[offset_below + below].x();
avg.y() += w * prev[offset_below + below].y();
++ cnt;
weight += w;
}
//avg /= double(cnt);
avg /= weight;
static constexpr const double smoothing_factor = 0.5;
Vec2d old_pos{ pts[i].x(), pts[i].y() };
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
Vec2d shift = new_pos - old_pos;
double nudge_dist_max = shift.norm();
// Shift by maximum 1mm, less than the collision avoidance factor.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
Vec2d nudge_v = shift.normalized() * nudge_dist;
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
printf("iteration: %d, moved: %d\n", int(iter), int(num_moved));
if (num_moved == 0)
break;
}
#if 1
for (size_t i = 0; i < projections.size(); ++ i) {
elements_with_link_down[i].first->state.result_on_layer.x() = scaled<coord_t>(pts[i].x()) / scale;
elements_with_link_down[i].first->state.result_on_layer.y() = scaled<coord_t>(pts[i].y()) / scale;
}
#endif
}
std::vector<Polygons> support_layer_storage(move_bounds.size());
std::vector<Polygons> support_roof_storage(move_bounds.size());
// Unmark all nodes.
for (SupportElements &elements : move_bounds)
for (SupportElement &element : elements)
element.state.marked = false;
// Traverse all nodes, generate tubes.
// Traversal stack with nodes and thier current parent
std::vector<SupportElement*> path;
indexed_triangle_set cummulative_mesh;
indexed_triangle_set partial_mesh;
indexed_triangle_set temp_mesh;
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements &layer = move_bounds[layer_idx];
SupportElements &layer_above = move_bounds[layer_idx + 1];
for (SupportElement &start_element : layer)
if (! start_element.state.marked && ! start_element.parents.empty()) {
// Collect elements up to a bifurcation above.
start_element.state.marked = true;
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
path.clear();
path.emplace_back(&start_element);
// Traverse each branch until it branches again.
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
assert(path.back()->state.layer_idx + 1 == first_parent.state.layer_idx);
path.emplace_back(&first_parent);
if (first_parent.parents.size() < 2)
first_parent.state.marked = true;
if (first_parent.parents.size() == 1) {
for (SupportElement *parent = &first_parent;;) {
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
assert(path.back()->state.layer_idx + 1 == next_parent.state.layer_idx);
path.emplace_back(&next_parent);
if (next_parent.parents.size() > 1)
break;
next_parent.state.marked = true;
if (next_parent.parents.size() == 0)
break;
parent = &next_parent;
}
}
// Triangulate the tube.
partial_mesh.clear();
extrude_branch(path, config, slicing_params, move_bounds, partial_mesh);
#if 0
char fname[2048];
sprintf(fname, "d:\\temp\\meshes\\tree-raw-%d.obj", ++ irun);
its_write_obj(partial_mesh, fname);
#if 0
temp_mesh.clear();
cut_mesh(partial_mesh, layer_z(slicing_params, path.back()->state.layer_idx) + EPSILON, nullptr, &temp_mesh, false);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed1-%d.obj", irun);
its_write_obj(temp_mesh, fname);
partial_mesh.clear();
cut_mesh(temp_mesh, layer_z(slicing_params, path.front()->state.layer_idx) - EPSILON, &partial_mesh, nullptr, false);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed2-%d.obj", irun);
#endif
its_write_obj(partial_mesh, fname);
#endif
its_merge(cummulative_mesh, partial_mesh);
}
}
}
std::vector<float> slice_z;
for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++ layer_idx) {
double print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
double layer_height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
slice_z.emplace_back(float(print_z - layer_height * 0.5));
}
// Remove the trailing slices.
while (! slice_z.empty())
if (move_bounds[slice_z.size() - 1].empty())
slice_z.pop_back();
else
break;
#if 0
its_write_obj(cummulative_mesh, "d:\\temp\\meshes\\tree.obj");
#endif
MeshSlicingParamsEx params;
params.closing_radius = float(print_object.config().slice_closing_radius.value);
params.mode = MeshSlicingParams::SlicingMode::Positive;
std::vector<ExPolygons> slices = slice_mesh_ex(cummulative_mesh, slice_z, params);
for (size_t layer_idx = 0; layer_idx < slice_z.size(); ++ layer_idx)
if (! slices[layer_idx].empty()) {
SupportGeneratorLayer *&l = intermediate_layers[layer_idx];
if (l == nullptr)
l = &layer_allocate(layer_storage, SupporLayerType::Base, slicing_params, layer_idx);
append(l->polygons, to_polygons(std::move(slices[layer_idx])));
}
// Trim the slices.
tbb::parallel_for(tbb::blocked_range<size_t>(0, intermediate_layers.size()),
[&](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
if (SupportGeneratorLayer *layer = intermediate_layers[layer_idx]; layer) {
Polygons &poly = intermediate_layers[layer_idx]->polygons;
poly = diff_clipped(poly, volumes.getCollision(0, layer_idx, true));
}
});
finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
}
/*!
* \brief Create the areas that need support.
*
@ -3147,8 +3815,15 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
auto t_place = std::chrono::high_resolution_clock::now();
// ### draw these points as circles
draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
if (print_object.config().support_material_style == smsTree)
draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
else {
assert(print_object.config().support_material_style == smsOrganic);
draw_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
}
auto t_draw = std::chrono::high_resolution_clock::now();
auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count();

View file

@ -75,7 +75,7 @@ struct Bundle
const std::string& vendor_id() const { return vendor_profile->id; }
};
struct BundleMap : std::unordered_map<std::string /* = vendor ID */, Bundle>
struct BundleMap : std::map<std::string /* = vendor ID */, Bundle>
{
static BundleMap load();

View file

@ -78,14 +78,14 @@ void GLGizmoSlaSupports::data_changed()
if (mo) {
if (mo->sla_points_status == sla::PointsStatus::Generating)
get_data_from_backend();
}
#if ENABLE_RAYCAST_PICKING
if (m_raycasters.empty())
on_register_raycasters_for_picking();
else
update_raycasters_for_picking_transform();
if (m_raycasters.empty())
on_register_raycasters_for_picking();
else
update_raycasters_for_picking_transform();
#endif // ENABLE_RAYCAST_PICKING
}
}