WIP: Generating offset curves with properly rounded corners from
a Voronoi diagram. Curve extraction is based on the OpenVoronoi implementation.
This commit is contained in:
parent
1e5d1cb616
commit
6f4d24ab95
5 changed files with 437 additions and 16 deletions
|
@ -188,6 +188,8 @@ add_library(libslic3r STATIC
|
|||
Time.cpp
|
||||
Time.hpp
|
||||
MTUtils.hpp
|
||||
VoronoiOffset.cpp
|
||||
VoronoiOffset.hpp
|
||||
Zipper.hpp
|
||||
Zipper.cpp
|
||||
MinAreaBoundingBox.hpp
|
||||
|
|
|
@ -252,8 +252,16 @@ bool arrange(
|
|||
// output
|
||||
Pointfs &positions);
|
||||
|
||||
class VoronoiDiagram : public boost::polygon::voronoi_diagram<double> {
|
||||
public:
|
||||
typedef double coord_type;
|
||||
typedef boost::polygon::point_data<coordinate_type> point_type;
|
||||
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
||||
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
||||
};
|
||||
|
||||
class MedialAxis {
|
||||
public:
|
||||
public:
|
||||
Lines lines;
|
||||
const ExPolygon* expolygon;
|
||||
double max_width;
|
||||
|
@ -263,14 +271,8 @@ class MedialAxis {
|
|||
void build(ThickPolylines* polylines);
|
||||
void build(Polylines* polylines);
|
||||
|
||||
private:
|
||||
class VD : public boost::polygon::voronoi_diagram<double> {
|
||||
public:
|
||||
typedef double coord_type;
|
||||
typedef boost::polygon::point_data<coordinate_type> point_type;
|
||||
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
||||
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
||||
};
|
||||
private:
|
||||
using VD = VoronoiDiagram;
|
||||
VD vd;
|
||||
std::set<const VD::edge_type*> edges, valid_edges;
|
||||
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
|
||||
|
|
376
src/libslic3r/VoronoiOffset.cpp
Normal file
376
src/libslic3r/VoronoiOffset.cpp
Normal file
|
@ -0,0 +1,376 @@
|
|||
// Polygon offsetting code inspired by OpenVoronoi by Anders Wallin
|
||||
// https://github.com/aewallin/openvoronoi
|
||||
// This offsetter uses results of boost::polygon Voronoi.
|
||||
|
||||
#include "VoronoiOffset.hpp"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
using VD = Geometry::VoronoiDiagram;
|
||||
|
||||
namespace detail {
|
||||
// Intersect a circle with a ray, return the two parameters
|
||||
double first_circle_segment_intersection_parameter(
|
||||
const Vec2d ¢er, const double r, const Vec2d &pt, const Vec2d &v)
|
||||
{
|
||||
const Vec2d d = pt - center;
|
||||
#ifndef NDEBUG
|
||||
double d0 = (pt - center).norm();
|
||||
double d1 = (pt + v - center).norm();
|
||||
assert(r < std::max(d0, d1) + EPSILON);
|
||||
#endif /* NDEBUG */
|
||||
const double a = v.squaredNorm();
|
||||
const double b = 2. * d.dot(v);
|
||||
const double c = d.squaredNorm() - r * r;
|
||||
std::pair<int, std::array<double, 2>> out;
|
||||
double u = b * b - 4. * a * c;
|
||||
assert(u > - EPSILON);
|
||||
double t;
|
||||
if (u <= 0) {
|
||||
// Degenerate to a single closest point.
|
||||
t = - b / (2. * a);
|
||||
assert(t >= - EPSILON && t <= 1. + EPSILON);
|
||||
return Slic3r::clamp(0., 1., t);
|
||||
} else {
|
||||
u = sqrt(u);
|
||||
out.first = 2;
|
||||
double t0 = (- b - u) / (2. * a);
|
||||
double t1 = (- b + u) / (2. * a);
|
||||
// One of the intersections shall be found inside the segment.
|
||||
assert((t0 >= - EPSILON && t0 <= 1. + EPSILON) || (t1 >= - EPSILON && t1 <= 1. + EPSILON));
|
||||
if (t1 < 0.)
|
||||
return 0.;
|
||||
if (t0 > 1.)
|
||||
return 1.;
|
||||
return (t0 > 0.) ? t0 : t1;
|
||||
}
|
||||
}
|
||||
|
||||
Vec2d voronoi_edge_offset_point(
|
||||
const VD &vd,
|
||||
const Lines &lines,
|
||||
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
|
||||
const std::vector<double> &vertex_dist,
|
||||
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
|
||||
// For a parabolic segment the distance may be smaller than the distance of the two end points.
|
||||
const std::vector<double> &edge_dist,
|
||||
// Edge for which to calculate the offset point. If the distance towards the input polygon
|
||||
// is not monotonical, pick the offset point closer to edge.vertex0().
|
||||
const VD::edge_type &edge,
|
||||
// Distance from the input polygon along the edge.
|
||||
const double offset_distance)
|
||||
{
|
||||
const VD::vertex_type *v0 = edge.vertex0();
|
||||
const VD::vertex_type *v1 = edge.vertex1();
|
||||
const VD::cell_type *cell = edge.cell();
|
||||
const VD::cell_type *cell2 = edge.twin()->cell();
|
||||
const Line &line0 = lines[cell->source_index()];
|
||||
const Line &line1 = lines[cell2->source_index()];
|
||||
if (v0 == nullptr || v1 == nullptr) {
|
||||
assert(edge.is_infinite());
|
||||
assert(v0 != nullptr || v1 != nullptr);
|
||||
// Offsetting on an unconstrained edge.
|
||||
assert(offset_distance > vertex_dist[(v0 ? v0 : v1) - &vd.vertices().front()] - EPSILON);
|
||||
Vec2d pt, dir;
|
||||
double t;
|
||||
if (cell->contains_point() && cell2->contains_point()) {
|
||||
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
|
||||
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
|
||||
// Direction vector of this unconstrained Voronoi edge.
|
||||
dir = Vec2d(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
|
||||
if (v0 == nullptr) {
|
||||
v0 = v1;
|
||||
dir = - dir;
|
||||
}
|
||||
pt = Vec2d(v0->x(), v0->y());
|
||||
t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
|
||||
} else {
|
||||
// Infinite edges could not be created by two segment sites.
|
||||
assert(cell->contains_point() != cell2->contains_point());
|
||||
// Linear edge goes through the endpoint of a segment.
|
||||
assert(edge.is_linear());
|
||||
assert(edge.is_secondary());
|
||||
const Line &line = cell->contains_segment() ? line0 : line1;
|
||||
const Point &ipt = cell->contains_segment() ?
|
||||
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
|
||||
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
|
||||
assert(line.a == ipt || line.b == ipt);
|
||||
pt = Vec2d(ipt.x(), ipt.y());
|
||||
dir = Vec2d(line.a.y() - line.b.y(), line.b.x() - line.a.x());
|
||||
assert(dir.norm() > 0.);
|
||||
t = offset_distance / dir.norm();
|
||||
if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
|
||||
t = - t;
|
||||
}
|
||||
return pt + t * dir;
|
||||
} else {
|
||||
// Constrained edge.
|
||||
Vec2d p0(v0->x(), v0->y());
|
||||
Vec2d p1(v1->x(), v1->y());
|
||||
double d0 = vertex_dist[v0 - &vd.vertices().front()];
|
||||
double d1 = vertex_dist[v1 - &vd.vertices().front()];
|
||||
if (cell->contains_segment() && cell2->contains_segment()) {
|
||||
// This edge is a bisector of two line segments. Distance to the input polygon increases/decreases monotonically.
|
||||
double ddif = d1 - d0;
|
||||
assert(offset_distance > std::min(d0, d1) - EPSILON && offset_distance < std::max(d0, d1) + EPSILON);
|
||||
double t = (ddif == 0) ? 0. : clamp(0., 1., (offset_distance - d0) / ddif);
|
||||
return Slic3r::lerp(p0, p1, t);
|
||||
} else {
|
||||
// One cell contains a point, the other contains an edge or a point.
|
||||
assert(cell->contains_point() || cell2->contains_point());
|
||||
const Point &ipt = cell->contains_point() ?
|
||||
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
|
||||
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
|
||||
double t = detail::first_circle_segment_intersection_parameter(
|
||||
Vec2d(ipt.x(), ipt.y()), offset_distance, p0, p1 - p0);
|
||||
return Slic3r::lerp(p0, p1, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
Polygons voronoi_offset(const VD &vd, const Lines &lines, double offset_distance, double discretization_error)
|
||||
{
|
||||
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
|
||||
std::vector<double> vertex_dist(vd.num_vertices(), std::numeric_limits<double>::max());
|
||||
|
||||
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
|
||||
// For a parabolic segment the distance may be smaller than the distance of the two end points.
|
||||
std::vector<double> edge_dist(vd.num_edges(), std::numeric_limits<double>::max());
|
||||
|
||||
// Calculate minimum distance of input polygons to voronoi vertices and voronoi edges.
|
||||
for (const VD::edge_type &edge : vd.edges()) {
|
||||
const VD::vertex_type *v0 = edge.vertex0();
|
||||
const VD::vertex_type *v1 = edge.vertex1();
|
||||
const VD::cell_type *cell = edge.cell();
|
||||
const VD::cell_type *cell2 = edge.twin()->cell();
|
||||
const Line &line0 = lines[cell->source_index()];
|
||||
const Line &line1 = lines[cell2->source_index()];
|
||||
double d0, d1, dmin;
|
||||
if (v0 == nullptr || v1 == nullptr) {
|
||||
assert(edge.is_infinite());
|
||||
if (cell->contains_point() && cell2->contains_point()) {
|
||||
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
|
||||
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
|
||||
d0 = d1 = std::numeric_limits<double>::max();
|
||||
if (v0 == nullptr && v1 == nullptr) {
|
||||
dmin = (pt1.cast<double>() - pt0.cast<double>()).norm();
|
||||
} else {
|
||||
Vec2d pt((pt0 + pt1).cast<double>() * 0.5);
|
||||
Vec2d dir(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
|
||||
Vec2d pt0d(pt0.x(), pt0.y());
|
||||
if (v0) {
|
||||
Vec2d a(v0->x(), v0->y());
|
||||
d0 = (a - pt0d).norm();
|
||||
dmin = ((a - pt).dot(dir) < 0.) ? (a - pt0d).norm() : d0;
|
||||
vertex_dist[v0 - &vd.vertices().front()] = d0;
|
||||
} else {
|
||||
Vec2d a(v1->x(), v1->y());
|
||||
d1 = (a - pt0d).norm();
|
||||
dmin = ((a - pt).dot(dir) < 0.) ? (a - pt0d).norm() : d1;
|
||||
vertex_dist[v1 - &vd.vertices().front()] = d1;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Infinite edges could not be created by two segment sites.
|
||||
assert(cell->contains_point() != cell2->contains_point());
|
||||
// Linear edge goes through the endpoint of a segment.
|
||||
assert(edge.is_linear());
|
||||
assert(edge.is_secondary());
|
||||
#ifndef NDEBUG
|
||||
if (cell->contains_segment()) {
|
||||
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
|
||||
assert((pt1.x() == line0.a.x() && pt1.y() == line0.a.y()) ||
|
||||
(pt1.x() == line0.b.x() && pt1.y() == line0.b.y()));
|
||||
} else {
|
||||
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
|
||||
assert((pt0.x() == line1.a.x() && pt0.y() == line1.a.y()) ||
|
||||
(pt0.x() == line1.b.x() && pt0.y() == line1.b.y()));
|
||||
}
|
||||
const Point &pt = cell->contains_segment() ?
|
||||
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
|
||||
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
|
||||
#endif /* NDEBUG */
|
||||
if (v0) {
|
||||
assert((Point(v0->x(), v0->y()) - pt).cast<double>().norm() < SCALED_EPSILON);
|
||||
d0 = dmin = 0.;
|
||||
vertex_dist[v0 - &vd.vertices().front()] = d0;
|
||||
} else {
|
||||
assert((Point(v1->x(), v1->y()) - pt).cast<double>().norm() < SCALED_EPSILON);
|
||||
d1 = dmin = 0.;
|
||||
vertex_dist[v1 - &vd.vertices().front()] = d1;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Finite edge has valid points at both sides.
|
||||
if (cell->contains_segment() && cell2->contains_segment()) {
|
||||
// This edge is a bisector of two line segments.
|
||||
d0 = std::hypot(v0->x() - line0.a.x(), v0->y() - line0.a.y());
|
||||
d1 = std::hypot(v0->x() - line0.b.x(), v0->y() - line0.b.y());
|
||||
if (d0 < d1)
|
||||
d1 = std::hypot(v1->x() - line0.a.x(), v1->y() - line0.a.y());
|
||||
else {
|
||||
d0 = d1;
|
||||
d1 = std::hypot(v1->x() - line0.b.x(), v1->y() - line0.b.y());
|
||||
}
|
||||
dmin = std::min(d0, d1);
|
||||
} else {
|
||||
assert(cell->contains_point() || cell2->contains_point());
|
||||
const Point &pt0 = cell->contains_point() ?
|
||||
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
|
||||
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
|
||||
// Project p0 to line segment <v0, v1>.
|
||||
Vec2d p0(v0->x(), v0->y());
|
||||
Vec2d p1(v1->x(), v1->y());
|
||||
Vec2d px(pt0.x(), pt0.y());
|
||||
Vec2d v = p1 - p0;
|
||||
d0 = (p0 - px).norm();
|
||||
d1 = (p1 - px).norm();
|
||||
double t = v.dot(px - p0);
|
||||
double l2 = v.squaredNorm();
|
||||
if (t > 0. && t < l2) {
|
||||
// Foot point on the line segment.
|
||||
Vec2d foot = p0 + (t / l2) * v;
|
||||
dmin = (foot - px).norm();
|
||||
} else
|
||||
dmin = std::min(d0, d1);
|
||||
}
|
||||
vertex_dist[v0 - &vd.vertices().front()] = d0;
|
||||
vertex_dist[v1 - &vd.vertices().front()] = d1;
|
||||
}
|
||||
edge_dist[&edge - &vd.edges().front()] = dmin;
|
||||
}
|
||||
|
||||
// Mark cells intersected by the offset curve.
|
||||
std::vector<unsigned char> seed_cells(vd.num_cells(), false);
|
||||
for (const VD::cell_type &cell : vd.cells()) {
|
||||
const VD::edge_type *first_edge = cell.incident_edge();
|
||||
const VD::edge_type *edge = first_edge;
|
||||
do {
|
||||
double dmin = edge_dist[edge - &vd.edges().front()];
|
||||
double dmax = std::numeric_limits<double>::max();
|
||||
const VD::vertex_type *v0 = edge->vertex0();
|
||||
const VD::vertex_type *v1 = edge->vertex1();
|
||||
if (v0 != nullptr)
|
||||
dmax = vertex_dist[v0 - &vd.vertices().front()];
|
||||
if (v1 != nullptr)
|
||||
dmax = std::max(dmax, vertex_dist[v1 - &vd.vertices().front()]);
|
||||
if (offset_distance >= dmin && offset_distance <= dmax) {
|
||||
// This cell is being intersected by the offset curve.
|
||||
seed_cells[&cell - &vd.cells().front()] = true;
|
||||
break;
|
||||
}
|
||||
edge = edge->next();
|
||||
} while (edge != first_edge);
|
||||
}
|
||||
|
||||
auto edge_dir = [&vd, &vertex_dist, &edge_dist, offset_distance](const VD::edge_type *edge) {
|
||||
const VD::vertex_type *v0 = edge->vertex0();
|
||||
const VD::vertex_type *v1 = edge->vertex1();
|
||||
double d0 = v0 ? vertex_dist[v0 - &vd.vertices().front()] : std::numeric_limits<double>::max();
|
||||
double d1 = v1 ? vertex_dist[v1 - &vd.vertices().front()] : std::numeric_limits<double>::max();
|
||||
if (d0 < offset_distance && offset_distance < d1)
|
||||
return true;
|
||||
else if (d1 < offset_distance && offset_distance < d0)
|
||||
return false;
|
||||
else {
|
||||
assert(false);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief starting at e, find the next edge on the face that brackets t
|
||||
///
|
||||
/// we can be in one of two modes.
|
||||
/// if direction==false then we are looking for an edge where src_t < t < trg_t
|
||||
/// if direction==true we are looning for an edge where trg_t < t < src_t
|
||||
auto next_offset_edge =
|
||||
[&vd, &vertex_dist, &edge_dist, offset_distance]
|
||||
(const VD::edge_type *start_edge, bool direction) -> const VD::edge_type* {
|
||||
const VD::edge_type *edge = start_edge;
|
||||
do {
|
||||
const VD::vertex_type *v0 = edge->vertex0();
|
||||
const VD::vertex_type *v1 = edge->vertex1();
|
||||
double d0 = v0 ? vertex_dist[v0 - &vd.vertices().front()] : std::numeric_limits<double>::max();
|
||||
double d1 = v1 ? vertex_dist[v1 - &vd.vertices().front()] : std::numeric_limits<double>::max();
|
||||
if (direction ? (d1 < offset_distance && offset_distance < d0) : (d0 < offset_distance && offset_distance < d1))
|
||||
return edge;
|
||||
edge = edge->next();
|
||||
} while (edge != start_edge);
|
||||
assert(false);
|
||||
return nullptr;
|
||||
};
|
||||
|
||||
// Track the offset curves.
|
||||
Polygons out;
|
||||
double angle_step = 2. * acos((offset_distance - discretization_error) / offset_distance);
|
||||
double sin_threshold = sin(angle_step) + EPSILON;
|
||||
for (size_t seed_cell_idx = 0; seed_cell_idx < vd.num_cells(); ++ seed_cell_idx)
|
||||
if (seed_cells[seed_cell_idx]) {
|
||||
seed_cells[seed_cell_idx] = false;
|
||||
// Initial direction should not matter, an offset curve shall intersect a cell at least at two points
|
||||
// (if it is not just touching the cell at a single vertex), and such two intersection points shall have
|
||||
// opposite direction.
|
||||
bool direction = false;
|
||||
// the first edge on the start-face
|
||||
const VD::cell_type &cell = vd.cells()[seed_cell_idx];
|
||||
const VD::edge_type *start_edge = next_offset_edge(cell.incident_edge(), direction);
|
||||
assert(start_edge->cell() == &cell);
|
||||
const VD::edge_type *edge = start_edge;
|
||||
Polygon poly;
|
||||
do {
|
||||
direction = edge_dir(edge);
|
||||
// find the next edge
|
||||
const VD::edge_type *next_edge = next_offset_edge(edge->next(), direction);
|
||||
//std::cout << "offset-output: "; print_edge(edge); std::cout << " to "; print_edge(next_edge); std::cout << "\n";
|
||||
// Interpolate a circular segment or insert a linear segment between edge and next_edge.
|
||||
const VD::cell_type *cell = edge->cell();
|
||||
Vec2d p1 = detail::voronoi_edge_offset_point(vd, lines, vertex_dist, edge_dist, *edge, offset_distance);
|
||||
Vec2d p2 = detail::voronoi_edge_offset_point(vd, lines, vertex_dist, edge_dist, *next_edge, offset_distance);
|
||||
if (cell->contains_point()) {
|
||||
// Discretize an arc from p1 to p2 with radius = offset_distance and discretization_error.
|
||||
// The arc should cover angle < PI.
|
||||
//FIXME we should be able to produce correctly oriented output curves based on the first edge taken!
|
||||
const Line &line0 = lines[cell->source_index()];
|
||||
const Vec2d ¢er = ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b).cast<double>();
|
||||
const Vec2d v1 = p1 - center;
|
||||
const Vec2d v2 = p2 - center;
|
||||
double orient = cross2(v1, v2);
|
||||
double orient_norm = v1.norm() * v2.norm();
|
||||
bool ccw = orient > 0;
|
||||
bool obtuse = v1.dot(v2) < 0.;
|
||||
if (! ccw)
|
||||
orient = - orient;
|
||||
assert(orient != 0.);
|
||||
if (obtuse || orient > orient_norm * sin_threshold) {
|
||||
// Angle is bigger than the threshold, therefore the arc will be discretized.
|
||||
double angle = asin(orient / orient_norm);
|
||||
if (obtuse)
|
||||
angle = M_PI - angle;
|
||||
size_t n_steps = size_t(ceil(angle / angle_step));
|
||||
double astep = angle / n_steps;
|
||||
if (! ccw)
|
||||
astep *= -1.;
|
||||
double a = astep;
|
||||
for (size_t i = 1; i < n_steps; ++ i, a += astep) {
|
||||
double c = cos(a);
|
||||
double s = sin(a);
|
||||
Vec2d p = center + Vec2d(c * v1.x() - s * v1.y(), s * v1.x() + c * v1.y());
|
||||
poly.points.emplace_back(Point(coord_t(p.x()), coord_t(p.y())));
|
||||
}
|
||||
}
|
||||
}
|
||||
poly.points.emplace_back(Point(coord_t(p2.x()), coord_t(p2.y())));
|
||||
// although we may revisit current_face (if it is non-convex), it seems safe to mark it "done" here.
|
||||
seed_cells[cell - &vd.cells().front()] = false;
|
||||
edge = next_edge->twin();
|
||||
} while (edge != start_edge);
|
||||
out.emplace_back(std::move(poly));
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
14
src/libslic3r/VoronoiOffset.hpp
Normal file
14
src/libslic3r/VoronoiOffset.hpp
Normal file
|
@ -0,0 +1,14 @@
|
|||
#ifndef slic3r_VoronoiOffset_hpp_
|
||||
#define slic3r_VoronoiOffset_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
|
||||
#include "Geometry.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Polygons voronoi_offset(const Geometry::VoronoiDiagram &vd, const Lines &lines, double offset_distance, double discretization_error);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_VoronoiOffset_hpp_
|
|
@ -7,6 +7,7 @@
|
|||
#include <libslic3r/Polyline.hpp>
|
||||
#include <libslic3r/EdgeGrid.hpp>
|
||||
#include <libslic3r/Geometry.hpp>
|
||||
#include <libslic3r/VoronoiOffset.hpp>
|
||||
|
||||
#define BOOST_VORONOI_USE_GMP 1
|
||||
#include "boost/polygon/voronoi.hpp"
|
||||
|
@ -16,12 +17,7 @@ using boost::polygon::voronoi_diagram;
|
|||
|
||||
using namespace Slic3r;
|
||||
|
||||
struct VD : public boost::polygon::voronoi_diagram<double> {
|
||||
typedef double coord_type;
|
||||
typedef boost::polygon::point_data<coordinate_type> point_type;
|
||||
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
||||
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
||||
};
|
||||
using VD = Geometry::VoronoiDiagram;
|
||||
|
||||
// #define VORONOI_DEBUG_OUT
|
||||
|
||||
|
@ -322,6 +318,7 @@ static inline void dump_voronoi_to_svg(
|
|||
/* const */ VD &vd,
|
||||
const Points &points,
|
||||
const Lines &lines,
|
||||
const Polygons &offset_curves = Polygons(),
|
||||
const double scale = 0.7) // 0.2?
|
||||
{
|
||||
const std::string inputSegmentPointColor = "lightseagreen";
|
||||
|
@ -336,6 +333,9 @@ static inline void dump_voronoi_to_svg(
|
|||
const std::string voronoiArcColor = "red";
|
||||
const coord_t voronoiLineWidth = coord_t(0.02 * scale / SCALING_FACTOR);
|
||||
|
||||
const std::string offsetCurveColor = "magenta";
|
||||
const coord_t offsetCurveLineWidth = coord_t(0.09 * scale / SCALING_FACTOR);
|
||||
|
||||
const bool internalEdgesOnly = false;
|
||||
const bool primaryEdgesOnly = false;
|
||||
|
||||
|
@ -408,6 +408,7 @@ static inline void dump_voronoi_to_svg(
|
|||
}
|
||||
#endif
|
||||
|
||||
svg.draw_outline(offset_curves, offsetCurveColor, offsetCurveLineWidth);
|
||||
svg.Close();
|
||||
}
|
||||
#endif
|
||||
|
@ -1585,6 +1586,32 @@ TEST_CASE("Voronoi NaN coordinates 12139", "[Voronoi][!hide][!mayfail]")
|
|||
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-NaNs.svg").c_str(),
|
||||
vd, Points(), lines, 0.015);
|
||||
vd, Points(), lines, Polygons(), 0.015);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST_CASE("Voronoi offset", "[VoronoiOffset]")
|
||||
{
|
||||
Polygons poly_with_hole = { Polygon {
|
||||
{ 0, 10000000},
|
||||
{ 700000, 0},
|
||||
{ 700000, 9000000},
|
||||
{ 9100000, 9000000},
|
||||
{ 9100000, 0},
|
||||
{10000000, 10000000}
|
||||
}
|
||||
};
|
||||
|
||||
VD vd;
|
||||
Lines lines = to_lines(poly_with_hole);
|
||||
construct_voronoi(lines.begin(), lines.end(), &vd);
|
||||
|
||||
Polygons offsetted_polygons = voronoi_offset(vd, lines, scale_(0.2), scale_(0.005));
|
||||
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset.svg").c_str(),
|
||||
vd, Points(), lines, offsetted_polygons);
|
||||
#endif
|
||||
|
||||
REQUIRE(offsetted_polygons.size() == 2);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue