TriangleMeshSlicer: Got rid of admesh!

This commit is contained in:
Vojtech Bubnik 2021-05-18 15:05:23 +02:00
parent 1256aebd88
commit 70b4915f9c
18 changed files with 443 additions and 452 deletions

View File

@ -1213,32 +1213,32 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b
} }
else if (! volume->mesh().empty()) { else if (! volume->mesh().empty()) {
TriangleMesh upper_mesh, lower_mesh;
// Transform the mesh by the combined transformation matrix. // Transform the mesh by the combined transformation matrix.
// Flip the triangles in case the composite transformation is left handed. // Flip the triangles in case the composite transformation is left handed.
TriangleMesh mesh(volume->mesh()); TriangleMesh mesh(volume->mesh());
mesh.transform(instance_matrix * volume_matrix, true); mesh.transform(instance_matrix * volume_matrix, true);
volume->reset_mesh(); volume->reset_mesh();
mesh.require_shared_vertices();
// Perform cut
TriangleMeshSlicer tms(&mesh);
tms.cut(float(z), &upper_mesh, &lower_mesh);
// Reset volume transformation except for offset // Reset volume transformation except for offset
const Vec3d offset = volume->get_offset(); const Vec3d offset = volume->get_offset();
volume->set_transformation(Geometry::Transformation()); volume->set_transformation(Geometry::Transformation());
volume->set_offset(offset); volume->set_offset(offset);
if (keep_upper) { // Perform cut
upper_mesh.repair(); TriangleMesh upper_mesh, lower_mesh;
upper_mesh.reset_repair_stats(); {
} indexed_triangle_set upper_its, lower_its;
if (keep_lower) { mesh.require_shared_vertices();
lower_mesh.repair(); cut_mesh(mesh.its, float(z), &upper_its, &lower_its);
lower_mesh.reset_repair_stats(); if (keep_upper) {
upper_mesh = TriangleMesh(upper_its);
upper_mesh.repair();
upper_mesh.reset_repair_stats();
}
if (keep_lower) {
lower_mesh = TriangleMesh(lower_its);
lower_mesh.repair();
lower_mesh.reset_repair_stats();
}
} }
if (keep_upper && upper_mesh.facets_count() > 0) { if (keep_upper && upper_mesh.facets_count() > 0) {

View File

@ -8,6 +8,7 @@
#include "Flow.hpp" #include "Flow.hpp"
#include "Point.hpp" #include "Point.hpp"
#include "Slicing.hpp" #include "Slicing.hpp"
#include "TriangleMeshSlicer.hpp"
#include "GCode/ToolOrdering.hpp" #include "GCode/ToolOrdering.hpp"
#include "GCode/WipeTower.hpp" #include "GCode/WipeTower.hpp"
#include "GCode/ThumbnailData.hpp" #include "GCode/ThumbnailData.hpp"
@ -24,7 +25,6 @@ class Print;
class PrintObject; class PrintObject;
class ModelObject; class ModelObject;
class GCode; class GCode;
enum class SlicingMode : uint32_t;
class Layer; class Layer;
class SupportLayer; class SupportLayer;
@ -345,18 +345,18 @@ private:
// so that next call to make_perimeters() performs a union() before computing loops // so that next call to make_perimeters() performs a union() before computing loops
bool m_typed_slices = false; bool m_typed_slices = false;
std::vector<ExPolygons> slice_region(size_t region_id, const std::vector<float> &z, SlicingMode mode, size_t slicing_mode_normal_below_layer, SlicingMode mode_below) const; std::vector<ExPolygons> slice_region(size_t region_id, const std::vector<float> &z, MeshSlicingParams::SlicingMode mode, size_t slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode mode_below) const;
std::vector<ExPolygons> slice_region(size_t region_id, const std::vector<float> &z, SlicingMode mode) const std::vector<ExPolygons> slice_region(size_t region_id, const std::vector<float> &z, MeshSlicingParams::SlicingMode mode) const
{ return this->slice_region(region_id, z, mode, 0, mode); } { return this->slice_region(region_id, z, mode, 0, mode); }
std::vector<ExPolygons> slice_modifiers(size_t region_id, const std::vector<float> &z) const; std::vector<ExPolygons> slice_modifiers(size_t region_id, const std::vector<float> &z) const;
std::vector<ExPolygons> slice_volumes( std::vector<ExPolygons> slice_volumes(
const std::vector<float> &z, const std::vector<float> &z,
SlicingMode mode, size_t slicing_mode_normal_below_layer, SlicingMode mode_below, MeshSlicingParams::SlicingMode mode, size_t slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode mode_below,
const std::vector<const ModelVolume*> &volumes) const; const std::vector<const ModelVolume*> &volumes) const;
std::vector<ExPolygons> slice_volumes(const std::vector<float> &z, SlicingMode mode, const std::vector<const ModelVolume*> &volumes) const std::vector<ExPolygons> slice_volumes(const std::vector<float> &z, MeshSlicingParams::SlicingMode mode, const std::vector<const ModelVolume*> &volumes) const
{ return this->slice_volumes(z, mode, 0, mode, volumes); } { return this->slice_volumes(z, mode, 0, mode, volumes); }
std::vector<ExPolygons> slice_volume(const std::vector<float> &z, SlicingMode mode, const ModelVolume &volume) const; std::vector<ExPolygons> slice_volume(const std::vector<float> &z, MeshSlicingParams::SlicingMode mode, const ModelVolume &volume) const;
std::vector<ExPolygons> slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, SlicingMode mode, const ModelVolume &volume) const; std::vector<ExPolygons> slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, MeshSlicingParams::SlicingMode mode, const ModelVolume &volume) const;
}; };
struct WipeTowerData struct WipeTowerData

View File

@ -1799,7 +1799,7 @@ void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
bool clipped = false; bool clipped = false;
bool upscaled = false; bool upscaled = false;
bool spiral_vase = this->print()->config().spiral_vase; bool spiral_vase = this->print()->config().spiral_vase;
auto slicing_mode = spiral_vase ? SlicingMode::PositiveLargestContour : SlicingMode::Regular; auto slicing_mode = spiral_vase ? MeshSlicingParams::SlicingMode::PositiveLargestContour : MeshSlicingParams::SlicingMode::Regular;
if (! has_z_ranges && (! m_config.clip_multipart_objects.value || all_volumes_single_region >= 0)) { if (! has_z_ranges && (! m_config.clip_multipart_objects.value || all_volumes_single_region >= 0)) {
// Cheap path: Slice regions without mutual clipping. // Cheap path: Slice regions without mutual clipping.
// The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region. // The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region.
@ -1815,7 +1815,7 @@ void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
for (; slicing_mode_normal_below_layer < slice_zs.size() && slice_zs[slicing_mode_normal_below_layer] < config.bottom_solid_min_thickness - EPSILON; for (; slicing_mode_normal_below_layer < slice_zs.size() && slice_zs[slicing_mode_normal_below_layer] < config.bottom_solid_min_thickness - EPSILON;
++ slicing_mode_normal_below_layer); ++ slicing_mode_normal_below_layer);
} }
std::vector<ExPolygons> expolygons_by_layer = this->slice_region(region_id, slice_zs, slicing_mode, slicing_mode_normal_below_layer, SlicingMode::Regular); std::vector<ExPolygons> expolygons_by_layer = this->slice_region(region_id, slice_zs, slicing_mode, slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode::Regular);
m_print->throw_if_canceled(); m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start"; BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
@ -2060,7 +2060,7 @@ end:
} }
// To be used only if there are no layer span specific configurations applied, which would lead to z ranges being generated for this region. // To be used only if there are no layer span specific configurations applied, which would lead to z ranges being generated for this region.
std::vector<ExPolygons> PrintObject::slice_region(size_t region_id, const std::vector<float> &z, SlicingMode mode, size_t slicing_mode_normal_below_layer, SlicingMode mode_below) const std::vector<ExPolygons> PrintObject::slice_region(size_t region_id, const std::vector<float> &z, MeshSlicingParams::SlicingMode mode, size_t slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode mode_below) const
{ {
std::vector<const ModelVolume*> volumes; std::vector<const ModelVolume*> volumes;
if (region_id < m_region_volumes.size()) { if (region_id < m_region_volumes.size()) {
@ -2120,7 +2120,7 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
if (volume->is_modifier()) if (volume->is_modifier())
volumes.emplace_back(volume); volumes.emplace_back(volume);
} }
out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes); out = this->slice_volumes(slice_zs, MeshSlicingParams::SlicingMode::Regular, volumes);
} else { } else {
// Some modifier in this region was split to layer spans. // Some modifier in this region was split to layer spans.
std::vector<char> merge; std::vector<char> merge;
@ -2138,7 +2138,7 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j) for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j)
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range); ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
// slicing in parallel // slicing in parallel
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, SlicingMode::Regular, *model_volume); std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, MeshSlicingParams::SlicingMode::Regular, *model_volume);
// Variable this_slices could be empty if no value of slice_zs is within any of the ranges of this volume. // Variable this_slices could be empty if no value of slice_zs is within any of the ranges of this volume.
if (out.empty()) { if (out.empty()) {
out = std::move(this_slices); out = std::move(this_slices);
@ -2179,7 +2179,7 @@ std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType
zs.reserve(this->layers().size()); zs.reserve(this->layers().size());
for (const Layer *l : this->layers()) for (const Layer *l : this->layers())
zs.emplace_back((float)l->slice_z); zs.emplace_back((float)l->slice_z);
return this->slice_volumes(zs, SlicingMode::Regular, volumes); return this->slice_volumes(zs, MeshSlicingParams::SlicingMode::Regular, volumes);
} }
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it. //FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
@ -2194,7 +2194,7 @@ static void fix_mesh_connectivity(TriangleMesh &mesh)
std::vector<ExPolygons> PrintObject::slice_volumes( std::vector<ExPolygons> PrintObject::slice_volumes(
const std::vector<float> &z, const std::vector<float> &z,
SlicingMode mode, size_t slicing_mode_normal_below_layer, SlicingMode mode_below, MeshSlicingParams::SlicingMode mode, size_t slicing_mode_normal_below_layer, MeshSlicingParams::SlicingMode mode_below,
const std::vector<const ModelVolume*> &volumes) const const std::vector<const ModelVolume*> &volumes) const
{ {
std::vector<ExPolygons> layers; std::vector<ExPolygons> layers;
@ -2219,18 +2219,17 @@ std::vector<ExPolygons> PrintObject::slice_volumes(
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0); mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// perform actual slicing // perform actual slicing
const Print *print = this->print(); const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
// TriangleMeshSlicer needs shared vertices, also this calls the repair() function. // TriangleMeshSlicer needs shared vertices, also this calls the repair() function.
mesh.require_shared_vertices(); mesh.require_shared_vertices();
MeshSlicingParamsExtended params { { mode, slicing_mode_normal_below_layer, mode_below }, float(m_config.slice_closing_radius.value) }; MeshSlicingParamsEx params { { mode, slicing_mode_normal_below_layer, mode_below }, float(m_config.slice_closing_radius.value) };
slice_mesh(mesh, z, params, layers, callback); layers = slice_mesh_ex(mesh.its, z, params, [print]() { print->throw_if_canceled(); });
m_print->throw_if_canceled(); m_print->throw_if_canceled();
} }
} }
return layers; return layers;
} }
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, SlicingMode mode, const ModelVolume &volume) const std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, MeshSlicingParams::SlicingMode mode, const ModelVolume &volume) const
{ {
std::vector<ExPolygons> layers; std::vector<ExPolygons> layers;
if (! z.empty()) { if (! z.empty()) {
@ -2246,13 +2245,12 @@ std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, S
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0); mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// perform actual slicing // perform actual slicing
const Print *print = this->print(); const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
// TriangleMeshSlicer needs the shared vertices. // TriangleMeshSlicer needs the shared vertices.
mesh.require_shared_vertices(); mesh.require_shared_vertices();
MeshSlicingParamsExtended params; MeshSlicingParamsEx params;
params.mode = mode; params.mode = mode;
params.closing_radius = float(m_config.slice_closing_radius.value); params.closing_radius = float(m_config.slice_closing_radius.value);
slice_mesh(mesh, z, params, layers, callback); layers = slice_mesh_ex(mesh.its, z, params, [print](){ print->throw_if_canceled(); });
m_print->throw_if_canceled(); m_print->throw_if_canceled();
} }
} }
@ -2260,7 +2258,7 @@ std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, S
} }
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping. // Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, SlicingMode mode, const ModelVolume &volume) const std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, MeshSlicingParams::SlicingMode mode, const ModelVolume &volume) const
{ {
std::vector<ExPolygons> out; std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) { if (! z.empty() && ! ranges.empty()) {

View File

@ -296,9 +296,8 @@ void cut_drainholes(std::vector<ExPolygons> & obj_slices,
if (mesh.empty()) return; if (mesh.empty()) return;
mesh.require_shared_vertices(); mesh.require_shared_vertices();
std::vector<ExPolygons> hole_slices; std::vector<ExPolygons> hole_slices = slice_mesh_ex(mesh.its, slicegrid, closing_radius, thr);
slice_mesh(mesh, slicegrid, closing_radius, hole_slices, thr);
if (obj_slices.size() != hole_slices.size()) if (obj_slices.size() != hole_slices.size())
BOOST_LOG_TRIVIAL(warning) BOOST_LOG_TRIVIAL(warning)

View File

@ -478,8 +478,8 @@ void pad_blueprint(const TriangleMesh & mesh,
{ {
if (mesh.empty()) return; if (mesh.empty()) return;
auto out = reserve_vector<ExPolygons>(heights.size()); assert(mesh.has_shared_vertices());
slice_mesh(mesh, heights, out, thrfn); std::vector<ExPolygons> out = slice_mesh_ex(mesh.its, heights, thrfn);
size_t count = 0; size_t count = 0;
for(auto& o : out) count += o.size(); for(auto& o : out) count += o.size();

View File

@ -45,7 +45,8 @@ std::vector<ExPolygons> SupportTree::slice(
if (!sup_mesh.empty()) { if (!sup_mesh.empty()) {
slices.emplace_back(); slices.emplace_back();
slice_mesh(sup_mesh, grid, cr, slices.back(), ctl().cancelfn); assert(sup_mesh.has_shared_vertices());
slices.back() = slice_mesh_ex(sup_mesh.its, grid, cr, ctl().cancelfn);
} }
if (!pad_mesh.empty()) { if (!pad_mesh.empty()) {
@ -58,7 +59,8 @@ std::vector<ExPolygons> SupportTree::slice(
auto padgrid = reserve_vector<float>(size_t(cap > 0 ? cap : 0)); auto padgrid = reserve_vector<float>(size_t(cap > 0 ? cap : 0));
std::copy(grid.begin(), maxzit, std::back_inserter(padgrid)); std::copy(grid.begin(), maxzit, std::back_inserter(padgrid));
slice_mesh(pad_mesh, padgrid, cr, slices.back(), ctl().cancelfn); assert(pad_mesh.has_shared_vertices());
slices.back() = slice_mesh_ex(pad_mesh.its, padgrid, cr, ctl().cancelfn);
} }
size_t len = grid.size(); size_t len = grid.size();

View File

@ -475,7 +475,8 @@ void SLAPrint::Steps::slice_model(SLAPrintObject &po)
float closing_r = float(po.config().slice_closing_radius.value); float closing_r = float(po.config().slice_closing_radius.value);
auto thr = [this]() { m_print->throw_if_canceled(); }; auto thr = [this]() { m_print->throw_if_canceled(); };
auto &slice_grid = po.m_model_height_levels; auto &slice_grid = po.m_model_height_levels;
slice_mesh(mesh, slice_grid, closing_r, po.m_model_slices, thr); assert(mesh.has_shared_vertices());
po.m_model_slices = slice_mesh_ex(mesh.its, slice_grid, closing_r, thr);
sla::Interior *interior = po.m_hollowing_data ? sla::Interior *interior = po.m_hollowing_data ?
po.m_hollowing_data->interior.get() : po.m_hollowing_data->interior.get() :
@ -485,8 +486,7 @@ void SLAPrint::Steps::slice_model(SLAPrintObject &po)
TriangleMesh interiormesh = sla::get_mesh(*interior); TriangleMesh interiormesh = sla::get_mesh(*interior);
interiormesh.repaired = false; interiormesh.repaired = false;
interiormesh.repair(true); interiormesh.repair(true);
std::vector<ExPolygons> interior_slices; std::vector<ExPolygons> interior_slices = slice_mesh_ex(interiormesh.its, slice_grid, closing_r, thr);
slice_mesh(interiormesh, slice_grid, closing_r, interior_slices, thr);
sla::ccr::for_each(size_t(0), interior_slices.size(), sla::ccr::for_each(size_t(0), interior_slices.size(),
[&po, &interior_slices] (size_t i) { [&po, &interior_slices] (size_t i) {

View File

@ -615,9 +615,8 @@ std::vector<ExPolygons> TriangleMesh::slice(const std::vector<double> &z)
{ {
// convert doubles to floats // convert doubles to floats
std::vector<float> z_f(z.begin(), z.end()); std::vector<float> z_f(z.begin(), z.end());
std::vector<ExPolygons> layers; assert(this->has_shared_vertices());
slice_mesh(*this, z_f, 0.0004f, layers); return slice_mesh_ex(this->its, z_f, 0.0004f);
return layers;
} }
void TriangleMesh::require_shared_vertices() void TriangleMesh::require_shared_vertices()
@ -686,11 +685,12 @@ std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangl
return index; return index;
} }
// Map from a facet edge to a neighbor face index or -1 if no neighbor exists. // Map from a face edge to a unique edge identifier or -1 if no neighbor exists.
// Two neighbor faces share a unique edge identifier even if they are flipped.
template<typename ThrowOnCancelCallback> template<typename ThrowOnCancelCallback>
static inline std::vector<int> create_face_neighbors_index_impl(const indexed_triangle_set &its, ThrowOnCancelCallback throw_on_cancel) static inline std::vector<Vec3i> create_face_neighbors_index_impl(const indexed_triangle_set &its, ThrowOnCancelCallback throw_on_cancel)
{ {
std::vector<int> out(its.indices.size() * 3, -1); std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
// Create a mapping from triangle edge into face. // Create a mapping from triangle edge into face.
struct EdgeToFace { struct EdgeToFace {
@ -754,10 +754,10 @@ static inline std::vector<int> create_face_neighbors_index_impl(const indexed_tr
} }
} }
// Assign an edge index to the 1st face. // Assign an edge index to the 1st face.
out[edge_i.face * 3 + std::abs(edge_i.face_edge) - 1] = num_edges; out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
if (found) { if (found) {
EdgeToFace &edge_j = edges_map[j]; EdgeToFace &edge_j = edges_map[j];
out[edge_j.face * 3 + std::abs(edge_j.face_edge) - 1] = num_edges; out[edge_j.face](std::abs(edge_j.face_edge) - 1) = num_edges;
// Mark the edge as connected. // Mark the edge as connected.
edge_j.face = -1; edge_j.face = -1;
} }
@ -769,12 +769,12 @@ static inline std::vector<int> create_face_neighbors_index_impl(const indexed_tr
return out; return out;
} }
std::vector<int> create_face_neighbors_index(const indexed_triangle_set &its) std::vector<Vec3i> create_face_neighbors_index(const indexed_triangle_set &its)
{ {
return create_face_neighbors_index_impl(its, [](){}); return create_face_neighbors_index_impl(its, [](){});
} }
std::vector<int> create_face_neighbors_index(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback) std::vector<Vec3i> create_face_neighbors_index(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback)
{ {
return create_face_neighbors_index_impl(its, throw_on_cancel_callback); return create_face_neighbors_index_impl(its, throw_on_cancel_callback);
} }

View File

@ -93,9 +93,11 @@ private:
// vertex. // vertex.
std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangle_set &its); std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangle_set &its);
// Map from a facet edge to a neighbor face index or -1 if no neighbor exists. // Map from a face edge to a unique edge identifier or -1 if no neighbor exists.
std::vector<int> create_face_neighbors_index(const indexed_triangle_set &its); // Two neighbor faces share a unique edge identifier even if they are flipped.
std::vector<int> create_face_neighbors_index(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback); // Used for chaining slice lines into polygons.
std::vector<Vec3i> create_face_neighbors_index(const indexed_triangle_set &its);
std::vector<Vec3i> create_face_neighbors_index(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback);
// Remove degenerate faces, return number of faces removed. // Remove degenerate faces, return number of faces removed.
int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit = true); int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit = true);
// Remove vertices, which none of the faces references. Return number of freed vertices. // Remove vertices, which none of the faces references. Return number of freed vertices.

View File

@ -85,7 +85,7 @@ public:
// feGeneral, feTop, feBottom, feHorizontal // feGeneral, feTop, feBottom, feHorizontal
FacetEdgeType edge_type { FacetEdgeType::General }; FacetEdgeType edge_type { FacetEdgeType::General };
// Used by TriangleMeshSlicer::slice() to skip duplicate edges. // Used to skip duplicate edges.
enum { enum {
// Triangle edge added, because it has no neighbor. // Triangle edge added, because it has no neighbor.
EDGE0_NO_NEIGHBOR = 0x001, EDGE0_NO_NEIGHBOR = 0x001,
@ -112,8 +112,15 @@ enum class FacetSliceType {
// Return true, if the facet has been sliced and line_out has been filled. // Return true, if the facet has been sliced and line_out has been filled.
static FacetSliceType slice_facet( static FacetSliceType slice_facet(
float slice_z, const stl_vertex *vertices, const stl_triangle_vertex_indices &indices, const int *edge_neighbor, // Z height of the slice in XY plane. Scaled or unscaled (same as vertices[].z()).
const int idx_vertex_lowest, const bool horizontal, IntersectionLine *line_out) float slice_z,
// 3 vertices of the triangle, XY scaled. Z scaled or unscaled (same as slice_z).
const stl_vertex *vertices,
const stl_triangle_vertex_indices &indices,
const Vec3i &edge_neighbor,
const int idx_vertex_lowest,
const bool horizontal,
IntersectionLine &line_out)
{ {
IntersectionPoint points[3]; IntersectionPoint points[3];
size_t num_points = 0; size_t num_points = 0;
@ -129,7 +136,7 @@ static FacetSliceType slice_facet(
{ {
int k = (idx_vertex_lowest + j) % 3; int k = (idx_vertex_lowest + j) % 3;
int l = (k + 1) % 3; int l = (k + 1) % 3;
edge_id = edge_neighbor[k]; edge_id = edge_neighbor(k);
a_id = indices[k]; a_id = indices[k];
a = vertices + k; a = vertices + k;
b_id = indices[l]; b_id = indices[l];
@ -147,7 +154,7 @@ static FacetSliceType slice_facet(
FacetSliceType result = FacetSliceType::Slicing; FacetSliceType result = FacetSliceType::Slicing;
if (horizontal) { if (horizontal) {
// All three vertices are aligned with slice_z. // All three vertices are aligned with slice_z.
line_out->edge_type = IntersectionLine::FacetEdgeType::Horizontal; line_out.edge_type = IntersectionLine::FacetEdgeType::Horizontal;
result = FacetSliceType::Cutting; result = FacetSliceType::Cutting;
double normal = (v1.x() - v0.x()) * (v2.y() - v1.y()) - (v1.y() - v0.y()) * (v2.x() - v1.x()); double normal = (v1.x() - v0.x()) * (v2.y() - v1.y()) - (v1.y() - v0.y()) * (v2.x() - v1.x());
if (normal < 0) { if (normal < 0) {
@ -165,19 +172,19 @@ static FacetSliceType slice_facet(
// in respect to the cutting plane). // in respect to the cutting plane).
result = third_below ? FacetSliceType::Slicing : FacetSliceType::Cutting; result = third_below ? FacetSliceType::Slicing : FacetSliceType::Cutting;
if (third_below) { if (third_below) {
line_out->edge_type = IntersectionLine::FacetEdgeType::Top; line_out.edge_type = IntersectionLine::FacetEdgeType::Top;
std::swap(a, b); std::swap(a, b);
std::swap(a_id, b_id); std::swap(a_id, b_id);
} else } else
line_out->edge_type = IntersectionLine::FacetEdgeType::Bottom; line_out.edge_type = IntersectionLine::FacetEdgeType::Bottom;
} }
line_out->a.x() = a->x(); line_out.a.x() = a->x();
line_out->a.y() = a->y(); line_out.a.y() = a->y();
line_out->b.x() = b->x(); line_out.b.x() = b->x();
line_out->b.y() = b->y(); line_out.b.y() = b->y();
line_out->a_id = a_id; line_out.a_id = a_id;
line_out->b_id = b_id; line_out.b_id = b_id;
assert(line_out->a != line_out->b); assert(line_out.a != line_out.b);
return result; return result;
} }
@ -235,31 +242,31 @@ static FacetSliceType slice_facet(
// Facets must intersect each plane 0 or 2 times, or it may touch the plane at a single vertex only. // Facets must intersect each plane 0 or 2 times, or it may touch the plane at a single vertex only.
assert(num_points < 3); assert(num_points < 3);
if (num_points == 2) { if (num_points == 2) {
line_out->edge_type = IntersectionLine::FacetEdgeType::General; line_out.edge_type = IntersectionLine::FacetEdgeType::General;
line_out->a = (Point)points[1]; line_out.a = static_cast<const Point&>(points[1]);
line_out->b = (Point)points[0]; line_out.b = static_cast<const Point&>(points[0]);
line_out->a_id = points[1].point_id; line_out.a_id = points[1].point_id;
line_out->b_id = points[0].point_id; line_out.b_id = points[0].point_id;
line_out->edge_a_id = points[1].edge_id; line_out.edge_a_id = points[1].edge_id;
line_out->edge_b_id = points[0].edge_id; line_out.edge_b_id = points[0].edge_id;
// Not a zero lenght edge. // Not a zero lenght edge.
//FIXME slice_facet() may create zero length edges due to rounding of doubles into coord_t. //FIXME slice_facet() may create zero length edges due to rounding of doubles into coord_t.
//assert(line_out->a != line_out->b); //assert(line_out.a != line_out.b);
// The plane cuts at least one edge in a general position. // The plane cuts at least one edge in a general position.
assert(line_out->a_id == -1 || line_out->b_id == -1); assert(line_out.a_id == -1 || line_out.b_id == -1);
assert(line_out->edge_a_id != -1 || line_out->edge_b_id != -1); assert(line_out.edge_a_id != -1 || line_out.edge_b_id != -1);
// General slicing position, use the segment for both slicing and object cutting. // General slicing position, use the segment for both slicing and object cutting.
#if 0 #if 0
if (line_out->a_id != -1 && line_out->b_id != -1) { if (line_out.a_id != -1 && line_out.b_id != -1) {
// Solving a degenerate case, where both the intersections snapped to an edge. // Solving a degenerate case, where both the intersections snapped to an edge.
// Correctly classify the face as below or above based on the position of the 3rd point. // Correctly classify the face as below or above based on the position of the 3rd point.
int i = indices[0]; int i = indices[0];
if (i == line_out->a_id || i == line_out->b_id) if (i == line_out.a_id || i == line_out.b_id)
i = indices[1]; i = indices[1];
if (i == line_out->a_id || i == line_out->b_id) if (i == line_out.a_id || i == line_out.b_id)
i = indices[2]; i = indices[2];
assert(i != line_out->a_id && i != line_out->b_id); assert(i != line_out.a_id && i != line_out.b_id);
line_out->edge_type = ((m_use_quaternion ? line_out.edge_type = ((m_use_quaternion ?
(m_quaternion * this->v_scaled_shared[i]).z() (m_quaternion * this->v_scaled_shared[i]).z()
: this->v_scaled_shared[i].z()) < slice_z) ? IntersectionLine::FacetEdgeType::Top : IntersectionLine::FacetEdgeType::Bottom; : this->v_scaled_shared[i].z()) < slice_z) ? IntersectionLine::FacetEdgeType::Top : IntersectionLine::FacetEdgeType::Bottom;
} }
@ -269,40 +276,64 @@ static FacetSliceType slice_facet(
return FacetSliceType::NoSlice; return FacetSliceType::NoSlice;
} }
static void slice_facet_at_zs( template<typename TransformVertex>
void slice_facet_at_zs(
// Scaled or unscaled vertices. transform_vertex_fn may scale zs.
const std::vector<Vec3f> &mesh_vertices,
const TransformVertex &transform_vertex_fn,
const stl_triangle_vertex_indices &indices, const stl_triangle_vertex_indices &indices,
const std::vector<Vec3f> &v_scaled_shared, const Vec3i &facet_neighbors,
const int *facet_neighbors, // Scaled or unscaled zs. If vertices have their zs scaled or transform_vertex_fn scales them, then zs have to be scaled as well.
const Eigen::Quaternion<float, Eigen::DontAlign> *quaternion, const std::vector<float> &zs,
std::vector<IntersectionLines> *lines, std::vector<IntersectionLines> &lines,
boost::mutex *lines_mutex, boost::mutex &lines_mutex)
const std::vector<float> &scaled_zs)
{ {
stl_vertex vertices[3] { v_scaled_shared[indices(0)], v_scaled_shared[indices(1)], v_scaled_shared[indices(2)] }; stl_vertex vertices[3] { transform_vertex_fn(mesh_vertices[indices(0)]), transform_vertex_fn(mesh_vertices[indices(1)]), transform_vertex_fn(mesh_vertices[indices(2)]) };
if (quaternion)
for (int i = 0; i < 3; ++ i)
vertices[i] = *quaternion * vertices[i];
// find facet extents // find facet extents
const float min_z = fminf(vertices[0].z(), fminf(vertices[1].z(), vertices[2].z())); const float min_z = fminf(vertices[0].z(), fminf(vertices[1].z(), vertices[2].z()));
const float max_z = fmaxf(vertices[0].z(), fmaxf(vertices[1].z(), vertices[2].z())); const float max_z = fmaxf(vertices[0].z(), fmaxf(vertices[1].z(), vertices[2].z()));
// find layer extents // find layer extents
auto min_layer = std::lower_bound(scaled_zs.begin(), scaled_zs.end(), min_z); // first layer whose slice_z is >= min_z auto min_layer = std::lower_bound(zs.begin(), zs.end(), min_z); // first layer whose slice_z is >= min_z
auto max_layer = std::upper_bound(min_layer, scaled_zs.end(), max_z); // first layer whose slice_z is > max_z auto max_layer = std::upper_bound(min_layer, zs.end(), max_z); // first layer whose slice_z is > max_z
for (auto it = min_layer; it != max_layer; ++ it) { for (auto it = min_layer; it != max_layer; ++ it) {
IntersectionLine il; IntersectionLine il;
int idx_vertex_lowest = (vertices[1].z() == min_z) ? 1 : ((vertices[2].z() == min_z) ? 2 : 0); int idx_vertex_lowest = (vertices[1].z() == min_z) ? 1 : ((vertices[2].z() == min_z) ? 2 : 0);
if (slice_facet(*it, vertices, indices, facet_neighbors, idx_vertex_lowest, min_z == max_z, &il) == FacetSliceType::Slicing && if (slice_facet(*it, vertices, indices, facet_neighbors, idx_vertex_lowest, min_z == max_z, il) == FacetSliceType::Slicing &&
il.edge_type != IntersectionLine::FacetEdgeType::Horizontal) { il.edge_type != IntersectionLine::FacetEdgeType::Horizontal) {
// Ignore horizontal triangles. Any valid horizontal triangle must have a vertical triangle connected, otherwise the part has zero volume. // Ignore horizontal triangles. Any valid horizontal triangle must have a vertical triangle connected, otherwise the part has zero volume.
boost::lock_guard<boost::mutex> l(*lines_mutex); boost::lock_guard<boost::mutex> l(lines_mutex);
(*lines)[it - scaled_zs.begin()].emplace_back(il); lines[it - zs.begin()].emplace_back(il);
} }
} }
} }
template<typename TransformVertex, typename ThrowOnCancel>
inline std::vector<IntersectionLines> slice_make_lines(
const std::vector<stl_vertex> &vertices,
const TransformVertex &transform_vertex_fn,
const std::vector<stl_triangle_vertex_indices> &indices,
const std::vector<Vec3i> &face_neighbors,
const std::vector<float> &zs,
const ThrowOnCancel throw_on_cancel_fn)
{
std::vector<IntersectionLines> lines(zs.size(), IntersectionLines());
boost::mutex lines_mutex;
tbb::parallel_for(
tbb::blocked_range<int>(0, int(indices.size())),
[&vertices, &transform_vertex_fn, &indices, &face_neighbors, &zs, &lines, &lines_mutex, throw_on_cancel_fn](const tbb::blocked_range<int> &range) {
for (int face_idx = range.begin(); face_idx < range.end(); ++ face_idx) {
if ((face_idx & 0x0ffff) == 0)
throw_on_cancel_fn();
slice_facet_at_zs(vertices, transform_vertex_fn, indices[face_idx], face_neighbors[face_idx], zs, lines, lines_mutex);
}
}
);
return lines;
}
#if 0 #if 0
//FIXME Should this go away? For valid meshes the function slice_facet() returns Slicing //FIXME Should this go away? For valid meshes the function slice_facet() returns Slicing
// and sets edges of vertical triangles to produce only a single edge per pair of neighbor faces. // and sets edges of vertical triangles to produce only a single edge per pair of neighbor faces.
@ -384,9 +415,9 @@ struct OpenPolyline {
bool consumed; bool consumed;
}; };
// called by TriangleMeshSlicer::make_loops() to connect sliced triangles into closed loops and open polylines by the triangle connectivity. // called by make_loops() to connect sliced triangles into closed loops and open polylines by the triangle connectivity.
// Only connects segments crossing triangles of the same orientation. // Only connects segments crossing triangles of the same orientation.
static void chain_lines_by_triangle_connectivity(std::vector<IntersectionLine> &lines, Polygons &loops, std::vector<OpenPolyline> &open_polylines) static void chain_lines_by_triangle_connectivity(IntersectionLines &lines, Polygons &loops, std::vector<OpenPolyline> &open_polylines)
{ {
// Build a map of lines by edge_a_id and a_id. // Build a map of lines by edge_a_id and a_id.
std::vector<IntersectionLine*> by_edge_a_id; std::vector<IntersectionLine*> by_edge_a_id;
@ -501,7 +532,7 @@ std::vector<OpenPolyline*> open_polylines_sorted(std::vector<OpenPolyline> &open
return out; return out;
} }
// called by TriangleMeshSlicer::make_loops() to connect remaining open polylines across shared triangle edges and vertices. // called by make_loops() to connect remaining open polylines across shared triangle edges and vertices.
// Depending on "try_connect_reversed", it may or may not connect segments crossing triangles of opposite orientation. // Depending on "try_connect_reversed", it may or may not connect segments crossing triangles of opposite orientation.
static void chain_open_polylines_exact(std::vector<OpenPolyline> &open_polylines, Polygons &loops, bool try_connect_reversed) static void chain_open_polylines_exact(std::vector<OpenPolyline> &open_polylines, Polygons &loops, bool try_connect_reversed)
{ {
@ -599,7 +630,7 @@ static void chain_open_polylines_exact(std::vector<OpenPolyline> &open_polylines
} }
} }
// called by TriangleMeshSlicer::make_loops() to connect remaining open polylines across shared triangle edges and vertices, // called by make_loops() to connect remaining open polylines across shared triangle edges and vertices,
// possibly closing small gaps. // possibly closing small gaps.
// Depending on "try_connect_reversed", it may or may not connect segments crossing triangles of opposite orientation. // Depending on "try_connect_reversed", it may or may not connect segments crossing triangles of opposite orientation.
static void chain_open_polylines_close_gaps(std::vector<OpenPolyline> &open_polylines, Polygons &loops, double max_gap, bool try_connect_reversed) static void chain_open_polylines_close_gaps(std::vector<OpenPolyline> &open_polylines, Polygons &loops, double max_gap, bool try_connect_reversed)
@ -707,8 +738,11 @@ static void chain_open_polylines_close_gaps(std::vector<OpenPolyline> &open_poly
} }
} }
static void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) static Polygons make_loops(
// Lines will have their flags modified.
IntersectionLines &lines)
{ {
Polygons loops;
#if 0 #if 0
//FIXME slice_facet() may create zero length edges due to rounding of doubles into coord_t. //FIXME slice_facet() may create zero length edges due to rounding of doubles into coord_t.
//#ifdef _DEBUG //#ifdef _DEBUG
@ -736,7 +770,7 @@ static void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops)
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
std::vector<OpenPolyline> open_polylines; std::vector<OpenPolyline> open_polylines;
chain_lines_by_triangle_connectivity(lines, *loops, open_polylines); chain_lines_by_triangle_connectivity(lines, loops, open_polylines);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{ {
@ -752,8 +786,8 @@ static void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops)
// Now process the open polylines. // Now process the open polylines.
// Do it in two rounds, first try to connect in the same direction only, // Do it in two rounds, first try to connect in the same direction only,
// then try to connect the open polylines in reversed order as well. // then try to connect the open polylines in reversed order as well.
chain_open_polylines_exact(open_polylines, *loops, false); chain_open_polylines_exact(open_polylines, loops, false);
chain_open_polylines_exact(open_polylines, *loops, true); chain_open_polylines_exact(open_polylines, loops, true);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{ {
@ -781,8 +815,8 @@ static void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops)
} }
#else #else
const double max_gap = 2.; //mm const double max_gap = 2.; //mm
chain_open_polylines_close_gaps(open_polylines, *loops, max_gap, false); chain_open_polylines_close_gaps(open_polylines, loops, max_gap, false);
chain_open_polylines_close_gaps(open_polylines, *loops, max_gap, true); chain_open_polylines_close_gaps(open_polylines, loops, max_gap, true);
#endif #endif
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
@ -800,6 +834,60 @@ static void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops)
svg.Close(); svg.Close();
} }
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
return loops;
}
template<typename ThrowOnCancel>
static std::vector<Polygons> make_loops(
// Lines will have their flags modified.
std::vector<IntersectionLines> &lines,
const MeshSlicingParams &params,
ThrowOnCancel throw_on_cancel)
{
std::vector<Polygons> layers;
layers.resize(lines.size());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, lines.size()),
[&lines, &layers, &params, throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t line_idx = range.begin(); line_idx < range.end(); ++ line_idx) {
if ((line_idx & 0x0ffff) == 0)
throw_on_cancel();
Polygons &polygons = layers[line_idx];
polygons = make_loops(lines[line_idx]);
auto this_mode = line_idx < params.slicing_mode_normal_below_layer ? params.mode_below : params.mode;
if (! polygons.empty()) {
if (this_mode == MeshSlicingParams::SlicingMode::Positive) {
// Reorient all loops to be CCW.
for (Polygon& p : polygons)
p.make_counter_clockwise();
}
else if (this_mode == MeshSlicingParams::SlicingMode::PositiveLargestContour) {
// Keep just the largest polygon, make it CCW.
double max_area = 0.;
Polygon* max_area_polygon = nullptr;
for (Polygon& p : polygons) {
double a = p.area();
if (std::abs(a) > std::abs(max_area)) {
max_area = a;
max_area_polygon = &p;
}
}
assert(max_area_polygon != nullptr);
if (max_area < 0.)
max_area_polygon->reverse();
Polygon p(std::move(*max_area_polygon));
polygons.clear();
polygons.emplace_back(std::move(p));
}
}
}
}
);
return layers;
} }
// Used to cut the mesh into two halves. // Used to cut the mesh into two halves.
@ -808,15 +896,11 @@ static ExPolygons make_expolygons_simple(std::vector<IntersectionLine> &lines)
ExPolygons slices; ExPolygons slices;
Polygons holes; Polygons holes;
{ for (Polygon &loop : make_loops(lines))
Polygons loops; if (loop.area() >= 0.)
make_loops(lines, &loops); slices.emplace_back(std::move(loop));
for (Polygon &loop : loops) else
if (loop.area() >= 0.) holes.emplace_back(std::move(loop));
slices.emplace_back(std::move(loop));
else
holes.emplace_back(std::move(loop));
}
// If there are holes, then there should also be outer contours. // If there are holes, then there should also be outer contours.
assert(holes.empty() || ! slices.empty()); assert(holes.empty() || ! slices.empty());
@ -961,45 +1045,13 @@ static void make_expolygons(const Polygons &loops, const float closing_radius, c
union_ex(loops)); union_ex(loops));
} }
/* std::vector<Polygons> slice_mesh(
static void make_expolygons(std::vector<IntersectionLine> &lines, const float closing_radius, ExPolygons* slices) const indexed_triangle_set &mesh,
{ const std::vector<float> &zs,
Polygons pp;
make_loops(lines, &pp);
Slic3r::make_expolygons(pp, closing_radius, 0.f, slices);
}
*/
void TriangleMeshSlicer::init(const TriangleMesh *mesh, throw_on_cancel_callback_type throw_on_cancel)
{
if (! mesh->has_shared_vertices())
throw Slic3r::InvalidArgument("TriangleMeshSlicer was passed a mesh without shared vertices.");
this->init(&mesh->its, throw_on_cancel);
}
void TriangleMeshSlicer::init(const indexed_triangle_set *its, throw_on_cancel_callback_type throw_on_cancel)
{
m_its = its;
facets_edges = create_face_neighbors_index(*its, throw_on_cancel);
v_scaled_shared.assign(its->vertices.size(), stl_vertex());
for (size_t i = 0; i < v_scaled_shared.size(); ++ i)
this->v_scaled_shared[i] = its->vertices[i] / float(SCALING_FACTOR);
}
void TriangleMeshSlicer::set_up_direction(const Vec3f& up)
{
m_quaternion.setFromTwoVectors(up, Vec3f::UnitZ());
m_use_quaternion = true;
}
void TriangleMeshSlicer::slice(
const std::vector<float> &z,
const MeshSlicingParams &params, const MeshSlicingParams &params,
std::vector<Polygons> *layers, std::function<void()> throw_on_cancel)
throw_on_cancel_callback_type throw_on_cancel) const
{ {
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice"; BOOST_LOG_TRIVIAL(debug) << "slice_mesh to polygons";
/* /*
This method gets called with a list of unscaled Z coordinates and outputs This method gets called with a list of unscaled Z coordinates and outputs
@ -1027,72 +1079,28 @@ void TriangleMeshSlicer::slice(
NOTE: this method accepts a vector of floats because the mesh coordinate NOTE: this method accepts a vector of floats because the mesh coordinate
type is float. type is float.
*/ */
std::vector<IntersectionLines> lines;
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice_facet_at_zs";
std::vector<IntersectionLines> lines(z.size());
{ {
std::vector<float> scaled_z(z); std::vector<float> scaled_zs(zs);
for (float &z : scaled_z) for (float &z : scaled_zs)
z = scaled<float>(z); z = scaled<float>(z);
boost::mutex lines_mutex;
tbb::parallel_for( std::vector<stl_vertex> v_scaled_shared(mesh.vertices);
tbb::blocked_range<int>(0, int(m_its->indices.size())), for (stl_vertex &v : v_scaled_shared)
[&lines, &lines_mutex, &scaled_z, throw_on_cancel, this](const tbb::blocked_range<int>& range) { v *= float(1. / SCALING_FACTOR);
const Eigen::Quaternion<float, Eigen::DontAlign> *rotation = m_use_quaternion ? &m_quaternion : nullptr;
for (int facet_idx = range.begin(); facet_idx < range.end(); ++ facet_idx) { std::vector<Vec3i> facets_edges = create_face_neighbors_index(mesh);
if ((facet_idx & 0x0ffff) == 0) lines = params.trafo.matrix() == Transform3f::Identity().matrix() ?
throw_on_cancel(); slice_make_lines(v_scaled_shared, [](const Vec3f &p) { return p; }, mesh.indices, facets_edges, scaled_zs, throw_on_cancel) :
slice_facet_at_zs(m_its->indices[facet_idx], this->v_scaled_shared, this->facets_edges.data() + facet_idx * 3, rotation, &lines, &lines_mutex, scaled_z); slice_make_lines(v_scaled_shared, [&params](const Vec3f &p) { return params.trafo * p; }, mesh.indices, facets_edges, scaled_zs, throw_on_cancel);
} throw_on_cancel();
}
);
} }
throw_on_cancel();
// v_scaled_shared could be freed here // v_scaled_shared could be freed here
// build loops
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::_make_loops_do";
layers->resize(z.size());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, z.size()),
[&lines, &layers, &params, throw_on_cancel](const tbb::blocked_range<size_t>& range) {
for (size_t line_idx = range.begin(); line_idx < range.end(); ++ line_idx) {
if ((line_idx & 0x0ffff) == 0)
throw_on_cancel();
Polygons &polygons = (*layers)[line_idx]; std::vector<Polygons> layers = make_loops(lines, params, throw_on_cancel);
make_loops(lines[line_idx], &polygons);
auto this_mode = line_idx < params.slicing_mode_normal_below_layer ? params.mode_below : params.mode;
if (! polygons.empty()) {
if (this_mode == SlicingMode::Positive) {
// Reorient all loops to be CCW.
for (Polygon& p : polygons)
p.make_counter_clockwise();
} else if (this_mode == SlicingMode::PositiveLargestContour) {
// Keep just the largest polygon, make it CCW.
double max_area = 0.;
Polygon* max_area_polygon = nullptr;
for (Polygon& p : polygons) {
double a = p.area();
if (std::abs(a) > std::abs(max_area)) {
max_area = a;
max_area_polygon = &p;
}
}
assert(max_area_polygon != nullptr);
if (max_area < 0.)
max_area_polygon->reverse();
Polygon p(std::move(*max_area_polygon));
polygons.clear();
polygons.emplace_back(std::move(p));
}
}
}
}
);
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice finished";
#ifdef SLIC3R_DEBUG #ifdef SLIC3R_DEBUG
{ {
@ -1126,65 +1134,104 @@ void TriangleMeshSlicer::slice(
++ iRun; ++ iRun;
} }
#endif #endif
return layers;
} }
void TriangleMeshSlicer::slice( std::vector<ExPolygons> slice_mesh_ex(
// Where to slice. const indexed_triangle_set &mesh,
const std::vector<float> &z, const std::vector<float> &zs,
const MeshSlicingParamsExtended &params, const MeshSlicingParamsEx &params,
std::vector<ExPolygons> *layers, std::function<void()> throw_on_cancel)
throw_on_cancel_callback_type throw_on_cancel) const
{ {
std::vector<Polygons> layers_p; std::vector<Polygons> layers_p;
{ {
MeshSlicingParams slicing_params(params); MeshSlicingParams slicing_params(params);
if (params.mode == SlicingMode::PositiveLargestContour) if (params.mode == MeshSlicingParams::SlicingMode::PositiveLargestContour)
slicing_params.mode = SlicingMode::Positive; slicing_params.mode = MeshSlicingParams::SlicingMode::Positive;
if (params.mode_below == SlicingMode::PositiveLargestContour) if (params.mode_below == MeshSlicingParams::SlicingMode::PositiveLargestContour)
slicing_params.mode_below = SlicingMode::Positive; slicing_params.mode_below = MeshSlicingParams::SlicingMode::Positive;
this->slice(z, slicing_params, &layers_p, throw_on_cancel); layers_p = slice_mesh(mesh, zs, slicing_params, throw_on_cancel);
} }
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::make_expolygons in parallel - start"; BOOST_LOG_TRIVIAL(debug) << "slice_mesh make_expolygons in parallel - start";
layers->resize(z.size()); std::vector<ExPolygons> layers(layers_p.size(), ExPolygons{});
tbb::parallel_for( tbb::parallel_for(
tbb::blocked_range<size_t>(0, z.size()), tbb::blocked_range<size_t>(0, layers_p.size()),
[&layers_p, &params, layers, throw_on_cancel] [&layers_p, &params, &layers, throw_on_cancel]
(const tbb::blocked_range<size_t>& range) { (const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) { for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
#ifdef SLIC3R_TRIANGLEMESH_DEBUG #ifdef SLIC3R_TRIANGLEMESH_DEBUG
printf("Layer %zu (slice_z = %.2f):\n", layer_id, z[layer_id]); printf("Layer %zu (slice_z = %.2f):\n", layer_id, z[layer_id]);
#endif #endif
throw_on_cancel(); throw_on_cancel();
ExPolygons &expolygons = (*layers)[layer_id]; ExPolygons &expolygons = layers[layer_id];
Slic3r::make_expolygons(layers_p[layer_id], params.closing_radius, params.extra_offset, &expolygons); Slic3r::make_expolygons(layers_p[layer_id], params.closing_radius, params.extra_offset, &expolygons);
//FIXME simplify //FIXME simplify
const auto this_mode = layer_id < params.slicing_mode_normal_below_layer ? params.mode_below : params.mode; const auto this_mode = layer_id < params.slicing_mode_normal_below_layer ? params.mode_below : params.mode;
if (this_mode == SlicingMode::PositiveLargestContour) if (this_mode == MeshSlicingParams::SlicingMode::PositiveLargestContour)
keep_largest_contour_only(expolygons); keep_largest_contour_only(expolygons);
} }
}); });
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::make_expolygons in parallel - end"; BOOST_LOG_TRIVIAL(debug) << "slice_mesh make_expolygons in parallel - end";
return layers;
} }
static void triangulate_slice(indexed_triangle_set &its, IntersectionLines &lines, const std::vector<int> &slice_vertices, float z) static void triangulate_slice(
indexed_triangle_set &its,
IntersectionLines &lines,
std::vector<int> &slice_vertices,
// Vertices of the original (unsliced) mesh. Newly added vertices are those on the slice.
int num_original_vertices,
// Z height of the slice.
float z)
{ {
// BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - triangulating the cut"; sort_remove_duplicates(slice_vertices);
ExPolygons section = make_expolygons_simple(lines); // 1) Create map of the slice vertices from positions to mesh indices.
Pointf3s triangles = triangulate_expolygons_3d(section, z, true); // As the caller will likely add duplicate points when intersecting triangle edges, there will be duplicates.
std::vector<std::pair<Vec2f, int>> map_vertex_to_index; std::vector<std::pair<Vec2f, int>> map_vertex_to_index;
map_vertex_to_index.reserve(slice_vertices.size()); map_vertex_to_index.reserve(slice_vertices.size());
for (int i : slice_vertices) for (int i : slice_vertices)
map_vertex_to_index.emplace_back(to_2d(its.vertices[i]), i); map_vertex_to_index.emplace_back(to_2d(its.vertices[i]), i);
std::sort(map_vertex_to_index.begin(), map_vertex_to_index.end(), std::sort(map_vertex_to_index.begin(), map_vertex_to_index.end(),
[](const std::pair<Vec2f, int> &l, const std::pair<Vec2f, int> &r) { [](const std::pair<Vec2f, int> &l, const std::pair<Vec2f, int> &r) {
return l.first.x() < r.first.x() || (l.first.x() == r.first.x() && l.first.y() < r.first.y()); }); return l.first.x() < r.first.x() ||
(l.first.x() == r.first.x() && (l.first.y() < r.first.y() ||
(l.first.y() == r.first.y() && l.second < r.second))); });
// 2) Discover duplicate points on the slice. Remap duplicate vertices to a vertex with a lowest index.
{
std::vector<int> map_duplicate_vertex(int(its.vertices.size()) - num_original_vertices, -1);
int i = 0;
for (; i < int(map_vertex_to_index.size()); ++ i) {
const Vec2f &ipos = map_vertex_to_index[i].first;
const int iidx = map_vertex_to_index[i].second;
if (iidx >= num_original_vertices)
// map to itself
map_duplicate_vertex[iidx - num_original_vertices] = iidx;
int j = i;
for (++ j; j < int(map_vertex_to_index.size()) && ipos.x() == map_vertex_to_index[j].first.x() && ipos.y() == map_vertex_to_index[j].first.y(); ++ j) {
const int jidx = map_vertex_to_index[j].second;
assert(jidx >= num_original_vertices);
if (jidx >= num_original_vertices)
// map to the first vertex
map_duplicate_vertex[jidx - num_original_vertices] = iidx;
}
}
for (stl_triangle_vertex_indices &f : its.indices)
for (i = 0; i < 3; ++ i)
if (f(i) >= num_original_vertices)
f(i) = map_duplicate_vertex[f(i) - num_original_vertices];
}
size_t idx_vertex_new_first = its.vertices.size(); size_t idx_vertex_new_first = its.vertices.size();
Pointf3s triangles = triangulate_expolygons_3d(make_expolygons_simple(lines), z, true);
for (size_t i = 0; i < triangles.size(); ) { for (size_t i = 0; i < triangles.size(); ) {
stl_triangle_vertex_indices facet; stl_triangle_vertex_indices facet;
for (size_t j = 0; j < 3; ++ j) { for (size_t j = 0; j < 3; ++ j) {
Vec3f v = triangles[i++].cast<float>(); Vec3f v = triangles[i ++].cast<float>();
auto it = lower_bound_by_predicate(map_vertex_to_index.begin(), map_vertex_to_index.end(), auto it = lower_bound_by_predicate(map_vertex_to_index.begin(), map_vertex_to_index.end(),
[&v](const std::pair<Vec2f, int> &l) { return l.first.x() < v.x() || (l.first.x() == v.x() && l.first.y() < v.y()); }); [&v](const std::pair<Vec2f, int> &l) { return l.first.x() < v.x() || (l.first.x() == v.x() && l.first.y() < v.y()); });
int idx = -1; int idx = -1;
@ -1204,48 +1251,64 @@ static void triangulate_slice(indexed_triangle_set &its, IntersectionLines &line
} }
facet(j) = idx; facet(j) = idx;
} }
its.indices.emplace_back(facet); if (facet(0) != facet(1) && facet(0) != facet(2) && facet(1) != facet(2))
its.indices.emplace_back(facet);
} }
// Remove vertices, which are not referenced by any face.
its_compactify_vertices(its); its_compactify_vertices(its);
its_remove_degenerate_faces(its);
// Degenerate faces should not be created.
// its_remove_degenerate_faces(its);
} }
void TriangleMeshSlicer::cut(float z, indexed_triangle_set *upper, indexed_triangle_set *lower) const void cut_mesh(const indexed_triangle_set &mesh, float z, indexed_triangle_set *upper, indexed_triangle_set *lower)
{ {
assert(upper || lower); assert(upper || lower);
if (upper == nullptr && lower == nullptr) if (upper == nullptr && lower == nullptr)
return; return;
BOOST_LOG_TRIVIAL(trace) << "cut_mesh - slicing object";
if (upper) { if (upper) {
upper->clear(); upper->clear();
upper->vertices = m_its->vertices; upper->vertices = mesh.vertices;
upper->indices.reserve(m_its->indices.size()); upper->indices.reserve(mesh.indices.size());
} }
if (lower) { if (lower) {
lower->clear(); lower->clear();
lower->vertices = m_its->vertices; lower->vertices = mesh.vertices;
lower->indices.reserve(m_its->indices.size()); lower->indices.reserve(mesh.indices.size());
} }
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - slicing object";
const auto scaled_z = scaled<float>(z);
// To triangulate the caps after slicing. // To triangulate the caps after slicing.
IntersectionLines upper_lines, lower_lines; IntersectionLines upper_lines, lower_lines;
std::vector<int> upper_slice_vertices, lower_slice_vertices; std::vector<int> upper_slice_vertices, lower_slice_vertices;
std::vector<Vec3i> facets_edges = create_face_neighbors_index(mesh);
for (int facet_idx = 0; facet_idx < int(m_its->indices.size()); ++ facet_idx) { for (int facet_idx = 0; facet_idx < int(mesh.indices.size()); ++ facet_idx) {
const stl_triangle_vertex_indices &facet = m_its->indices[facet_idx]; const stl_triangle_vertex_indices &facet = mesh.indices[facet_idx];
Vec3f vertices[3] { m_its->vertices[facet(0)], m_its->vertices[facet(1)], m_its->vertices[facet(2)] }; Vec3f vertices[3] { mesh.vertices[facet(0)], mesh.vertices[facet(1)], mesh.vertices[facet(2)] };
stl_vertex vertices_scaled[3]{ this->v_scaled_shared[facet[0]], this->v_scaled_shared[facet[1]], this->v_scaled_shared[facet[2]] };
float min_z = std::min(vertices[0].z(), std::min(vertices[1].z(), vertices[2].z())); float min_z = std::min(vertices[0].z(), std::min(vertices[1].z(), vertices[2].z()));
float max_z = std::max(vertices[0].z(), std::max(vertices[1].z(), vertices[2].z())); float max_z = std::max(vertices[0].z(), std::max(vertices[1].z(), vertices[2].z()));
// intersect facet with cutting plane // intersect facet with cutting plane
IntersectionLine line; IntersectionLine line;
int idx_vertex_lowest = (vertices[1].z() == min_z) ? 1 : ((vertices[2].z() == min_z) ? 2 : 0); int idx_vertex_lowest = (vertices[1].z() == min_z) ? 1 : ((vertices[2].z() == min_z) ? 2 : 0);
FacetSliceType slice_type = slice_facet(scaled_z, vertices_scaled, m_its->indices[facet_idx], this->facets_edges.data() + facet_idx * 3, idx_vertex_lowest, min_z == max_z, &line); FacetSliceType slice_type = FacetSliceType::NoSlice;
if (z > min_z - EPSILON && z < max_z + EPSILON) {
Vec3f vertices_scaled[3];
for (int i = 0; i < 3; ++ i) {
const Vec3f &src = vertices[i];
Vec3f &dst = vertices_scaled[i];
dst.x() = scale_(src.x());
dst.y() = scale_(src.y());
dst.z() = src.z();
}
slice_type = slice_facet(z, vertices_scaled, mesh.indices[facet_idx], facets_edges[facet_idx], idx_vertex_lowest, min_z == max_z, line);
}
if (slice_type != FacetSliceType::NoSlice) { if (slice_type != FacetSliceType::NoSlice) {
// Save intersection lines for generating correct triangulations. // Save intersection lines for generating correct triangulations.
if (line.edge_type == IntersectionLine::FacetEdgeType::Top) { if (line.edge_type == IntersectionLine::FacetEdgeType::Top) {
@ -1274,6 +1337,8 @@ void TriangleMeshSlicer::cut(float z, indexed_triangle_set *upper, indexed_trian
// Facet is cut by the slicing plane. // Facet is cut by the slicing plane.
assert(slice_type == FacetSliceType::Slicing); assert(slice_type == FacetSliceType::Slicing);
assert(line.edge_type == IntersectionLine::FacetEdgeType::General); assert(line.edge_type == IntersectionLine::FacetEdgeType::General);
assert(line.edge_a_id != -1);
assert(line.edge_b_id != -1);
// look for the vertex on whose side of the slicing plane there are no other vertices // look for the vertex on whose side of the slicing plane there are no other vertices
int isolated_vertex = int isolated_vertex =
@ -1282,6 +1347,15 @@ void TriangleMeshSlicer::cut(float z, indexed_triangle_set *upper, indexed_trian
// get vertices starting from the isolated one // get vertices starting from the isolated one
int iv = isolated_vertex; int iv = isolated_vertex;
stl_vertex v0v1, v2v0;
assert(facets_edges[facet_idx](iv) == line.edge_a_id ||facets_edges[facet_idx](iv) == line.edge_b_id);
if (facets_edges[facet_idx](iv) == line.edge_a_id) {
v0v1 = to_3d(unscaled<float>(line.a), z);
v2v0 = to_3d(unscaled<float>(line.b), z);
} else {
v0v1 = to_3d(unscaled<float>(line.b), z);
v2v0 = to_3d(unscaled<float>(line.a), z);
}
const stl_vertex &v0 = vertices[iv]; const stl_vertex &v0 = vertices[iv];
const int iv0 = facet[iv]; const int iv0 = facet[iv];
if (++ iv == 3) if (++ iv == 3)
@ -1294,70 +1368,51 @@ void TriangleMeshSlicer::cut(float z, indexed_triangle_set *upper, indexed_trian
const int iv2 = facet[iv]; const int iv2 = facet[iv];
// intersect v0-v1 and v2-v0 with cutting plane and make new vertices // intersect v0-v1 and v2-v0 with cutting plane and make new vertices
auto new_vertex = [upper, lower, &upper_slice_vertices, &lower_slice_vertices](const Vec3f &a, const int ia, const Vec3f &b, const int ib, float z, float t) { auto new_vertex = [upper, lower, &upper_slice_vertices, &lower_slice_vertices](const Vec3f &a, const int ia, const Vec3f &b, const int ib, const Vec3f &c) {
int iupper, ilower; int iupper, ilower;
if (t <= 0.f) if (c == a)
iupper = ilower = ia; iupper = ilower = ia;
else if (t >= 1.f) else if (c == b)
iupper = ilower = ib; iupper = ilower = ib;
else { else {
const stl_vertex c = Vec3f(lerp(a.x(), b.x(), t), lerp(a.y(), b.y(), t), z); // Insert a new vertex into upper / lower.
if (c == a) if (upper) {
iupper = ilower = ia; iupper = int(upper->vertices.size());
else if (c == b) upper->vertices.emplace_back(c);
iupper = ilower = ib; upper_slice_vertices.emplace_back(iupper);
else { }
// Insert a new vertex into upper / lower. if (lower) {
if (upper) { ilower = int(lower->vertices.size());
iupper = int(upper->vertices.size()); lower->vertices.emplace_back(c);
upper->vertices.emplace_back(c); lower_slice_vertices.emplace_back(ilower);
upper_slice_vertices.emplace_back(iupper);
}
if (lower) {
ilower = int(lower->vertices.size());
lower->vertices.emplace_back(c);
lower_slice_vertices.emplace_back(ilower);
}
} }
} }
return std::make_pair(iupper, ilower); return std::make_pair(iupper, ilower);
}; };
auto [iv0v1_upper, iv0v1_lower] = new_vertex(v1, iv1, v0, iv0, z, (z - v1.z()) / (v0.z() - v1.z())); auto [iv0v1_upper, iv0v1_lower] = new_vertex(v1, iv1, v0, iv0, v0v1);
auto [iv2v0_upper, iv2v0_lower] = new_vertex(v2, iv2, v0, iv0, z, (z - v2.z()) / (v0.z() - v2.z())); auto [iv2v0_upper, iv2v0_lower] = new_vertex(v2, iv2, v0, iv0, v2v0);
auto new_face = [](indexed_triangle_set *its, int i, int j, int k) {
if (v0(2) > z) { if (its != nullptr && i != j && i != k && j != k)
if (upper != nullptr) its->indices.emplace_back(i, j, k);
upper->indices.emplace_back(iv0, iv0v1_upper, iv2v0_upper); };
if (lower != nullptr) {
lower->indices.emplace_back(iv1, iv2, iv0v1_lower); if (v0.z() > z) {
lower->indices.emplace_back(iv2, iv2v0_lower, iv0v1_lower); new_face(upper, iv0, iv0v1_upper, iv2v0_upper);
} new_face(lower, iv1, iv2, iv0v1_lower);
new_face(lower, iv2, iv2v0_lower, iv0v1_lower);
} else { } else {
if (upper != nullptr) { new_face(upper, iv1, iv2, iv0v1_upper);
upper->indices.emplace_back(iv1, iv2, iv0v1_upper); new_face(upper, iv2, iv2v0_upper, iv0v1_upper);
upper->indices.emplace_back(iv2, iv2v0_upper, iv0v1_upper); new_face(lower, iv0, iv0v1_lower, iv2v0_lower);
}
if (lower != nullptr)
lower->indices.emplace_back(iv0, iv0v1_lower, iv2v0_lower);
} }
} }
} }
if (upper != nullptr) if (upper != nullptr)
triangulate_slice(*upper, upper_lines, upper_slice_vertices, z); triangulate_slice(*upper, upper_lines, upper_slice_vertices, int(mesh.vertices.size()), z);
if (lower != nullptr) if (lower != nullptr)
triangulate_slice(*lower, lower_lines, lower_slice_vertices, z); triangulate_slice(*lower, lower_lines, lower_slice_vertices, int(mesh.vertices.size()), z);
}
void TriangleMeshSlicer::cut(float z, TriangleMesh *upper_mesh, TriangleMesh *lower_mesh) const
{
indexed_triangle_set upper, lower;
this->cut(z, upper_mesh ? &upper : nullptr, lower_mesh ? &lower : nullptr);
if (upper_mesh)
*upper_mesh = TriangleMesh(upper);
if (lower_mesh)
*lower_mesh = TriangleMesh(lower);
} }
} }

View File

@ -1,42 +1,36 @@
#ifndef slic3r_TriangleMeshSlicer_hpp_ #ifndef slic3r_TriangleMeshSlicer_hpp_
#define slic3r_TriangleMeshSlicer_hpp_ #define slic3r_TriangleMeshSlicer_hpp_
#include "libslic3r.h"
#include <admesh/stl.h>
#include <functional> #include <functional>
#include <vector> #include <vector>
#include <boost/thread.hpp>
#include "BoundingBox.hpp"
#include "Line.hpp"
#include "Point.hpp"
#include "Polygon.hpp" #include "Polygon.hpp"
#include "ExPolygon.hpp" #include "ExPolygon.hpp"
namespace Slic3r { namespace Slic3r {
class TriangleMesh;
enum class SlicingMode : uint32_t {
// Regular slicing, maintain all contours and their orientation.
Regular,
// Maintain all contours, orient all contours CCW, therefore all holes are being closed.
Positive,
// Orient all contours CCW and keep only the contour with the largest area.
// This mode is useful for slicing complex objects in vase mode.
PositiveLargestContour,
};
struct MeshSlicingParams struct MeshSlicingParams
{ {
enum class SlicingMode : uint32_t {
// Regular slicing, maintain all contours and their orientation.
Regular,
// Maintain all contours, orient all contours CCW, therefore all holes are being closed.
Positive,
// Orient all contours CCW and keep only the contour with the largest area.
// This mode is useful for slicing complex objects in vase mode.
PositiveLargestContour,
};
SlicingMode mode { SlicingMode::Regular }; SlicingMode mode { SlicingMode::Regular };
// For vase mode: below this layer a different slicing mode will be used to produce a single contour. // For vase mode: below this layer a different slicing mode will be used to produce a single contour.
// 0 = ignore. // 0 = ignore.
size_t slicing_mode_normal_below_layer { 0 }; size_t slicing_mode_normal_below_layer { 0 };
// Mode to apply below slicing_mode_normal_below_layer. Ignored if slicing_mode_nromal_below_layer == 0. // Mode to apply below slicing_mode_normal_below_layer. Ignored if slicing_mode_nromal_below_layer == 0.
SlicingMode mode_below { SlicingMode::Regular }; SlicingMode mode_below { SlicingMode::Regular };
// Transforming faces during the slicing.
Transform3f trafo { Transform3f::Identity() };
}; };
struct MeshSlicingParamsExtended : public MeshSlicingParams struct MeshSlicingParamsEx : public MeshSlicingParams
{ {
// Morphological closing operation when creating output expolygons. // Morphological closing operation when creating output expolygons.
float closing_radius { 0 }; float closing_radius { 0 };
@ -45,96 +39,44 @@ struct MeshSlicingParamsExtended : public MeshSlicingParams
// Resolution for contour simplification. // Resolution for contour simplification.
// 0 = don't simplify. // 0 = don't simplify.
double resolution { 0 }; double resolution { 0 };
// Transformation of the object owning the ModelVolume.
// Transform3d object_trafo;
}; };
class TriangleMeshSlicer std::vector<Polygons> slice_mesh(
const indexed_triangle_set &mesh,
const std::vector<float> &zs,
const MeshSlicingParams &params,
std::function<void()> throw_on_cancel = []{});
std::vector<ExPolygons> slice_mesh_ex(
const indexed_triangle_set &mesh,
const std::vector<float> &zs,
const MeshSlicingParamsEx &params,
std::function<void()> throw_on_cancel = []{});
inline std::vector<ExPolygons> slice_mesh_ex(
const indexed_triangle_set &mesh,
const std::vector<float> &zs,
std::function<void()> throw_on_cancel = []{})
{ {
public: return slice_mesh_ex(mesh, zs, MeshSlicingParamsEx{}, throw_on_cancel);
using throw_on_cancel_callback_type = std::function<void()>;
TriangleMeshSlicer() = default;
TriangleMeshSlicer(const TriangleMesh *mesh) { this->init(mesh, []{}); }
TriangleMeshSlicer(const indexed_triangle_set *its) { this->init(its, []{}); }
void init(const TriangleMesh *mesh, throw_on_cancel_callback_type throw_on_cancel);
void init(const indexed_triangle_set *its, throw_on_cancel_callback_type);
void slice(
const std::vector<float> &z,
const MeshSlicingParams &params,
std::vector<Polygons> *layers,
throw_on_cancel_callback_type throw_on_cancel = []{}) const;
void slice(
// Where to slice.
const std::vector<float> &z,
const MeshSlicingParamsExtended &params,
std::vector<ExPolygons> *layers,
throw_on_cancel_callback_type throw_on_cancel = []{}) const;
void cut(float z, indexed_triangle_set *upper, indexed_triangle_set *lower) const;
void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const;
void set_up_direction(const Vec3f& up);
private:
const indexed_triangle_set *m_its { nullptr };
// const TriangleMesh *mesh { nullptr };
// Map from a facet to an edge index.
std::vector<int> facets_edges;
// Scaled copy of this->mesh->stl.v_shared
std::vector<stl_vertex> v_scaled_shared;
// Quaternion that will be used to rotate every facet before the slicing
Eigen::Quaternion<float, Eigen::DontAlign> m_quaternion;
// Whether or not the above quaterion should be used
bool m_use_quaternion = false;
};
inline void slice_mesh(
const TriangleMesh &mesh,
const std::vector<float> &z,
std::vector<Polygons> &layers,
TriangleMeshSlicer::throw_on_cancel_callback_type thr = []{})
{
if (! mesh.empty()) {
TriangleMeshSlicer slicer(&mesh);
slicer.slice(z, MeshSlicingParams{}, &layers, thr);
}
} }
inline void slice_mesh( inline std::vector<ExPolygons> slice_mesh_ex(
const TriangleMesh &mesh, const indexed_triangle_set &mesh,
const std::vector<float> &z, const std::vector<float> &zs,
const MeshSlicingParamsExtended &params, float closing_radius,
std::vector<ExPolygons> &layers, std::function<void()> throw_on_cancel = []{})
TriangleMeshSlicer::throw_on_cancel_callback_type thr = []{})
{ {
if (! mesh.empty()) { MeshSlicingParamsEx params;
TriangleMeshSlicer slicer(&mesh);
slicer.slice(z, params, &layers, thr);
}
}
inline void slice_mesh(
const TriangleMesh &mesh,
const std::vector<float> &z,
float closing_radius,
std::vector<ExPolygons> &layers,
TriangleMeshSlicer::throw_on_cancel_callback_type thr = []{})
{
MeshSlicingParamsExtended params;
params.closing_radius = closing_radius; params.closing_radius = closing_radius;
slice_mesh(mesh, z, params, layers); return slice_mesh_ex(mesh, zs, params, throw_on_cancel);
} }
inline void slice_mesh( void cut_mesh(
const TriangleMesh &mesh, const indexed_triangle_set &mesh,
const std::vector<float> &z, float z,
std::vector<ExPolygons> &layers, indexed_triangle_set *upper,
TriangleMeshSlicer::throw_on_cancel_callback_type thr = []{}) indexed_triangle_set *lower);
{
slice_mesh(mesh, z, MeshSlicingParamsExtended{}, layers);
}
} }

View File

@ -29,7 +29,6 @@ void MeshClipper::set_mesh(const TriangleMesh& mesh)
m_mesh = &mesh; m_mesh = &mesh;
m_triangles_valid = false; m_triangles_valid = false;
m_triangles2d.resize(0); m_triangles2d.resize(0);
m_tms.reset(nullptr);
} }
} }
@ -68,11 +67,6 @@ void MeshClipper::render_cut()
void MeshClipper::recalculate_triangles() void MeshClipper::recalculate_triangles()
{ {
if (! m_tms) {
m_tms.reset(new TriangleMeshSlicer);
m_tms->init(m_mesh, [](){});
}
const Transform3f& instance_matrix_no_translation_no_scaling = m_trafo.get_matrix(true,false,true).cast<float>(); const Transform3f& instance_matrix_no_translation_no_scaling = m_trafo.get_matrix(true,false,true).cast<float>();
const Vec3f& scaling = m_trafo.get_scaling_factor().cast<float>(); const Vec3f& scaling = m_trafo.get_scaling_factor().cast<float>();
// Calculate clipping plane normal in mesh coordinates. // Calculate clipping plane normal in mesh coordinates.
@ -82,16 +76,15 @@ void MeshClipper::recalculate_triangles()
float height_mesh = m_plane.distance(m_trafo.get_offset()) * (up_noscale.norm()/up.norm()); float height_mesh = m_plane.distance(m_trafo.get_offset()) * (up_noscale.norm()/up.norm());
// Now do the cutting // Now do the cutting
std::vector<ExPolygons> list_of_expolys; MeshSlicingParamsEx slicing_params;
m_tms->set_up_direction(up.cast<float>()); slicing_params.trafo.rotate(Eigen::Quaternion<double, Eigen::DontAlign>::FromTwoVectors(up, Vec3d::UnitZ()).cast<float>());
m_tms->slice(std::vector<float>{height_mesh}, MeshSlicingParamsExtended{}, &list_of_expolys);
assert(m_mesh->has_shared_vertices());
std::vector<ExPolygons> list_of_expolys = slice_mesh_ex(m_mesh->its, std::vector<float>{height_mesh}, slicing_params);
if (m_negative_mesh && !m_negative_mesh->empty()) { if (m_negative_mesh && !m_negative_mesh->empty()) {
TriangleMeshSlicer negative_tms{m_negative_mesh}; assert(m_negative_mesh->has_shared_vertices());
negative_tms.set_up_direction(up.cast<float>()); std::vector<ExPolygons> neg_polys = slice_mesh_ex(m_negative_mesh->its, std::vector<float>{height_mesh}, slicing_params);
std::vector<ExPolygons> neg_polys;
negative_tms.slice(std::vector<float>{height_mesh}, MeshSlicingParamsExtended{}, &neg_polys);
list_of_expolys.front() = diff_ex(list_of_expolys.front(), neg_polys.front()); list_of_expolys.front() = diff_ex(list_of_expolys.front(), neg_polys.front());
} }

View File

@ -3,7 +3,6 @@
#include "libslic3r/Point.hpp" #include "libslic3r/Point.hpp"
#include "libslic3r/Geometry.hpp" #include "libslic3r/Geometry.hpp"
#include "libslic3r/TriangleMeshSlicer.hpp"
#include "libslic3r/SLA/IndexedMesh.hpp" #include "libslic3r/SLA/IndexedMesh.hpp"
#include "admesh/stl.h" #include "admesh/stl.h"
@ -96,7 +95,6 @@ private:
std::vector<Vec2f> m_triangles2d; std::vector<Vec2f> m_triangles2d;
GLIndexedVertexArray m_vertex_array; GLIndexedVertexArray m_vertex_array;
bool m_triangles_valid = false; bool m_triangles_valid = false;
std::unique_ptr<TriangleMeshSlicer> m_tms;
}; };

View File

@ -356,27 +356,25 @@ SCENARIO( "TriangleMeshSlicer: Cut behavior.") {
TriangleMesh cube(vertices, facets); TriangleMesh cube(vertices, facets);
cube.repair(); cube.repair();
WHEN( "Object is cut at the bottom") { WHEN( "Object is cut at the bottom") {
TriangleMesh upper {}; indexed_triangle_set upper {};
TriangleMesh lower {}; indexed_triangle_set lower {};
TriangleMeshSlicer slicer(&cube); cut_mesh(cube.its, 0, &upper, &lower);
slicer.cut(0, &upper, &lower);
THEN("Upper mesh has all facets except those belonging to the slicing plane.") { THEN("Upper mesh has all facets except those belonging to the slicing plane.") {
REQUIRE(upper.facets_count() == 12); REQUIRE(upper.indices.size() == 12);
} }
THEN("Lower mesh has no facets.") { THEN("Lower mesh has no facets.") {
REQUIRE(lower.facets_count() == 0); REQUIRE(lower.indices.size() == 0);
} }
} }
WHEN( "Object is cut at the center") { WHEN( "Object is cut at the center") {
TriangleMesh upper {}; indexed_triangle_set upper {};
TriangleMesh lower {}; indexed_triangle_set lower {};
TriangleMeshSlicer slicer(&cube); cut_mesh(cube.its, 10, &upper, &lower);
slicer.cut(10, &upper, &lower);
THEN("Upper mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") { THEN("Upper mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
REQUIRE(upper.facets_count() == 2+12+6); REQUIRE(upper.indices.size() == 2+12+6);
} }
THEN("Lower mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") { THEN("Lower mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
REQUIRE(lower.facets_count() == 2+12+6); REQUIRE(lower.indices.size() == 2+12+6);
} }
} }
} }

View File

@ -320,8 +320,8 @@ static void recreate_object_from_rasters(const std::string &objname, float lh) {
mesh.translate(tr.x(), tr.y(), tr.z()); mesh.translate(tr.x(), tr.y(), tr.z());
bb = mesh.bounding_box(); bb = mesh.bounding_box();
std::vector<ExPolygons> layers; assert(mesh.has_shared_vertices());
slice_mesh(mesh, grid(float(bb.min.z()) + lh, float(bb.max.z()), lh), layers); std::vector<ExPolygons> layers = slice_mesh_ex(mesh.its, grid(float(bb.min.z()) + lh, float(bb.max.z()), lh));
sla::RasterBase::Resolution res{2560, 1440}; sla::RasterBase::Resolution res{2560, 1440};
double disp_w = 120.96; double disp_w = 120.96;

View File

@ -57,8 +57,8 @@ TEST_CASE("Support point generator should be deterministic if seeded",
auto layer_h = 0.05f; auto layer_h = 0.05f;
auto slicegrid = grid(float(gnd), float(zmax), layer_h); auto slicegrid = grid(float(gnd), float(zmax), layer_h);
std::vector<ExPolygons> slices; assert(mesh.has_shared_vertices());
slice_mesh(mesh, slicegrid, CLOSING_RADIUS, slices); std::vector<ExPolygons> slices = slice_mesh_ex(mesh.its, slicegrid, CLOSING_RADIUS);
point_gen.seed(0); point_gen.seed(0);
point_gen.execute(slices, slicegrid); point_gen.execute(slices, slicegrid);

View File

@ -102,7 +102,8 @@ void test_supports(const std::string &obj_filename,
auto layer_h = 0.05f; auto layer_h = 0.05f;
out.slicegrid = grid(float(gnd), float(zmax), layer_h); out.slicegrid = grid(float(gnd), float(zmax), layer_h);
slice_mesh(mesh, out.slicegrid, CLOSING_RADIUS, out.model_slices); assert(mesh.has_shared_vertices());
out.model_slices = slice_mesh_ex(mesh.its, out.slicegrid, CLOSING_RADIUS);
sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{}); sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{});
// Create the special index-triangle mesh with spatial indexing which // Create the special index-triangle mesh with spatial indexing which
@ -466,10 +467,10 @@ sla::SupportPoints calc_support_pts(
const sla::SupportPointGenerator::Config &cfg) const sla::SupportPointGenerator::Config &cfg)
{ {
// Prepare the slice grid and the slices // Prepare the slice grid and the slices
std::vector<ExPolygons> slices;
auto bb = cast<float>(mesh.bounding_box()); auto bb = cast<float>(mesh.bounding_box());
std::vector<float> heights = grid(bb.min.z(), bb.max.z(), 0.1f); std::vector<float> heights = grid(bb.min.z(), bb.max.z(), 0.1f);
slice_mesh(mesh, heights, CLOSING_RADIUS, slices); assert(mesh.has_shared_vertices());
std::vector<ExPolygons> slices = slice_mesh_ex(mesh.its, heights, CLOSING_RADIUS);
// Prepare the support point calculator // Prepare the support point calculator
sla::IndexedMesh emesh{mesh}; sla::IndexedMesh emesh{mesh};

View File

@ -181,8 +181,7 @@ TriangleMesh::slice(z)
// convert doubles to floats // convert doubles to floats
std::vector<float> z_f = cast<float>(z); std::vector<float> z_f = cast<float>(z);
std::vector<ExPolygons> layers; std::vector<ExPolygons> layers = slice_mesh_ex(THIS->its, z_f, 0.049f);
slice_mesh(*THIS, z_f, 0.049f, layers);
AV* layers_av = newAV(); AV* layers_av = newAV();
size_t len = layers.size(); size_t len = layers.size();
@ -202,14 +201,18 @@ TriangleMesh::slice(z)
RETVAL RETVAL
void void
TriangleMesh::cut(z, upper, lower) TriangleMesh::cut(z, upper_mesh, lower_mesh)
float z; float z;
TriangleMesh* upper; TriangleMesh* upper_mesh;
TriangleMesh* lower; TriangleMesh* lower_mesh;
CODE: CODE:
THIS->require_shared_vertices(); // TriangleMeshSlicer needs this THIS->require_shared_vertices(); // TriangleMeshSlicer needs this
TriangleMeshSlicer mslicer(THIS); indexed_triangle_set upper, lower;
mslicer.cut(z, upper, lower); cut_mesh(THIS->its, z, upper_mesh ? &upper : nullptr, lower_mesh ? &lower : nullptr);
if (upper_mesh)
*upper_mesh = TriangleMesh(upper);
if (lower_mesh)
*lower_mesh = TriangleMesh(lower);
std::vector<double> std::vector<double>
TriangleMesh::bb3() TriangleMesh::bb3()