SLATreeSupports generator now takes account for holes and can build supports through them
This commit is contained in:
parent
bc0db7dc91
commit
73af7c64b8
6 changed files with 103 additions and 79 deletions
|
@ -263,16 +263,13 @@ EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
|
|||
}
|
||||
|
||||
EigenMesh3D::hit_result
|
||||
EigenMesh3D::query_ray_hit(const Vec3d &s,
|
||||
const Vec3d &dir,
|
||||
const std::vector<DrainHole>* holes
|
||||
) const
|
||||
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
|
||||
{
|
||||
assert(is_approx(dir.norm(), 1.));
|
||||
igl::Hit hit;
|
||||
hit.t = std::numeric_limits<float>::infinity();
|
||||
|
||||
if (! holes) {
|
||||
if (m_holes.empty()) {
|
||||
m_aabb->intersect_ray(m_V, m_F, s, dir, hit);
|
||||
hit_result ret(*this);
|
||||
ret.m_t = double(hit.t);
|
||||
|
@ -286,7 +283,7 @@ EigenMesh3D::query_ray_hit(const Vec3d &s,
|
|||
else {
|
||||
// If there are holes, the hit_results will be made by
|
||||
// query_ray_hits (object) and filter_hits (holes):
|
||||
return filter_hits(query_ray_hits(s, dir), *holes);
|
||||
return filter_hits(query_ray_hits(s, dir));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -316,46 +313,59 @@ EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
|
|||
}
|
||||
|
||||
EigenMesh3D::hit_result EigenMesh3D::filter_hits(
|
||||
const std::vector<EigenMesh3D::hit_result>& object_hits,
|
||||
const std::vector<DrainHole>& holes) const
|
||||
const std::vector<EigenMesh3D::hit_result>& object_hits) const
|
||||
{
|
||||
assert(! m_holes.empty());
|
||||
hit_result out(*this);
|
||||
out.m_t = std::nan("");
|
||||
|
||||
if (! holes.empty() && ! object_hits.empty()) {
|
||||
Vec3d s = object_hits.front().source();
|
||||
Vec3d dir = object_hits.front().direction();
|
||||
if (object_hits.empty())
|
||||
return out;
|
||||
|
||||
struct HoleHit {
|
||||
HoleHit(float t_p, const Vec3d& normal_p, bool entry_p) :
|
||||
t(t_p), normal(normal_p), entry(entry_p) {}
|
||||
float t;
|
||||
Vec3d normal;
|
||||
bool entry;
|
||||
};
|
||||
std::vector<HoleHit> hole_isects;
|
||||
const Vec3d& s = object_hits.front().source();
|
||||
const Vec3d& dir = object_hits.front().direction();
|
||||
|
||||
// Collect hits on all holes, preserve information about entry/exit
|
||||
for (const sla::DrainHole& hole : holes) {
|
||||
std::array<std::pair<float, Vec3d>, 2> isects;
|
||||
if (hole.get_intersections(s.cast<float>(),
|
||||
dir.cast<float>(), isects)) {
|
||||
hole_isects.emplace_back(isects[0].first, isects[0].second, true);
|
||||
hole_isects.emplace_back(isects[1].first, isects[1].second, false);
|
||||
}
|
||||
// A helper struct to save an intersetion with a hole
|
||||
struct HoleHit {
|
||||
HoleHit(float t_p, const Vec3d& normal_p, bool entry_p) :
|
||||
t(t_p), normal(normal_p), entry(entry_p) {}
|
||||
float t;
|
||||
Vec3d normal;
|
||||
bool entry;
|
||||
};
|
||||
std::vector<HoleHit> hole_isects;
|
||||
|
||||
// Collect hits on all holes, preserve information about entry/exit
|
||||
for (const sla::DrainHole& hole : m_holes) {
|
||||
std::array<std::pair<float, Vec3d>, 2> isects;
|
||||
if (hole.get_intersections(s.cast<float>(),
|
||||
dir.cast<float>(), isects)) {
|
||||
hole_isects.emplace_back(isects[0].first, isects[0].second, true);
|
||||
hole_isects.emplace_back(isects[1].first, isects[1].second, false);
|
||||
}
|
||||
// Holes can intersect each other, sort the hits by t
|
||||
std::sort(hole_isects.begin(), hole_isects.end(),
|
||||
[](const HoleHit& a, const HoleHit& b) { return a.t < b.t; });
|
||||
}
|
||||
// Remove hole hits behind the source
|
||||
for (int i=0; i<int(hole_isects.size()); ++i)
|
||||
if (hole_isects[i].t < 0.f)
|
||||
hole_isects.erase(hole_isects.begin() + (i--));
|
||||
|
||||
// Now inspect the intersections with object and holes, keep track how
|
||||
// deep are we nested in mesh/holes and pick the correct intersection
|
||||
int hole_nested = 0;
|
||||
int object_nested = 0;
|
||||
// Holes can intersect each other, sort the hits by t
|
||||
std::sort(hole_isects.begin(), hole_isects.end(),
|
||||
[](const HoleHit& a, const HoleHit& b) { return a.t < b.t; });
|
||||
|
||||
// Now inspect the intersections with object and holes, in the order of
|
||||
// increasing distance. Keep track how deep are we nested in mesh/holes and
|
||||
// pick the correct intersection.
|
||||
// This needs to be done twice - first to find out how deep in the structure
|
||||
// the source is, then to pick the correct intersection.
|
||||
int hole_nested = 0;
|
||||
int object_nested = 0;
|
||||
for (int dry_run=1; dry_run>=0; --dry_run) {
|
||||
hole_nested = -hole_nested;
|
||||
object_nested = -object_nested;
|
||||
|
||||
bool is_hole = false;
|
||||
bool is_entry = false;
|
||||
const HoleHit* next_hole_hit = &hole_isects.front();
|
||||
const HoleHit* next_hole_hit = hole_isects.empty() ? nullptr : &hole_isects.front();
|
||||
const hit_result* next_mesh_hit = &object_hits.front();
|
||||
|
||||
while (next_hole_hit || next_mesh_hit) {
|
||||
|
@ -367,23 +377,25 @@ EigenMesh3D::hit_result EigenMesh3D::filter_hits(
|
|||
// Is this entry or exit hit?
|
||||
is_entry = is_hole ? next_hole_hit->entry : ! next_mesh_hit->is_inside();
|
||||
|
||||
if (! is_hole && is_entry && hole_nested == 0) {
|
||||
// This mesh point is the one we seek
|
||||
return *next_mesh_hit;
|
||||
}
|
||||
if (is_hole && ! is_entry && object_nested != 0) {
|
||||
// This holehit is the one we seek
|
||||
out.m_t = next_hole_hit->t;
|
||||
out.m_normal = next_hole_hit->normal;
|
||||
out.m_source = s;
|
||||
out.m_dir = dir;
|
||||
return out;
|
||||
if (! dry_run) {
|
||||
if (! is_hole && hole_nested == 0) {
|
||||
// This is a valid object hit
|
||||
return *next_mesh_hit;
|
||||
}
|
||||
if (is_hole && ! is_entry && object_nested != 0) {
|
||||
// This holehit is the one we seek
|
||||
out.m_t = next_hole_hit->t;
|
||||
out.m_normal = next_hole_hit->normal;
|
||||
out.m_source = s;
|
||||
out.m_dir = dir;
|
||||
return out;
|
||||
}
|
||||
}
|
||||
|
||||
hole_nested += (is_hole ? (is_entry ? 1 : -1) : 0);
|
||||
object_nested += (! is_hole ? (is_entry ? 1 : -1) : 0);
|
||||
// Increase/decrease the counter
|
||||
(is_hole ? hole_nested : object_nested) += (is_entry ? 1 : -1);
|
||||
|
||||
// Advance the pointer
|
||||
// Advance the respective pointer
|
||||
if (is_hole && next_hole_hit++ == &hole_isects.back())
|
||||
next_hole_hit = nullptr;
|
||||
if (! is_hole && next_mesh_hit++ == &object_hits.back())
|
||||
|
@ -391,6 +403,7 @@ EigenMesh3D::hit_result EigenMesh3D::filter_hits(
|
|||
}
|
||||
}
|
||||
|
||||
// if we got here, the ray ended up in infinity
|
||||
return out;
|
||||
}
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#define SLA_EIGENMESH3D_H
|
||||
|
||||
#include <libslic3r/SLA/Common.hpp>
|
||||
#include "libslic3r/SLA/Hollowing.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
|
@ -10,7 +11,6 @@ class TriangleMesh;
|
|||
namespace sla {
|
||||
|
||||
struct Contour3D;
|
||||
struct DrainHole;
|
||||
|
||||
/// An index-triangle structure for libIGL functions. Also serves as an
|
||||
/// alternative (raw) input format for the SLASupportTree.
|
||||
|
@ -23,6 +23,11 @@ class EigenMesh3D {
|
|||
double m_ground_level = 0, m_gnd_offset = 0;
|
||||
|
||||
std::unique_ptr<AABBImpl> m_aabb;
|
||||
|
||||
// This holds a copy of holes in the mesh. Initialized externally
|
||||
// by load_mesh setter.
|
||||
std::vector<DrainHole> m_holes;
|
||||
|
||||
public:
|
||||
|
||||
EigenMesh3D(const TriangleMesh&);
|
||||
|
@ -41,57 +46,58 @@ public:
|
|||
|
||||
// Result of a raycast
|
||||
class hit_result {
|
||||
double m_t = std::nan("");
|
||||
// m_t holds a distance from m_source to the intersection.
|
||||
double m_t = infty();
|
||||
const EigenMesh3D *m_mesh = nullptr;
|
||||
Vec3d m_dir;
|
||||
Vec3d m_source;
|
||||
Vec3d m_normal = Vec3d::Zero();
|
||||
Vec3d m_normal;
|
||||
friend class EigenMesh3D;
|
||||
|
||||
// A valid object of this class can only be obtained from
|
||||
// EigenMesh3D::query_ray_hit method.
|
||||
explicit inline hit_result(const EigenMesh3D& em): m_mesh(&em) {}
|
||||
public:
|
||||
// This denotes no hit on the mesh.
|
||||
static inline constexpr double infty() { return std::numeric_limits<double>::infinity(); }
|
||||
|
||||
// This can create a placeholder object which is invalid (not created
|
||||
// by a query_ray_hit call) but the distance can be preset to
|
||||
// a specific value for distinguishing the placeholder.
|
||||
inline hit_result(double val = std::nan("")): m_t(val) {}
|
||||
explicit inline hit_result(double val = infty()) : m_t(val) {}
|
||||
|
||||
inline double distance() const { return m_t; }
|
||||
inline const Vec3d& direction() const { return m_dir; }
|
||||
inline const Vec3d& source() const { return m_source; }
|
||||
inline Vec3d position() const { return m_source + m_dir * m_t; }
|
||||
inline bool is_valid() const { return m_mesh != nullptr; }
|
||||
inline bool is_hit() const { return m_normal != Vec3d::Zero(); }
|
||||
|
||||
inline bool is_hit() const { return m_t != infty(); }
|
||||
|
||||
// Hit_result can decay into a double as the hit distance.
|
||||
inline operator double() const { return distance(); }
|
||||
|
||||
inline const Vec3d& normal() const {
|
||||
if(!is_valid())
|
||||
throw std::runtime_error("EigenMesh3D::hit_result::normal() "
|
||||
"called on invalid object.");
|
||||
assert(is_valid());
|
||||
return m_normal;
|
||||
}
|
||||
|
||||
|
||||
inline bool is_inside() const {
|
||||
return normal().dot(m_dir) > 0;
|
||||
return is_hit() && normal().dot(m_dir) > 0;
|
||||
}
|
||||
};
|
||||
|
||||
// Inform the object about location of holes
|
||||
// creates internal copy of the vector
|
||||
void load_holes(const std::vector<DrainHole>& holes) {
|
||||
m_holes = holes;
|
||||
}
|
||||
|
||||
// Casting a ray on the mesh, returns the distance where the hit occures.
|
||||
hit_result query_ray_hit(const Vec3d &s,
|
||||
const Vec3d &dir,
|
||||
const std::vector<DrainHole>* holes = nullptr) const;
|
||||
hit_result query_ray_hit(const Vec3d &s, const Vec3d &dir) const;
|
||||
|
||||
// Casts a ray on the mesh and returns all hits
|
||||
std::vector<hit_result> query_ray_hits(const Vec3d &s, const Vec3d &dir) const;
|
||||
|
||||
// Iterates over hits and holes and returns the true hit, possibly
|
||||
// on the inside of a hole.
|
||||
hit_result filter_hits(const std::vector<EigenMesh3D::hit_result>& obj_hits,
|
||||
const std::vector<DrainHole>& holes) const;
|
||||
hit_result filter_hits(const std::vector<EigenMesh3D::hit_result>& obj_hits) const;
|
||||
|
||||
class si_result {
|
||||
double m_value;
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#include <libslic3r/TriangleMesh.hpp>
|
||||
#include <libslic3r/SLA/Hollowing.hpp>
|
||||
#include <libslic3r/SLA/Contour3D.hpp>
|
||||
#include <libslic3r/SLA/EigenMesh3D.hpp>
|
||||
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
|
@ -152,7 +153,7 @@ bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
|
|||
const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());
|
||||
|
||||
for (size_t i=0; i<2; ++i)
|
||||
out[i] = std::make_pair(std::nan(""), Vec3d::Zero());
|
||||
out[i] = std::make_pair(sla::EigenMesh3D::hit_result::infty(), Vec3d::Zero());
|
||||
|
||||
const float sqr_radius = pow(radius, 2.f);
|
||||
|
||||
|
@ -170,6 +171,11 @@ bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
|
|||
if (! is_approx(ray.direction().dot(normal), 0.f)) {
|
||||
for (size_t i=1; i<=1; --i) {
|
||||
Vec3f cylinder_center = pos+i*height*normal;
|
||||
if (i == 0) {
|
||||
// The hole base can be identical to mesh surface if it is flat
|
||||
// let's better move the base outward a bit
|
||||
cylinder_center -= EPSILON*normal;
|
||||
}
|
||||
base = Eigen::Hyperplane<float, 3>(normal, cylinder_center);
|
||||
Vec3f intersection = ray.intersectionPoint(base);
|
||||
// Only accept the point if it is inside the cylinder base.
|
||||
|
@ -184,7 +190,7 @@ bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
|
|||
{
|
||||
// In case the line was perpendicular to the cylinder axis, previous
|
||||
// block was skipped, but base will later be assumed to be valid.
|
||||
base = Eigen::Hyperplane<float, 3>(normal, pos);
|
||||
base = Eigen::Hyperplane<float, 3>(normal, pos-EPSILON*normal);
|
||||
}
|
||||
|
||||
// In case there is still an intersection to be found, check the wall
|
||||
|
|
|
@ -77,9 +77,6 @@ void SupportPointGenerator::project_onto_mesh(std::vector<sla::SupportPoint>& po
|
|||
m_throw_on_cancel();
|
||||
Vec3f& p = points[point_id].pos;
|
||||
// Project the point upward and downward and choose the closer intersection with the mesh.
|
||||
//bool up = igl::ray_mesh_intersect(p.cast<float>(), Vec3f(0., 0., 1.), m_V, m_F, hit_up);
|
||||
//bool down = igl::ray_mesh_intersect(p.cast<float>(), Vec3f(0., 0., -1.), m_V, m_F, hit_down);
|
||||
|
||||
sla::EigenMesh3D::hit_result hit_up = m_emesh.query_ray_hit(p.cast<double>(), Vec3d(0., 0., 1.));
|
||||
sla::EigenMesh3D::hit_result hit_down = m_emesh.query_ray_hit(p.cast<double>(), Vec3d(0., 0., -1.));
|
||||
|
||||
|
@ -90,10 +87,6 @@ void SupportPointGenerator::project_onto_mesh(std::vector<sla::SupportPoint>& po
|
|||
continue;
|
||||
|
||||
sla::EigenMesh3D::hit_result& hit = (!down || (hit_up.distance() < hit_down.distance())) ? hit_up : hit_down;
|
||||
//int fid = hit.face();
|
||||
//Vec3f bc(1-hit.u-hit.v, hit.u, hit.v);
|
||||
//p = (bc(0) * m_V.row(m_F(fid, 0)) + bc(1) * m_V.row(m_F(fid, 1)) + bc(2)*m_V.row(m_F(fid, 2))).cast<float>();
|
||||
|
||||
p = p + (hit.distance() * hit.direction()).cast<float>();
|
||||
}
|
||||
});
|
||||
|
|
|
@ -778,7 +778,7 @@ void SupportTreeBuildsteps::filter()
|
|||
nn = Vec3d(std::cos(azimuth) * std::sin(polar),
|
||||
std::sin(azimuth) * std::sin(polar),
|
||||
std::cos(polar)).normalized();
|
||||
t = oresult.score;
|
||||
t = EigenMesh3D::hit_result(oresult.score);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -253,6 +253,11 @@ void SLAPrint::Steps::support_points(SLAPrintObject &po)
|
|||
|
||||
// calculate heights of slices (slices are calculated already)
|
||||
const std::vector<float>& heights = po.m_model_height_levels;
|
||||
|
||||
// Tell the mesh where drain holes are. Although the points are
|
||||
// calculated on slices, the algorithm then raycasts the points
|
||||
// so they actually lie on the mesh.
|
||||
po.m_supportdata->emesh.load_holes(po.transformed_drainhole_points());
|
||||
|
||||
throw_if_canceled();
|
||||
sla::SupportPointGenerator::Config config;
|
||||
|
@ -321,6 +326,7 @@ void SLAPrint::Steps::support_tree(SLAPrintObject &po)
|
|||
po.m_supportdata->emesh.ground_level_offset(pcfg.wall_thickness_mm);
|
||||
|
||||
po.m_supportdata->cfg = make_support_cfg(po.m_config);
|
||||
po.m_supportdata->emesh.load_holes(po.transformed_drainhole_points());
|
||||
|
||||
// scaling for the sub operations
|
||||
double d = objectstep_scale * OBJ_STEP_LEVELS[slaposSupportTree] / 100.0;
|
||||
|
|
Loading…
Reference in a new issue